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Abstract

This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design
ariables and mathematical programming. The structural optimization problems: compliance minimization subject to mass
onstraint, and mass minimization subject to compliance constraint are used to design the multimaterial topologies in this
ork. The extended SIMP interpolation is used to interpolate the different materials available for structural design, and

he material phases in each element are represented using binary design variables, one variable per available material. The
opology Optimization of Binary Structure (TOBS) method (Sivapuram and Picelli, 2018) is employed, wherein the nonlinear
bjective/constraint functions of optimization are sequentially approximated (herein, linearized) to obtain a sequence of Integer
inear Programs (ILPs). A novel truncation error-regulating constraint in terms of the Young’s moduli of the elements is

ntroduced to maintain the sequential approximations valid, by restricting large changes in successive structural topologies.
commercial branch-and-bound solver is used to solve the integer subproblems yielding perfectly binary solutions which

uarantee discrete structural topologies with clear material interfaces at each iteration. Adjoint sensitivities are computed to
enerate the integer subproblems, and the sensitivities are filtered using a conventional mesh-independent sensitivity filter. Few
xamples show the design of multimaterial structures in the presence of design-dependent loads: hydrostatic pressure loads
nd self-weight loads. This work also demonstrates through few examples, convergence of optimal multimaterial topologies at
nactive constraint values when different type of loadings simultaneously act on the structure.
c 2021 Elsevier B.V. All rights reserved.

eywords: Multimaterial; Extended SIMP; Binary variables; Truncation error; Pressure loads; Inactive constraint

1. Introduction

The engineering world continuously strives to develop methodologies which aid in the design of effective and
ight-weight structures. Topology optimization is one such numerical method which enables to design optimally
erforming structural topologies. [1] used the numerical homogenization method to design structures made of single
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material in their pioneering work of topology optimization. Several works followed exploring topology optimization
for the design of structures in different applications considering a variety of performance measures and constraints.
It is vital to have a robust formulation to design complex optimal structures, especially when using multiphysics,
design-dependent loads, etc. The rapid growth in the additive manufacturing of structures makes the complex designs
obtained through structural optimization very practical [2].

Multimaterial structural optimization unlocks the capability to design even more efficient and high-performing
tructures because of the increased design space. The material at each point in the structure can be chosen optimally
ccording to performance requirements whilst maintaining the structure light-weight. The multimaterial structures
btained through structural optimization can be manufactured through additive manufacturing techniques [2,3].
ultiscale optimization is similar to multimaterial optimization in that it involves the design of architected material

can use single [4] or multiple [5] base materials) at each point in the design domain.
One of the first works in multimaterial optimization designed microstructures with extreme material properties

ike thermal expansion coefficient [6]. They used an extended SIMP (Solid Isotropic Material with Penalization)
nterpolation for the material properties which is described in the later sections. The same interpolation is used
n [7] to design multimaterial microstructures with extreme bulk moduli. The extended SIMP interpolation is
ust a recursive form of the original SIMP interpolation for single materials [8], and so is also called Recursive

ultiphase Material Interpolation (RMMI) [9]. Homogenization-based structural optimization was used in [10] to
esign optimized multimaterial macrostructures. The interpolation of Hashin–Shtrikman bounds of the material
roperties was used in [11] to design bi-material thermal actuators. Most methods in multimaterial structural
ptimization use additional design variables over single material optimization for properly defining the material
ocated at each point in the design domain. A peak function-based material interpolation [12] can be used to avoid
dding additional design variables in multimaterial optimization by using smoothened versions of the Kronecker
elta functions defining the material phase at any point in the structure. In the level-set methods, a “color”-based
evel-set method was used for the design of optimal multimaterial macrostructures by using very few level-set
unctions to represent multimaterial geometries [13]. Using the same level-set framework, [14] optimized for
ultimaterial force inverters and other compliant mechanisms. However, the optimal topologies include redundant
aterial phases when the number of material phases available is not a power of 2, which requires special

nterpretations. Optimal multimaterial piezoelectric actuators are designed in [15] using a multiphase level-set
ethod of piece-wise constants. A different material interpolation scheme for multimaterial optimization is proposed

n [16], called Discrete Material Optimization (DMO) advantageous when several candidate materials are available
or optimization. DMO is used in [17] for the design of optimal multimaterial composite shell structures considering
uckling. Owing to the uniformity of weights in the interpolation of material properties, DMO is also called
niform Multiphase Material Interpolation (UMMI) [9]. DMO allows for a linear form of mass constraint which is
eneficial for convex programming methods. The UMMI scheme was used for the design of optimal multimaterial
hermoelastic structures in [18] in the presence of a linear mass constraint. An ordered SIMP interpolation was
roposed in [19] which uses one design variable per element, regardless of the number of candidate materials.
owever, the interpolated material properties are not differentiable when any element is made of one of the candidate
aterials.
Bidirectional Evolutionary Structural Optimization (BESO) was first used for multimaterial optimization in [20]

ith two candidate materials for compliance minimization in the presence of volume constraints. BESO was used
n multimaterial optimization considering interval loading uncertainty in [21], again in the presence of volume
onstraints. Conventional BESO method requires volume constraint for design variable update, and so problems
nvolving no volume constraint are nontrivial to solve [22,23]. An efficient MATLAB code for multimaterial
tructural optimization is presented in [24] using the ZPR (Zhang–Paulino–Ramos Jr.) design variable update scheme
onsidering polyhedral finite elements and many volume constraints. An improved ZPR update scheme is applied
o thermomechanical problems in [25] whilst controlling the complexity of the topologies and length scale of
he associated support structures used in the additive manufacturing. A Moving Morphable Component (MMC)
pproach is used in [26] for multimaterial optimization under volume constraints where the optimization starts with
efining an initial solution consisting of components with uniform material properties.

Obtaining optimal structural topologies with clear boundaries is of pivotal importance in manufacturing and in
ealing with design-dependent loads. The structural optimization methods like SIMP [8] pose an uncertainty in the

tructural boundary because of the use of continuous density variables. Special post-processing techniques can be
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employed to obtain an estimate for the structural boundary after optimization [27–29]. The SIMP method is also
known to yield optimized solutions with too many intermediate densities when multiple physics are involved in
the problem [30]. In the multimaterial scenario, not only the structural boundary, but all the material interfaces
are fuzzy, which leads to difficulties in considering material interface effect in the structural analysis [31]. [31]
developed an extended two-step filtering approach to approximately construct the multi-material interfaces. The
level-set based structural optimization techniques employ a level-set function to implicitly define the structural
boundary [32–34]. The classical SIMP method is also known to exhibit parasitic effects for low densities due
to the incorrect modeling of effective mechanical and mass properties in the vicinity of zero density [35]. The
level-set function is defined at a set of grid points, and the structural boundary is only defined approximately
using linear interpolation [33], whereas the level-set function is a rational function. The level-set method also
involves intricate numerical machinery to stabilize the structural evolution, and the optimization needs special
procedures, e.g. incorporating topological derivatives [34], using a secondary level-set function [36], combining
with other structural optimization techniques [37], etc. to generate new holes in the structural topology. The
BESO method can generate discrete structures with well-defined structural boundaries [38,39], however, the method
is greatly dependent on the heuristics employed in design-variable updating [40]. The design variable updating
procedure is heavily reliant on the presence of a volume constraint, without which BESO method cannot be
used. Moreover, the nonvolume constraints are incorporated in BESO using Lagrange multipliers, which leads
to noisy convergence, especially when multiple nonvolume constraints are present in the problem [22]. The
Sequential Element Reduction and Addition (SERA) technique uses improved heuristics [41] as compared to
BESO but still retains the aforementioned disadvantages of BESO. The Canonical-Duality Theory (CDT) based
structural optimization was first proposed by [42] and can produce discrete structures using duality principles of
optimization [43] in polynomial-time, and was later also employed in [44,45]. Some improved versions of CDT
are described thoroughly in [46,47]. The TOBS framework used herein yields discrete structures with well-defined
boundaries like BESO, but is based on robust mathematical programming which enables the method to efficiently
deal with multiple nonvolume constraints without the introduction of Lagrange multipliers [22,23]. Obtaining clear
boundaries in the structural topologies at all iterations makes it straight-forward dealing with design-dependent
pressure loads and finding material interfaces. The TOBS method is as simple as the element-based method SIMP,
except that the design variables are strictly binary [22,48,49].

The TOBS method was introduced in [22] for single scale structural optimization demonstrating discrete
tructural topologies obtained through compliance minimization and volume minimization. An improved truncation
rror-regulating constraint was introduced into the TOBS method and clear 2D/3D microstructures were designed
n [23] in the presence of several nonlinear constraints. The advantage of clear structural boundaries in dealing
ith design-dependent loads and thermomechanical problems was demonstrated in [50]. The generated ILPs in

he TOBS method are solved using a commercial branch-and-bound solver in this work which is known to be of
xponential computational complexity. One can also use polynomial-time methods to solve the generated ILPs, like
DT [18,43]. [49] applied the TOBS method to design optimal structural topologies considering fluid–structure

nteraction under laminar flow using a commercial Finite Element Analysis (FEA) package. A compact MATLAB
ode for optimizing structures using TOBS method considering multiple constraints is presented in an educational
aper, TOBS-101 [51].

In this work, we aim at designing optimized structures with clear boundaries using binary design variables and
nteger programming, using the TOBS method. The suboptimization problems obtained by sequential linearization
nduce a truncation error. We introduce a novel constraint to maintain the truncation error low. The newly introduced
onstraint refrains the optimizer from making large changes in the structural topology by controlling the change in
he total Young’s moduli of elements. The TOBS method for single material structural optimization uses a similar
onstraint, which restrains the number of element flips (solid to void and vice-versa) each iteration [23]. We use the
onventional mesh-independent sensitivity filtering to avoid checkerboarding and to achieve mesh-independence.
ew examples of compliance minimization and mass minimization are shown to demonstrate discrete optimized
tructural topologies and smooth convergence obtained using TOBS. Discrete optimization-based multimaterial
esign using BESO can only work in the presence of volume constraints. All the examples shown in this work use
(nonlinear) mass/mean strain energy constraint and so they are the first discrete optimization-based multimaterial

tructures of their kind. Examples using design-dependent pressure loads and design-dependent self-weight loads are

hown when two/three materials are made available for optimization. The opposing effects of the pressure loads and
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self-weight loads are discussed through examples which converge at inactive constraint values. Material interface
effects are neglected in this work, however introducing such effects is straightforward owing to the clearly defined
material interfaces [31]. Through examples, it is also demonstrated that the TOBS method can smoothly converge
at an inactive mass constraint value, depending on the action of different kinds of forces acting on the structure.

The manuscript is organized as follows. Section 2 describes multimaterial structural optimization and the
ertinent interpolations of the properties of the materials. Section 3 discusses in detail, the TOBS method for single
nd multimaterial structural optimization, including: a novel truncation error-regulating constraint (Section 3.1),
elaxation of constraints (Section 3.2) to generate feasible integer linear suboptimization problems each iteration,
nd the Integer Linear Programming solver based on the branch-and-bound method (Section 3.3). Section 4 shows
he equilibrium equations with the stiffness matrix and force vectors for all the examples pertinent to the manuscript.
ection 5 includes the adjoint sensitivity analysis of mean compliance for multimaterial structural optimization

n the presence of design-dependent pressure and self-weight loads, and a mesh-independent sensitivity filtering
Section 5.1) used herein. Several examples for compliance minimization and mass minimization, including design-
ependent loads are shown in Section 6, and examples which converge with an inactive constraint value are also
emonstrated. Section 7 concludes the work and presents the key take-aways from this research.

. Multimaterial structural topology optimization

We start by describing a structural topology optimization problem for single material,

Minimize
m(x)∈{ms , mv}

f (m(x))

Subject to gi (m(x)) ≤ gi ∀ i ∈ [1, Ng]

x ∈ Ωd ⊂ R
sd

(1)

here x signifies the spatial coordinate in the design domain Ωd , which is a subset of the two-dimensional (sd = 2)
pace or three-dimensional (sd = 3) real space. m(·) denotes the material at any physical coordinate in Ωd . For
ingle material topology optimization, the possible materials m(·) at any x ∈ Ωd are solid material (ms) and void
aterial (mv). f (·) is the objective function (see [42] for a discussion on the pertinent semantics) and gi (·) ≤ gi

is the i th of the Ng inequality constraints in the optimization problem. The objective/constraint functions f (·) and
gi (·) can be some measures of structural performance, or measures of consumed resources.

The optimization problem in Eq. (1) is aimed at determining the choice of material at each and every physical
coordinate of the design domain Ωd which makes it an optimization problem with infinite design variables. The
optimization problem can be made computationally tractable by approximating the design variables. One way to
achieve this is by assuming the material choice to be uniform over finite cells/voxels/elements in the design domain.
This method is used in methods like SIMP, BESO, and TOBS. Another way is to approximate the material choice
is by using an implicit function, e.g. the level set method [32,33]. Using the element-based approximation in this
work, the structural optimization problem can be simplified to

Minimize
m

f (m)

Subject to gi (m) ≤ gi ∀ i ∈ [1, Ng]
m j ∈ {ms, mv} ∀ j ∈ [1, Ne]

(2)

here m is the vector of material choices, with each choice m j uniform over an element in the design domain, and
Ne is the number of elements in the design domain. This optimization problem is computationally tractable, and
he problem is modeled using an interpolation between the solid ms and void mv material phases. A popular choice

of interpolation is the modified SIMP interpolation,

E j = (1− ρ
p
j ) · Emin + ρ

p
j · Es (3)

where E j signifies the material Young’s modulus at element j via the design variable ρ j , p is a penalty factor
usually 3, which realizes the Hazhin–Shtrikman bounds [52]), Es is the Young’s modulus of the solid material

s , and Emin is a small number (e.g. 10−9
· Es) to prevent singularities at analysis stage, and can be considered

s the Young’s modulus of the void material mv . The design variable ρi indicates the presence of material (solid

hase) when ρ j = 1 and absence of material (void phase) when ρ j = 0. The SIMP method used in [8,52] assumes
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Table 1
Mapping between materials and design variables.

ρ jk , k ∈ {1, 2, 3, 4} Material

0 0 0 0 Void
1 0 0 0 1
1 1 0 0 2
1 1 1 0 3
1 1 1 1 4

the design variables ρ to be continuous between 0 and 1, leading to optimal solutions with intermediate densities
(i.e., 0 < ρ j < 1) which bear less physical meaning. Approaches like BESO and TOBS assume discrete variables ρ

ensuring the design of manufacturable optimal structures. Using the interpolation in Eq. (3) and discrete design
variables, the optimization problem in Eq. (2) becomes

Minimize
ρ

f (ρ)

Subject to gi (ρ) ≤ gi ∀ i ∈ [1, Ng]
ρ j ∈ {0, 1} ∀ j ∈ [1, Ne]

(4)

Extending Eq. (2), a multimaterial structural topology optimization can be defined as

Minimize
m

f (m)

Subject to gi (m) ≤ gi ∀ i ∈ [1, Ng]
m j ∈ {m1, m2, . . . , m Nm } ∀ j ∈ [1, Ne]

(5)

where Nm is the number of materials available for optimization. Similar to the single material problem, we again
need an interpolation to model the structural properties. In this work, the different materials used for structural
optimization differ only in Young’s modulus. We use the extended SIMP formulation, which is a generalized form
of Eq. (3),

E j =

Nm∑
k=1

(
1− ρ

p
jk

)[k−1∏
t=1

ρ
p
jt

]
Esk−1 +

Nm∏
t=1

ρ
p
jt EsNm

(6)

where E j is the Young’s modulus of element j , Esk is the Young’s modulus of solid material mk , Es0 = Emin is
a small number to avoid singularity at analysis stage, ρ jk is the kth design variable corresponding to element j ,
and p is a penalization factor (3 in this work). In this work, we use

Emin = 10−9
· min

(
Es1 , Es2 , . . . , EsNm

)
(7)

We can observe that the modified SIMP interpolation in Eq. (3) can be obtained by substituting Nm = 1 in the
xtended SIMP interpolation in Eq. (3). For two materials (Nm = 2) and three materials (Nm = 3) in structural
ptimization, the extended SIMP interpolation is respectively,

E j =

(
1− ρ

p
j1

)
Emin + ρ

p
j1

[(
1− ρ

p
j2

)
E1 + ρ

p
j2 E2

]
E j =

(
1− ρ

p
j1

)
Emin + ρ

p
j1

[(
1− ρ

p
j2

)
E1 + ρ

p
j2

((
1− ρ

p
j3

)
E2 + ρ

p
j3 E3

)] (8)

rom Eq. (8), we can observe that the first design variable ρ j1 decides the presence of any material: ρ j1 = 0 for
oid phase at element j , and ρ j1 = 1 for one of the Nm solid materials at element j . If ρ j1 = 1, the second
esign variable ρ j2 implies material m1 at element j if ρ j2 = 0, and implies some other material mk, k > 1 if
j2 = 1, ρ j3 = 0. Similarly, if ρ j1 = ρ j2 = 1, the third design variable ρ j3 indicates material m2 if ρ j3 = 0, and
aterial m3 if ρ j3 = 1. To summarize, the design variables and the materials implied at any element j for Nm = 4

re presented in Table 1. It should be noted that the mapping shown in Table 1 is nonunique in that, nonunique
ermutations of 0/1 design variables map to the same material. For e.g. both 0 0 0 0 and 0 1 0 0 map to the

oid material phase by the extended SIMP interpolation. We use a simple strategy during structural optimization to
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avoid potential issues due to this behavior of the extended SIMP formulation, which will be discussed in the next
section.

The mass density is also interpolated in a similar way as that of the Young’s modulus, but with unit penalty,

γ j =ρ j1

[(
1− ρ j2

)
γ1 + ρ j2γ2

]
γ j =ρ j1

[(
1− ρ j2

)
γ1 + ρ j2

((
1− ρ j3

)
γ2 + ρ j3γ3

)] (9)

e should note that the mass density of the void material is 0. Herein, we use the penalty values p = 3 and p = 1
for Young’s modulus and mass density respectively. The mass of the structure at any iteration of optimization can
be simply computed using

w(ρ) =
Ne∑
j=1

γ j V j (10)

here V j is the volume (area in 2D) of the element j .
The use of continuous variables for multimaterial structural optimization leads to unclear boundaries (due to

ntermediate densities) in the optimal solution, just like the single material structural optimization. Moreover, the
onbinary values of design variables lead to some elements having a mixture of available materials, which not only
ears less physical meaning, but also makes the material interface uncertain. If one were to consider and model
aterial interface effects during analysis, a clear interface between participating materials in optimization is required.
lthough this work does not incorporate material interfacing effects, the clear material interfaces guaranteed during
ptimization help in incorporating such effects with ease. The unclear boundaries also make the determination of
esign dependent surface loads, e.g. hydrostatic pressure loads nontrivial. This work employs binary values for the
esign variables, i.e., ρ jk ∈ {0, 1} enabling clear boundaries.

Using the extended SIMP interpolation and discrete design variables, the multimaterial structural topology
ptimization can be modeled as

Minimize
ρ

f (ρ)

Subject to gi (ρ) ≤ gi ∀ i ∈ [1, Ng]
ρ jk ∈ {0, 1} ∀ j ∈ [1, Ne], k ∈ [1, Nm]

(11)

here ρ is the matrix of design variables of size Ne × Nm . This optimization problem is solved via linearization
nd integer programming in this work, as described in the latter sections.

. Topology optimization of binary structures considering multiple materials

The optimization problem in Eq. (11) involves objective f (·) and constraint g(·) functions. This optimization is
n general nonconvex. One way to solve such nonlinear optimization problems is via sequential approximation
n which, a sequence of suboptimization problems is generated based on the derivative information of the
bjective/constraint functions and is solved using efficient optimization methods available in literature. In this work,
e use Linear approximation of the objective/constraint functions to generate the suboptimization problems. Since
e consider binary design variables for the parent optimization problem in Eq. (11), the design variables of the

inear suboptimization problems are integers. The optimization of such linear problems with integer constraints is
alled Integer Linear Programming (ILP).

The ILP problem is generated using the first derivative information of the objective/constraint functions. These
erivatives are computed with respect to the design variables of the parent optimization problem in Eq. (11) and are
alled sensitivities. The derivation of sensitivities for the objective/constraint functions used in this manuscript is
iscussed in the next section. The ILP problem is an approximation of the parent optimization problem (Eq. (11))
bout the current state of design variables. Consider the Taylor’s series approximation of the objective/constraint
unctions,

f (ρ) = f (ρn)+
∂ f
∂ρ

(ρn) : ∆ρn
+ H OT

g(ρ) = g(ρn)+
∂g

(ρn) : ∆ρn
+ H OT

(12)
∂ρ

6
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where ρn is the matrix of design variables at current state n of the parent optimization problem (Eq. (11)),
∂ f
∂ρ

(ρn)

and
∂g
∂ρ

(ρn) are the matrices of first derivatives (sensitivities) computed using the current state, ∆ρn is the matrix of

esign variable updates, and H OT are the higher order terms. ILP problem is generated using linear approximation,
.e., by neglecting the higher order terms in Eq. (12). Using the linear approximation of the Taylor’s expansion, the
enerated suboptimization problem can be written as

Minimize
∆ρn

∂ f
∂ρ

(ρn) : ∆ρn

Subject to
∂gi

∂ρ
(ρn) : ∆ρn

≤ gi − gi (ρn) ∀ i ∈ [1, Ng]

∆ρn
jk ∈ {−ρn

jk, 1− ρn
jk} ∀ j ∈ [1, Ne], k ∈ [1, Nm]

(13)

where ∆ρn
jk is the update of the kth design variable corresponding to the j th element, at nth iteration (state).

Optimizing the ILP problem, the design variables are simply updated using

ρn+1
= ρn

+∆ρn (14)

The linearized problem in Eq. (13) is sufficiently accurate only for a small number of changes in the element
phases. This is because the linear approximation of the objective/constraint functions neglects the higher order terms
H OT in their Taylor’s expansions (Eq. (12)). This difference is called the truncation error and can be estimated
as O

(
∥∆ρ∥2

)
. In order to maintain the ILP problem in Eq. (13) well-approximating the parent optimization

problem (Eq. (11)) in a neighborhood of the current state n, we constrain the possible change in the design
variables each iteration. Such a constraint is aimed at keeping the truncation error of the Taylor’s expansions of the
objective/constraint functions small.

3.1. Truncation error-regulating constraint

In this work, the different materials considered for multimaterial structural optimization are assumed to be
isotropic, with same Poisson’s ratios but different Young’s moduli. The Nm design variables corresponding to each
element are interpolated using extended SIMP (Eq. (6)) to obtain the material choice, or in this case, the Young’s
modulus of the element. The objective/constraint functions directly depend on the Young’s moduli of the elements
which in turn depend on the design variables. The dependency of objective/constraint functions on the Young’s
moduli is discussed clearly in the later sections. The Taylor’s expansion of the objective/constraint functions can
be written in terms of Young’s modulus as

f (E(ρ)) = f (E(ρn))+
∂ f
∂ E

(ρn) ·∆E +O
(
∥∆E∥2)

g(E(ρ)) = g(E(ρn))+
∂g
∂ E

(ρn) ·∆E +O
(
∥∆E∥2) (15)

here E is the vector of Young’s moduli of the elements. To control the truncation error in Eq. (15), it is reasonable
o constrain the change in Young’s moduli, ∆E. We impose a novel constraint on the design variables ∆ρ of the
LP problem by restraining ∆E. We propose a one-norm constraint on the change in Young’s moduli vector ∆E,

∥∆E∥1 ≤ β · Ne EsNm
(16)

here ∥∆E∥1 =
∑Ne

j=1 ∆E j is the one norm of the vector ∆E, β is a small number (say 0.05) to regulate the
runcation error O

(
∥∆E∥2

)
. The right hand side of the inequality constraint in Eq. (16) is β multiplied by the sum

f Young’s moduli of all Ne elements in the design domain Ωd when the elements are filled by the stiffest material
Nm (with Young’s modulus EsNm

). The change in Young’s modulus of any element ∆E j can be written in terms
f change in design variables using chain rule,

∆E j =

Nm∑ ∂ E j

∂ρn ·∆ρn
jk (17)
k=1 jk

7
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Using the chain rule in Eq. (16), we arrive at an inequality constraint in terms of the design variables ∆ρ of the
suboptimization (ILP) problem,

∥∆E∥1 =

Ne∑
j=1

⏐⏐⏐⏐∂ E j

∂ρn
: ∆ρn

⏐⏐⏐⏐ ≤ β · Ne EsNm
(18)

he constraint in Eq. (18) is nonlinear, and we need a linear constraint to be incorporated in the ILP problem
Eq. (13)). Consider the inequality,⏐⏐⏐⏐ Nm∑

k=1

∂ E j

∂ρn
jk
·∆ρn

jk

⏐⏐⏐⏐ ≤ Nm∑
k=1

⏐⏐⏐⏐ ∂ E j

∂ρn
jk
·∆ρn

jk

⏐⏐⏐⏐ (19)

This inequality implies that the set of design variables ∆ρ of the ILP problem which satisfies
Ne∑
j=1

Nm∑
k=1

⏐⏐⏐⏐ ∂ E j

∂ρn
jk
·∆ρn

jk

⏐⏐⏐⏐ ≤ β · Ne EsNm
(20)

lso satisfies the truncation error-regulating constraint in Eq. (18), with Eq. (20) being conservative. The left hand
ide of the inequality constraint (Eq. (20)) appears nonlinear, but is in fact linear when binary design variables are
sed (as in this work). Each term in the double summation in Eq. (20) can be written as⏐⏐⏐⏐ ∂ E j

∂ρn
jk
·∆ρn

jk

⏐⏐⏐⏐ = ⏐⏐⏐⏐ ∂ E j

∂ρn
jk

⏐⏐⏐⏐ · ⏐⏐∆ρn
jk

⏐⏐ = ⏐⏐⏐⏐ ∂ E j

∂ρn
jk

⏐⏐⏐⏐ · αn
jk∆ρn

jk (21)

here
⏐⏐⏐⏐ ∂ E j

∂ρn
jk

⏐⏐⏐⏐ can be computed using the extended SIMP interpolation (Eq. (6)) and will also be discussed in the

later sections, and αn
jk is given by

αn
jk =

{
1 : ρn

jk = 0
−1 : ρn

jk = 1
(22)

Using Eq. (22), the truncation error-regulating constraint is written in linear form and can be incorporated in the
ILP problem. The specific values of αn

jk given in Eq. (22) are available only because of the binary nature of design
ariables. We do not know at state n the design variables in the next state (ρn+1

jk ) so as to determine ∆ρn
jk (observe

q. (14)). The absolute value of the change in design variables if ρn
jk = 0 is given by⏐⏐∆ρn

jk

⏐⏐ = {
0 = αn

jk∆ρn
jk : ρ

n+1
jk = 0

1 = αn
jk∆ρn

jk : ρ
n+1
jk = 1

(23)

nd if ρ jk = 1 is given by⏐⏐∆ρn
jk

⏐⏐ = {
1 = αn

jk∆ρn
jk : ρ

n+1
jk = 0

0 = αn
jk∆ρn

jk : ρ
n+1
jk = 1

(24)

rom the Eqs. (23) ad (24), we see that using the αn
jk as defined in Eq. (22), we can correctly define the absolute

alue of ∆ρn
jk . The ILP problem along with the truncation error-regulating constraint can be thus written as

Minimize
∆ρn

∂ f
∂ρ

(ρn) : ∆ρn

Subject to
∂gi

∂ρ
(ρn) : ∆ρn

≤ gi − gi (ρn) ∀ i ∈ [1, Ng]

Ne∑
j=1

Nm∑
k=1

⏐⏐⏐⏐ ∂ E j

∂ρn
jk

⏐⏐⏐⏐αn
jk ·∆ρn

jk ≤ β · Ne EsNm

∆ρn
jk ∈ {−ρn

jk, 1− ρn
jk} ∀ j ∈ [1, Ne], k ∈ [1, Nm]

(25)

The truncation error-regulating constraint derived here for multimaterial optimization problems can be observed
s a generalization of the truncation error-regulating constraint defined for single material optimization problems in
8
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our earlier works [23,50]. In multimaterial optimization, when design variables are updated, they affect the quantities
in elasticity (like the mean compliance) via the Young’s modulus. The linearization in terms of the Young’s modulus
as shown in Eq. (15) is crucial, and controlling the truncation error in terms of change in the Young’s modulus is
more accurate. The use of change in Young’s moduli to restrain the truncation error also imparts some stability to the
optimization, especially for problems involving materials with very different Young’s moduli. The truncation error-
regulating constraint in [23], when applied to multimaterial problems, treats the switching between any two available
materials as the same, without regard to the underlying material properties. The new truncation error-regulating
constraint proposed here factors in the difference in the Young’s moduli of the materials, and so a larger truncation
error is assigned to elements where material can switch from a very stiff material to a very flexible material, and
a smaller truncation error is assigned to elements where material can switch between two materials with smaller
difference in their Young’s moduli. This imparts additional stability to the algorithm preventing rapid switching (if
any) between materials with very different properties. The examples shown in this work show stably converged
optimized solutions even when the considered materials are very different in their Young’s moduli, showing that
the derived constraint restrains from rapid change in structural topology each iteration, is mathematically accurate
and helps in a stable convergence.

This work uses linearization with respect to the Young’s modulus given that the problems considered in this
ork consider elastic analyses. For other physics, different material properties can be adopted for the linearization

nd truncation error-control, e.g. thermal conductivity for heat conduction problems, etc.

.2. Relaxation of constraints

The truncation error-regulating constraint in Eq. (25) allows only small changes in the structural topology each
teration. Assuming the constraints gi (ρ) are sufficiently smooth, small changes in the structural topology permit
nly small changes in the value of constraints each iteration. This can make the ILP suboptimization problem in
q. (25) infeasible when there is no set of possible design variables ∆ρn which can satisfy any of the Ng linearized

constraints. This situation is commonly observed when the right hand side gi of any constraint is far from being
feasible (gi > gi (ρn)) in the current state of design variables. For example, consider the single material topology

ptimization with a volume constraint of 50%, with the structural topology having 100% volume at the current
tate.

In order to avoid this infeasibility of the ILP subproblems, we relax the constraints each iteration so that we
enerate feasible ILP subproblems at each iteration n. We use the constraint relaxation [50],

∆gn
i =

⎧⎪⎨⎪⎩
−ϵi gi (ρn) : gi < (1− ϵi )gi (ρn)
gi − gi (ρn) : gi ∈

[
(1− ϵi )gi (ρn), (1+ ϵi )gi (ρn)

]
ϵi gi (ρn) : gi > (1+ ϵi )gi (ρn)

(26)

where ∆gn
i is the relaxed right hand side of the i th linear inequality constraint in the ILP problem (Eq. (25)), and

i is the relaxation parameter. Effectively, Eq. (26) restrains the bounds (right hand sides) of each constraint i to
e within a factor ϵi of the current constraint value (gi (ρn)).

The ILP subproblem incorporating truncation error-regulating constraint and constraints’ relaxation is given by

Minimize
∆ρn

∂ f
∂ρ

(ρn) : ∆ρn

Subject to
∂gi

∂ρ
(ρn) : ∆ρn

≤ ∆gn
i ∀ i ∈ [1, Ng]

Ne∑
j=1

Nm∑
k=1

⏐⏐⏐⏐ ∂ E j

∂ρn
jk

⏐⏐⏐⏐αn
jk ·∆ρn

jk ≤ β · Ne EsNm

∆ρn
jk ∈ {−ρn

jk, 1− ρn
jk} ∀ j ∈ [1, Ne], k ∈ [1, Nm]

(27)

here ∆gn
i is computed using Eq. (26). This is the final form of ILP subproblem generated each iteration in the

OBS framework for multimaterials, and is solved using an Integer Programming solver. The design variables ρn
re then updated using Eq. (14), and the procedure is continued until a specified convergence criterion is met.

9



R. Sivapuram, R. Picelli, G.H. Yoon et al. Computer Methods in Applied Mechanics and Engineering 384 (2021) 114000

l
H
m

p
p
o
i
t
p

o
a
a
w
p
M

p
L
c
t
c
p

a

w
n
3

a
t
(
p
(
4
c

4

a
d

3.3. Integer linear programming (ILP) solver

As explained earlier, ILP problem is an LP problem with added integer constraints on design variables. This can
ead to slightly suboptimal solutions yielded by optimizing ILP problem as compared to optimizing the LP problem.
owever, the structural topology obtained by solving ILP problems has clear boundaries/material interfaces and is
anufacturable.
In this work, we use the branch-and-bound algorithm implemented in the CPLEX package to solve the ILP

roblem generated each iteration. The branch-and-bound method works by first solving the LP version of the ILP
roblem, i.e., the ILP problem without any integer constraints using some LP solver, e.g. simplex method. Based
n the optimal solution of this problem, the optimization problem is branched into more LP problems with added
nteger constraints on some design variables. These LP problems are solved with the new integer constraints, and
hen branched again until a perfectly integer solution is obtained. Fig. 1 shows a schematic for a hypothetical integer
rogram with two design variables {x, y}. The integer program is first solved without the integer constraints using

an existing optimization method. Branching is then made adding extra inequality constraints with integer bounds
on some design variables (in the schematic, x first then y) to generate newer optimization problems. The new

ptimization problems are solved using some conventional optimization technique again. This process of branching
nd bounding is continued until an optimal integer solution is encountered or when all the leaf nodes of the branch-
nd-bound tree yield infeasible solutions. When multiple integer solutions are available at the tree leaves, the solution
ith the best objective function is used as the optimal solution. We use the cplexmilp function of the CPLEX
ackage in MATLAB in this work for solving the ILP problems. One can also use intlinprog functionality of
ATLAB to solve the ILP problem as discussed in [22,51].
The branch-and-bound method used in this work is NP-hard, and so the computational cost of solving the ILP

roblem is in general higher than that of the LP problem, since the branch-and-bound solver involves solving many
P problems. However, the bottleneck of structural optimization is Finite Element Analysis and the computational
ost of integer programming is less significant for finer meshes as demonstrated in [50]. [50] demonstrates that
he branch-and-bound solver from CPLEX takes much less computational time during topology optimization as
ompared to 2D FEA problems, and so is computationally tractable. This effect is more pronounced in 3D FEA
roblems due to solving matrix systems with larger bandwidth and problems involving nonlinear analyses.

A convergence criterion is used to stop iterating over the topologies. In this work, the convergence criterion used
t any iteration c is given by

2·
max

j∈[c−4, c]
{ f j } − min

j∈[c−4, c]
{ f j }

max
j∈[c−4, c]

{ f j } + min
j∈[c−4, c]

{ f j }
≤ τ

gi ≤ ḡi ∀i ∈ [1, Ng]
c ≤ 300

(28)

here τ is a user-defined tolerance. In short, the optimization is stopped when the objective function value does
ot change much over the last 5 iterations whilst all the constraints are satisfied, or the number of iterations reaches
00.

In summary, the TOBS method involves the following stages: 1. The parent optimization problem is sequentially
pproximated (linearly in this work), a truncation error-regulating constraint is added, and the constraints are relaxed
o generate the integer suboptimization problems. 2. The equilibrium equations governing the physics of the problem
discussed in the next section) are solved to obtain the state variables. 3. The coefficients of the suboptimization
roblems are the derivatives of quantities which can depend on the state variables computed. These derivatives
called sensitivities) are computed using methods like adjoint sensitivity analysis, discussed in the next sections.
. The suboptimization problems are solved using the sensitivities, and the design variables ρ are updated. 5. This
ycle is repeated until a chosen convergence criterion (Eq. (28)) is satisfied.

. Finite element analysis

In this section, we discuss the equilibrium equations involved in determining the state variables of the problem
t hand. In this work, we solve optimization problems related to linear static structural analysis with and without
esign-dependent surface and design-dependent volumetric loads, for two-dimensional design domains.
10
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Fig. 1. Schematic of branch-and-bound method for an integer program.

Given the design domain Ωd , the equilibrium equations for linear elastostatics are given in Table 2, where σ is
the vector of stresses, ϵ is the strain vector, b is the volumetric loads, D is the elasticity tensor in Voigt form, u is
he vector of displacements, g is the specified displacements on boundary Γg and t is the vector of surface tractions

pecified on a subset Γt of the boundary Γ .

11
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Table 2
Strong form of Linear Elastostatics.

∇ · σ + b = 0 Equilibrium equation
σ = D · ϵ Constitutive equation

ϵ =
1
2
· (∇u +∇uT ) Kinematic compatibility

u = g, x ∈ Γg ⊂ Γ Essential Boundary Conditions
σ · n = t, x ∈ Γt ⊂ Γ Natural Boundary Conditions
u : Ωd → Rsd Solution Map

The variational form of the linear elastostatics problem in Table 2 is given by∫
Ωd

δϵT Dϵ dΩ =
∫
Ωd

δuT b dΩ +
∫
Γt

δuT t dΓ (29)

here δ(·) signifies the variation of a quantity. We use the finite element interpolations,

u = Nuh δu = Nδuh

ϵ = Buh δϵ = Bδuh (30)

here N is the matrix of shape function values, B is the matrix of shape function gradients and uh are the
nodal displacements. We drop the (·)h superscript herein for the sake of brevity. Incorporating the finite element
interpolations into the weak form in Eq. (29) converts it into a matrix form,

K u = F (31)

where the matrices in the matrix form are given by

K =
Ne∑

e=1

∫
Ωe

BT
e De Be dΩ =

Ne∑
e=1

K e

F =
Ne∑

e=1

(∫
Ωe

NT
e be dΩ +

∑
b∈Γt∩Γe

∫
Γb

GT
b tb dΓ

)
=

Ne∑
e=1

Fe

(32)

where Ωe is the domain of finite element e, De, be, Ne and Be are respectively the elasticity tensor, body force
vector, shape function matrix, and shape function gradient matrix of finite element e. K e and Fe are respectively the
elemental stiffness matrix and elemental force vector. Gb is the shape functions matrix of the boundary edge/surface
finite element b and tb is the corresponding traction vector. In this work, the only traction loads considered are the
hydrostatic pressure loads, i.e.,

pb = −tnb (33)

where t is the constant pressure and nb is the outward normal vector to the boundary edge/surface element b. In
the examples shown where pressure loads are considered, we use unit hydrostatic pressure load t = 1.0. Since
the elasticity matrix De has the Young’s modulus as a factor, the interpolation in Eq. (8) is also applicable to the
elasticity matrix. The pressure loads are applied as part of the second term of the force vector in Eq. (32). The
force vector corresponding to just the hydrostatic pressure loads is given by

Ne∑
e=1

ρe1

∑
b∈Γ f s∩Γe

∫
Γb

GT
b pb dΓ (34)

where Γ f s is the fluid–structure boundary. The pressure loads on an element e are nonzero only if the element is
solid (i.e., ρe1 = 1). In this work, we assign the fluid elements each iteration using the concept of fluid flooding [53].
We start with regions in the design domain where the fluid is already present. Using a Breadth-First Search (BFS)
approach, for each fluid element, we assign the neighboring void elements as fluid and add the newly fluid-assigned

elements to the queue used in the BFS algorithm.

12
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The self-weight loads acting at every point in the domain are proportional to the mass density. The force vector
orresponding to the self-weight loads is given by

Ne∑
e=1

∫
Ωe

γe NT
e g dΩ (35)

where γe is the mass density of the material in element e, and g is the vector signifying acceleration due to gravity.

5. Sensitivity analysis

Gradient-based optimization methods like the TOBS method use the gradients of objective/constraint functions
to iterate over the solutions. These gradients are called sensitivities and are used in the optimization problem
in Eq. (27). In this work, we use the mean strain energy (often referred to as mean compliance in the field of
structural optimization) and mass functions for optimization. We also consider design-dependent pressure loads and
design-dependent self-weight loads for this purpose.

The mean compliance (or the mean strain energy) of a structure at any iteration is given by

C(ρ, E, γ ) =
1
2

uT K u =
Ne∑

e=1

1
2

uT
e K eue (36)

here ue is the vector of elemental displacements, ρ is the matrix of design variables, E and γ are the vectors of
lemental Young’s moduli and mass densities at any iteration. The adjoint sensitivity analysis is used to compute
he sensitivities of mean compliance. The adjoint form of the mean compliance function is written using the state
quilibrium equation in Eq. (31) as

C(ρ, E, γ ) =
1
2

uT K u + λT (K u − F) (37)

here λ is the adjoint variable vector. Since this manuscript employs linear elastostatics as the analysis procedure,
ean compliance is dependent on the design variables through Young’s modulus and mass density (in case of

elf-weight loads). The sensitivities of the mean compliance can be computed using the chain rule,
∂C
∂ρ jk

(ρ, E, γ ) =
∂C(ρ)
∂ρ jk

+
∂C(E)
∂ E j

·
∂ E j

∂ρ jk
++

∂C(γ )
∂γ j

·
∂γ j

∂ρ jk
(38)

here E j is the Young’s modulus and γ j is the mass density of element j . The design variable affects the mean
compliance only through the Young’s modulus when design-dependent pressure loads and self-weight loads are
absent. The gradients of mean compliance with respect to the Young’s modulus are then given by

∂C(E)
∂ E j

= uT K
∂u
∂ E j
+

1
2

uT
j
∂ K j

∂ E j
u j + λT

j
∂ K j

∂ E j
u j + λT

(
K

∂u
∂ E j
−

∂ F
∂ E j

)
(39)

here u j and λ j are respectively the displacement vector and adjoint variable vector corresponding to element j .

he force vector is independent of Young’s moduli, i.e.,
∂ F
∂ E j
= 0. We eliminate the state variable gradients

∂u
∂ E j

from Eq. (38) by using the adjoint equation,

Kλ+ K u = 0
⇒ λ = −u

(40)

We can see from Eq. (40) that the adjoint variables λ are proportional to the state variables u, and so the mean
ompliance function is called self-adjoint. Substituting the adjoint variables in Eq. (40) into Eq. (39) and using the
efinition of stiffness matrix in Eq. (32), the sensitivities for mean-compliance in the absence of design-dependent
oads are given by

∂C
∂ρ jk
=

(
−

1
2

uT
j
∂ K j

∂ E j
u j

)
·

∂ E j

∂ρ jk

=

(
−

1
uT

j

[∫
BT

j D̄B j dΩ
]

u j

)
·

∂ E j
(41)
2 Ω j ∂ρ jk

13
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where D̄ is the material elasticity tensor with unit Young’s modulus. The sensitivities of Young’s modulus are given
using the extended SIMP interpolation in Eq. (6) as

∂ E j

∂ρ jk
= −pρ p−1

jk

[k−1∏
t=1

ρ
p
jt

]
Esk−1+

Nm∑
l=k+1

(
1− ρ

p
jl

)⎡⎢⎣ l−1∏
t=1
t ̸=k

ρ
p
jt

⎤⎥⎦pρ p−1
jk Esl−1

+ pρ p−1
jk

⎡⎢⎣ Nm∏
t=1
t ̸=k

ρ
p
jt

⎤⎥⎦EsNm

(42)

he sensitivities of the mass of the structure can be computed in terms of the mass density derivatives as

∂w(ρ)
∂ρ jk

=
∂w

∂γ j
·

∂γ j

∂ρ jk
= V j ·

∂γ j

∂ρ jk
(43)

here the sensitivities of the mass density of an element are derived using the extended SIMP interpolation,

∂γ j

∂ρ jk
=

[k−1∏
t=1

ρ j t

]
γsk−1 +

Nm∑
l=k+1

(
1− ρ jl

)⎡⎢⎣ l−1∏
t=1
t ̸=k

ρ j t

⎤⎥⎦γsl−1 +

⎡⎢⎣ Nm∏
t=1
t ̸=k

ρ j t

⎤⎥⎦γsNm
(44)

where γs0 = 0, the void material. The sensitivities for mean compliance in Eq. (41) are valid when there are no
design-dependent loads acting on the design domain. When we consider the effect of design dependent self-weight
loads, the force vector in Eq. (31) depends on the design variables via the mass density (see Eq. (35)). This means
the third term in Eq. (38) is nonzero in the presence of self-weight loads. The mean compliance sensitivities in the
presence of self-weight loads are thus given by

∂C
∂ρ jk
=

(
−

1
2

uT
j

[∫
Ω j

BT
j D̄B j dΩ

]
u j

)
·

∂ E j

∂ρ jk
+

∂γ j

∂ρ jk
uT

j

∫
Ω j

NT
j g dΩ (45)

here the sensitivities of the mass densities are computed using Eq. (44).
We now consider the applications with design-dependent hydrostatic pressure loads. The fluid–structure interface

hanges when an element on the boundary of the structure at any iteration changes from solid to void state (or vice-
ersa). The first term in the chain rule expression in Eq. (38) is nonzero in the presence of hydrostatic pressure loads
see Eq. (34)). We use a semi-analytical approach to arrive at the sensitivities of the force vector in the presence of
ydrostatic pressure loads. We should note that only the first column of design variables in ρ has nonzero sensitivities
or the pressure loads. This is because only the first column of design variables causes the presence of any solid
aterial in the elements, which in turn indicates the action of pressure loading on the boundaries of elements. Fig. 2

hows the surface pressure loads on an element e when the element changes from solid state to fluid state. The
radients of the force vector are just given by difference between the force vectors in the two scenarios as shown
n Fig. 2(c). The force vector on element e in Fig. 2(c) gives the sensitivities of pressure loading with respect to
e1. Using Eq. (34), the sensitivities of mean compliance in the presence of only design dependent pressure loads
re given by

∂C
∂ρ jk
=

(
−

1
2

uT
j

[∫
Ω j

BT
j D̄B j dΩ

]
u j

)
·

∂ E j

∂ρ jk
+ δk1uT

j

[∑
b∈Γ j

∫
Γb

GT
b nb dΓ

]
(46)

where δxy is the Kronecker delta function,

δxy =

{
1 : x = y

(47)

0 : x ̸= y

14
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Fig. 2. Computation of semi-analytical sensitivities for the pressure loads on element e(S→ Structure, F→ Fluid).

sing Eqs. (45) and (46), the sensitivities of mean compliance in the presence of both design-dependent pressure
oads and design-dependent self-weight loads are given by

∂C
∂ρ jk
=

(
−

1
2

uT
j

[∫
Ω j

BT
j D̄B j dΩ

]
u j

)
·

∂ E j

∂ρ jk
+ δk1uT

j

[∑
b∈Γ j

∫
Γb

GT
b nb dΓ

]

+
∂γ j

∂ρ jk
uT

j

∫
Ω j

NT
j g dΩ

(48)

The sensitivities derived in this section are filtered and then the integer linear suboptimization problem in Eq. (27)
is generated and solved using an ILP solver.

5.1. Sensitivity filtering

The stresses and strains are discontinuous across elements when C0 finite elements are used (as in this work).
Such finite elements exhibit artificially high stiffness when two finite elements just have a nodal hinge-like
connectivity. This spuriousness leads to checkerboards in the optimized topology [54]. We use sensitivity filtering
to smoothen the noisy sensitivities and avoid checkerboarding in structural optimization. Sensitivity filtering also
helps in achieving mesh-independent solutions. We use a mesh-independent sensitivity filter [39] for this purpose.

A nodal sensitivity field is generated from the elemental sensitivities by averaging the neighboring element
sensitivities at each node,

∂ f
∂ynj
=

1
|E |

∑
e∈E

∂ f
∂ρej

j ∈ [1, Nm] (49)

where ynj is the nodal design variable corresponding to the j th material and nth node, |E | is the cardinality of the
set E of the neighboring elements to a node n. Fig. 3(a) shows a couple of nodes with the corresponding sets with
neighboring elements whose sensitivities are averaged in Eq. (49). The filtered sensitivity field is obtained using a
15
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Fig. 3. Filtering — Areas of averaging for nodal and filtered elemental sensitivities.

weighted averaging of sensitivities at the neighboring nodes,

∂ f
∂ρej
←−

∑
n∈N

αen ·
∂ f
∂ynj∑

n∈N
αen

j ∈ [1, Nm] (50)

here N is the set of neighboring nodes to an element e (e.g. Fig. 3(b)) and αen are the weights used for averaging,

αen = max
(
0, r − dist(xce, xn)

)
(51)

here dist(· , ·) is the Euclidean distance function, r is the radius of a circular region (2D) or a spherical region
3D) surrounding the element e (see Fig. 3(b)), and xce and xn are the coordinates of the centroid of element e and

node n respectively. The weights are higher for nodes closer to the element e as compared to the nodes farther from
he element. The sensitivities obtained through sensitivity analysis are filtered using the mesh-independent filter and
re used in the suboptimization problems (Eq. (27)).

. Examples

In this section, we show few examples of multimaterial structural optimization solved using the TOBS method as
escribed in the previous sections. All the examples are two-dimensional and the meshes contain unit plane-stress
uadrilateral finite elements. The void elements in the design domain are handled during FEA using a soft-kill
pproach. The Poisson’s ratio of all the materials considered in this work is the same, ν = 0.3.

.1. Compliance minimization

We show some examples of multimaterial compliance minimization subject to a mass constraint. A mass
onstraint usually helps in yielding a better optimal design as compared to one volume constraint per material
sed [55], because if one were to use separate volume constraints for the material phases, the constraint bounds are
ontrivial to choose. We consider two materials for structural optimization: material-1 with Young’s modulus 0.6
nd mass density 0.4, and material-2 with Young’s modulus 1.0 and mass density 1.0. The parameters used for
tructural optimization are ϵ = 0.02, β = 0.05, and r = 2 finite elements. The initial design domain (with mass wi

sed is the fully solid domain made of the stiffest material available for optimization. The upper limit on mass is
pecified as a factor of this initial mass w .
i
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Fig. 4. Cantilever Beam — Design Domain with boundary conditions and loads.

Fig. 5. Cantilever Beam — Compliance minimization subject to m ≤ 0.16 · wi
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.1.1. Cantilever beam
The compliance minimization of a cantilever beam subject to a mass constraint is considered using the lower

alf of the design domain, owing to the (anti) symmetry of the problem. The boundary conditions and loads applied
o the design domain are shown in Fig. 4. The beam is clamped on the left edge, with a point load on the right
nd. Antisymmetry boundary conditions are applied on the top edge of the design domain preventing the horizontal
isplacement of the top edge of the design domain.

The design domain is meshed using 100 × 25 elements, and the loading is P = 1. The upper bound for the
ass constraint is 0.16 ·wi . The optimized topology and convergence history are shown in Fig. 5. The convergence
istory also shows some intermediate solutions. In the initial iterations, material is removed at the right corners
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Fig. 6. Michell Structure — Design Domain with boundary conditions and loads.

of the design domain where rigid body motion is dominant. The less stressed elements change from material-2 to
the lighter material-1. The final topology includes stiffer material-2 around the load point on the right edge and
the reaction force location on the clamped edge. The convergence history shows a smooth convergence to the final
solution after 97 iterations.

6.1.2. Michell structure
We design the topology of a Michell structure using compliance minimization subject to a mass constraint.

Owing to symmetry, we use only the right half of the design domain. The pertinent loads and boundary conditions
on the design domain are showed in Fig. 6. The structure is pin-supported on the bottom right corner and symmetric
boundary conditions are applied on the left edge of the design domain. A point load is applied on the left bottom
corner of the design domain.

The design domain is meshed using 100 × 100 elements, and the loading is P = 1. The upper bound for the
mass constraint is 0.16·wi . The optimized topology and the convergence history are shown in Fig. 7. The topologies
at the intermediate iterations show that material gets removed where rigid body motion is dominant, and the lesser
stressed areas change from the heavier material-2 to the lighter material-1. The final solution contains the stiffer and
heavier material-1 only around the load point and around the pin joint to better handle the loading on the structure
whilst keeping the structural mass low. The convergence history shows a smooth convergence to the final topology
after 97 iterations.

The Michell structure is now designed with different material elastic properties such that the difference between
the Young’s moduli of the two materials considered is much larger, whilst the mass densities remain the same.
The mass constraint considered is 0.20 · wi . Three optimized topologies for different material elastic properties
are shown in Fig. 8. The optimized topologies for the material elastic properties {0.06, 1.0} and {0.6, 10.0} are
he same because the objective function values of both topology optimization problems at all iterations are scalar

ultiples of each other. This means the evolution of topologies is the same in both cases. We can also observe
hat the optimized structures Fig. 8(a) and Fig. 8(c) are made completely of the much stiffer material-2, since it is
ot only much stiffer, but also its mass density is not much higher than that of the very flexible material-1. When
he elastic moduli of the materials are not very disparate, as observed in Fig. 8(b), both material-1 and material-2
re seen arranged in the optimized structure according to the loading requirements. This example also shows the
ffectiveness of TOBS method in multimaterial optimization where the available materials have disparate elastic
roperties.

.1.3. MBB beam
A two-material Messerschmitt–Bölkow–Blohm (MBB) beam is designed using the TOBS method. Only the right
alf of the model is considered due to the symmetry. The design domain with loads and boundary conditions is
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Fig. 7. Michell Structure — Compliance minimization subject to m ≤ 0.16 · wi
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

hown in Fig. 9. A vertical point load is applied on the top of the beam on the left edge, with a roller support on
he right corner and symmetric boundary conditions on the left edge.

The design domain is meshed using 120 × 40 elements, and the loading is P = 1. The upper bound for the mass
onstraint is 0.20 ·wi . The optimized topology and convergence history with the evolution of topologies are shown
n Fig. 10. The spikes in convergence correspond to member breaks. As in the previous examples, void material is
een at locations where rigid body motion is dominant in the design domain, material-2 is seen at the load point,
nd the reaction force locations, and the lighter material-1 is seen elsewhere.

The MBB beam is now designed with different upper bounds for the mass constraint: 0.15 ·wi and 0.25 ·wi . The
corresponding optimized topologies are shown in Fig. 11. Comparing these topologies with the optimized topology
for m ≤ 0.20 ·wi in Fig. 10, we can see that for m ≤ 0.15 ·wi , the members just get thinner, and for m ≤ 0.25wi ,
more members supporting the loads can be seen because of more mass being available for design. The amount of
the heavier and stiffer material-2 in the optimized topologies is seen to increase with the upper bound used for the
mass constraint.
19
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Fig. 8. Michell Structure — Compliance minimization with different elastic properties
(blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 9. MBB Beam — Design Domain with boundary conditions and loads.

Fig. 10. MBB Beam — Compliance minimization subject to m ≤ 0.20 · wi
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.2. Mass minimization

We now optimize multimaterial structures using mass minimization subject to a compliance constraint, for the
ame design domains used in compliance minimization. Topology optimization using mass minimization is more
ractical since an engineer aims to design as light-weight structure as possible whilst satisfying some performance
equirements (in this case, the compliance constraint). The two materials used for optimization are the same as that

f compliance minimization (Section 6.1). The optimization parameters used are ϵ = 0.01, β = 0.05, and r = 2
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Fig. 11. MBB Beam — Compliance Minimization for different bounds for the mass constraint
(blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

nite elements. The initial solution used is the fully solid domain filled with the stiffer material. The upper bound
or the compliance constraint is specified as a factor of the compliance Ci of the initial solution.

.2.1. Cantilever beam
The domain (Fig. 4) is meshed with 100 × 25 elements. The mass of the beam is minimized subject to an

pper bound 3.0 ·Ci on the compliance constraint. The optimized topology and the convergence history with some
ntermediate solutions are shown in Fig. 12. The optimized structure looks topologically similar to the compliance

inimization example (Fig. 5) discussed in Section 6.1. The stiffer material-2 is located near loading and reaction
orce locations, but is used frugally by the optimizer because material-2 is heavier. The convergence history shows
he convergence of the compliance constraint as a factor of the compliance Ci of the initial solution. The convergence
istory and the intermediate topologies indicate smooth convergence to the optimized solution after 137 iterations.

.2.2. Michell structure
The design domain (Fig. 6) is meshed with 100 × 100 elements. The mass of the beam is minimized subject

o an upper bound 2.0 · Ci on the compliance constraint. The results of structural optimization: the final topology,
he convergence history and a few intermediate solutions are shown in Fig. 13. The convergence to final topology
s observed to be smooth after 144 iterations. The stiffer material-2 is concentrated near the loading and reaction
orce locations, and rest of the optimal topology is made of material-1, since it is lighter than material-2.

The same example is now investigated when different material mass densities are used. Fig. 14 shows the final
opologies when different sets of material mass densities are used where the structures are optimized using mass

inimization subject to a compliance constraint of 3.0 · Ci (also see Fig. 13). The material elastic properties are
nchanged, however. The optimized topologies for the cases with mass densities {0.04, 1.0} and {0.4, 10.0} are
he same because the objective functions in both cases are just scalar multiples of each other. We can observe that
ompared to Fig. 13, the optimized topologies in Fig. 14 have more material-1, because the density of material-1 is
uch lower than that of material-2. The topology in Fig. 14(a) has almost no material-2 (just 6 elements) because
f it being much heavier than material-1, whilst the elastic moduli of both the materials are of the same order. The
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Fig. 12. Cantilever Beam — Mass minimization subject to C ≤ 3.0 · Ci
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

opology with mass densities {0.04, 10.0} in Fig. 14 is observed to be made completely of material-1, because of
t being relatively much lighter whilst being decently stiffer to satisfy the compliance constraint.

.2.3. MBB beam
The design domain (Fig. 9) is meshed with 120 × 40 elements. The mass of the beam is minimized subject to

n upper bound 2.0 · Ci on the compliance constraint. The final topology and the convergence history are shown
n Fig. 13. A smooth convergence to the optimized topology after 81 iterations is observed. As in the previous
xamples, the stiffer material-2 is concentrated near loading and reaction force locations, and the rest of the final
opology is made of the lighter material-1.

These examples demonstrate that the TOBS framework is effective in multimaterial optimization, not only in
ompliance minimization but also in mass minimization.

.3. Design-dependent loads

We apply the TOBS method for multimaterial structural optimization in the presence of design-dependent
oads. We design optimized topologies using compliance minimization subject to a mass constraint in the presence
f design-dependent hydrostatic pressure loads and design-dependent self-weight loads. We investigate the arch
tructure design and piston design using two and three materials for optimization. The optimization parameters used
23
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Fig. 13. Michell Structure — Mass minimization subject to C ≤ 3.0 · Ci
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

re ϵ = 0.01, β = 0.05 and r = 2 finite elements. The upper bound for the mass constraint is specified as a factor
f the mass wi of the initial solution. The self-weight in each finite element is constant and is specified proportional
o the mass density of the material γe associated with the element, and the load acts vertically downwards.

.3.1. Arch structure
An arch-like structure is designed using compliance minimization, subject to a mass constraint of 0.15 · wi . A

nit hydrostatic pressure load is applied on the fluid–structure boundary of the topology at every iteration. Since
he fluid–structure boundary changes each iteration, this is an example where design-dependent surface loads are in
ction. The symmetric part of the design domain with the pertinent boundary conditions and the surrounding fluid
s shown in Fig. 16.

Fig. 17 shows the optimized topology and convergence history when two materials: material-1: {E → 0.6, γ →

.4} and material-2: {E → 1.0, γ → 1.0} are made available for optimization. Fig. 18 shows the optimized topology
nd convergence history when three materials: material-1: {E → 0.6, γ → 0.4}, material-2: {E → 0.8, γ → 0.6}
24
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Fig. 14. Michell Structure — Mass minimization with different densities
(blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

and material-3: {E → 1.0, γ → 1.0} are made available for optimization. Both Figs. 17 and 18 show that the stiffer
materials are concentrated around pin joint where reaction forces act on the structure. In the three-materials case
(Fig. 18), the material-2 is seen around the stiffer material-3 which is seen near the pin joint. The final structure in
both cases is an arch-like structure with stiff materials at the pin joint and the lighter material-1 is predominantly
seen in the final arch-like topology.

We now design the arch-like structure when both design-dependent pressure loads and design-dependent self-
weight loads act on the structure when two and three materials are made available for optimization. The self-weight
load applied is 0.10 ·γe, acting vertically downwards. Figs. 19 and 20 show the optimal topologies and convergence
histories for the cases with two and three materials respectively. The materials properties used are the same as
those used above in the problems with just pressure loads, Fig. 17 and Fig. 18 respectively. Comparing with
the optimized topologies obtained without applying self-weight loads (Figs. 17 and 18), we can observe that the
25
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Fig. 15. MBB Beam — Mass minimization subject to C ≤ 2.0 · Ci
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Fig. 16. Arch Structure — Design Domain with boundary conditions and surrounding fluid.
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Fig. 17. Arch Structure — Compliance minimization subject to m ≤ 0.15 · wi in the presence of design-dependent pressure loads
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

opologies optimized in the presence of both pressure and self-weight loads have the arch thinner on the left top
orner and are thicker near the stiffer material(s) at the bottom right corner. This is because lesser material at the top
eft corner reduces bending strains in the arch owing to the self-weight loading. The one compliance oscillation in
he convergence history in Fig. 20 is because of some floating mass which leads to high compliance because of self-
eight loading, and this mass disappears in the next iteration. The convergence curves show smooth convergence to

he optimized solution. Unlike optimization without self-weight loads where pressure loads cause more compliance
ith decrease in mass, compliance can decrease with decreasing mass, because the extent of self-weight loading
ecreases with decrease in mass.

We should note that for optimization with too high self-weight loading as compared to pressure loads, the
ptimized structure is an empty structure because no solid elements imply no large strains due to self-weight. The
ptimization in this scenario can be broadly divided into two phases: 1. The self-weight loading is dominant and
o the compliance drops fast as the mass decreases, 2. The pressure loading dominates preventing the optimizer
rom obtaining an empty structure as optimized solution, and the compliance increases because of the pressure
oads. This two-phase phenomenon leads to convergence of optimization when the mass constraint is inactive for
ome values of its upper bound. We demonstrate this by solving the same optimization problem with upper bounds

.25 ·wi and 0.30 ·wi for the mass constraint. The corresponding optimized topology and convergence history when
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Fig. 18. Arch Structure — Compliance minimization subject to m ≤ 0.15 · wi in the presence of design-dependent pressure loads
blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

wo and three materials are available for optimization are shown in Figs. 21 and 21 respectively. We can see from
ig. 21 that both for m ≤ 0.25 · wi and m ≤ 0.30 · wi , the optimization converges at the same topology at around
.156 · wi . In fact, when any upper bound value above 0.156 · wi is used for optimization, the convergence still
appens at the same topology as showed in Fig. 21. This upper bound value of the mass constraint is the point at
hich pressure loads become more important in the problem than the self-weight loads and the compliance starts

ncreasing with decrease in additional mass. From Fig. 19 corresponding to 0.15 · mi constraint, we can see that
he compliance decreases with loss of mass in the initial iterations until the pressure loads become more important
han the self-weight loads, after which the compliance increases with loss of mass. The convergence history for
.30 · mi shows a smooth convergence with the mass constraint being inactive at convergence (Fig. 21). A similar
onvergence at an inactive mass constraint value is observed in the case of three materials as seen in Fig. 22. The
pike in compliance convergence is the same spike observed in Fig. 20 because of the floating mass. This example

lso shows the effectiveness of TOBS method in dealing with convergence at inactive constraint values.
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Fig. 19. Arch Structure — Compliance minimization subject to m ≤ 0.15 ·wi in the presence of design-dependent pressure and self-weight
oads
blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
ersion of this article.)

.3.2. Piston design
We design a piston using compliance minimization subject to a mass constraint when design-dependent surface

ressure loads and design-dependent volumetric self-weight loads are applied. The symmetric part of the design
omain with the boundary conditions and surrounding fluid is shown in Fig. 23. We use a mesh of 120 × 80 unit
lements to discretize the design domain. The optimization parameters used for the piston design are ϵ = 0.01,
= 0.05, and r = 2 finite elements. We use three materials for piston design: material-1: {E → 0.6, γ → 0.4},
aterial-2: {E → 0.8, γ → 0.6} and material-3: {E → 1.0, γ → 1.0}.
Fig. 24 shows the optimal topology when only pressure loads are considered and a mass constraint with an

pper bound of 0.15 · wi . Stiffer materials are concentrated around the pin joint, and an arch structure supported
y members is formed to better handle the pressure loads. The convergence history is observed to be smooth and
he optimization ends after 202 iterations. The same example is now solved after adding self-weight loads 0.02 · γe
er element acting vertically downwards. Fig. 25 shows the corresponding optimized topology and convergence

istory. Comparing with the optimized topology in Fig. 24, we can observe that the optimized topology in Fig. 25
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Fig. 20. Arch Structure — Compliance minimization subject to m ≤ 0.15 ·wi in the presence of design-dependent pressure and self-weight
oads
blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

as a thinner member on the right side of the structure. This is because a thicker member would otherwise induce
igher bending strains owing to the self-weight loads. We can also observe at the top right of the structure that the
mount of material-2 present in the optimized topology of Fig. 25 is lesser than that of Fig. 24 for the same reason.
he spikes in convergence of the compliance are because of floating material (see the first intermediate solution

n Fig. 26) in the intermediate iterations which cause high strains because of self-weight loads. Such masses get
emoved in the very next iterations and the optimization converges smoothly. Similar to the arch structure discussed
arlier, this problem can also converge with the mass constraint being inactive. We show the optimized topology and
onvergence curves for upper bound 0.30 ·wi of the mass constraint. We observed that the optimization converges to
topology with around 0.28 ·wi mass. The structural optimization with any higher upper bound for mass constraint

or this problem converges to this solution (say for e.g. 0.35 · wi ). This example corroborates the effectiveness of

OBS method in dealing with an inactive constraint by demonstrating smooth convergence.
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Fig. 21. Arch Structure — Compliance minimization subject to m ≤ 0.30 ·wi (or m ≤ 0.25 ·wi ) in the presence of design-dependent pressure
and self-weight loads
(blue → material-1, red → material-2). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

7. Conclusions

This manuscript designs optimized multi-material structural topologies considering linear elastostatics. We used
the extended SIMP interpolation for the Young’s modulus and mass density of the material at any point. We used
the TOBS method which uses discrete variables and integer linear programming for structural optimization. The
sequentially approximated ILP problems are solved using a branch-and-bound solver and the topology is updated
until the convergence criterion is satisfied. A new constraint is introduced to regulate the truncation error of the
linear approximation. The truncation error-regulating constraint restrains large changes in the total Young’s modulus
of the structure, maintaining the linear approximation valid. The proposed truncation-error regulating constraint is
more accurate for multimaterial problems as compared to that in [23] because it factors in the potential change in
the material properties at an element to represent the truncation error. A detailed sensitivity analysis is presented
for the pertinent functions used in this work and in various scenarios, like design-dependent pressure loads and
design-dependent self-weight loads. Several examples are solved using this novel constraint and a conventional
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Fig. 22. Arch Structure — Compliance minimization subject to m ≤ 0.30 ·wi (or m ≤ 0.25 ·wi ) in the presence of design-dependent pressure
and self-weight loads
(blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

Fig. 23. Piston Design — Design Domain with boundary conditions and surrounding fluid.
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Fig. 24. Piston Design — Compliance minimization subject to m ≤ 0.15 · wi in the presence of design-dependent pressure loads
blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

esh-independent filter is used. Examples showing compliance minimization subject to a mass constraint, as well
s mass minimization with respect to a compliance constraint are presented to demonstrate the flexibility and
ffectiveness of the framework. The discrete structural optimization used in literature for multimaterial problems
s BESO, which requires a volume constraint for the design variable-update. The examples considered in this
ork do not need to include such a constraint, yet yielding optimized discrete multimaterial structures with stable

onvergence. Examples involving materials with very different Young’s moduli are solved to demonstrate the
obustness of the framework in solving problems involving very stiff and very flexible elements. Arch and piston
tructures are designed in the presence of design-dependent pressure loads and design-dependent self-weight loads
sing two and three materials. A couple of examples is shown where the compliance minimization converges with
nactive mass constraint values when both the design-dependent pressure and self-weight loads are acting on the
tructure. The extent of contribution of both the loads to the mean compliance, and their opposing effects on
he mean compliance cause the optimization to stably converge at an constraint values. To the best of authors’

nowledge, this is the first work applying a mathematical programming-based discrete structural optimization to
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Fig. 25. Piston Design — Compliance minimization subject to m ≤ 0.15 · wi in the presence of design-dependent pressure loads and
elf-weight loads
blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)

ultimaterial problems, especially, the problems with pressure loading and inactive constraints. Due to the discrete
ature of the topologies, material interface effects can be simply added to the topologies at any iteration, and is a
ork for the future. It would also be interesting to add material interface size constraints to obtain multimaterial

opologies with simpler interfaces for easier manufacturability.
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Fig. 26. Piston Design — Compliance minimization subject to m ≤ 0.30 ·wi (or m ≤ 0.35 ·wi ) in the presence of design-dependent pressure
oads and self-weight loads
blue → material-1, green → material-2, red → material-3). (For interpretation of the references to color in this figure legend, the reader
s referred to the web version of this article.)
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