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Abstract
This paper proposes a novel technique for large-scale partial topology optimization of dynamic engineering structures by 
utilizing substructuring techniques and repetitive geometry. Partial topology optimization refers to a design domain that 
only covers a part of the overall analysis domain, involving multiple subdomains. While large-scale topology optimization 
techniques for static systems have made significant progress over the past few decades, techniques for dynamic systems, espe-
cially those in the frequency domain, face challenges due to matrix conditioning and preconditioning problems for iterative 
solvers. To overcome these challenges, this paper dramatically reduces the system's size through a substructuring approach 
to utilize a direct linear solver. Using a bottom-up style substructuring technique, all the finite element (FE) models are 
defined separately and in parallel, and the FE models in the non-design domains are approximated using the idea of repetitive 
geometry with the same discretization, while the models in the design remain intact. This approach eliminates conventional 
model reduction-based topology optimization problems, such as eigen-analysis and recovery processes for every iteration. 
The proposed technique enables a more realistic and feasible design of large-scale engineering structures in the frequency 
domain. Several numerical examples verify the performance of the presented method for partial topology optimization of 
large-scale models. Overall, this paper provides a novel and efficient approach to partial topology optimization for dynamic 
engineering structures, opening up new possibilities for realistic and feasible design in the frequency domain.

Keywords  Substructuring method · Partial topology optimization · Large-scale topology optimization · Dynamic topology 
optimization · Multi-domain design

1  Introduction

Topology optimization (TO) has gained popularity in 
many engineering disciplines since Bendsøe and Kikuchi’s 
groundbreaking study (Bendsøe and Kikuchi 1988). The 
fundamental idea of TO is to interpolate the material prop-
erties of each element from nonstructural domains to struc-
tural domains by introducing the concept of structural den-
sity, which varies from 0 (very small number) to 1. This 
approach provides various advantages, including a flexible 
parametrization of the design space, ease of integration with 
existing computational codes in various applications, and 

efficient sensitivity analysis. However, several challenges 
prevent TO from becoming a mainstream design method 
in actual industry fields. One of the main challenges is the 
computational complexity associated with solving the gov-
erning equations of the system, typically the partial differen-
tial equations, for optimization. The TO procedure requires 
repeatedly solving discretized PDEs, and solving PDEs with 
a large number of degrees of freedom (DOFs) can become a 
significant obstacle, even with high-performance computer 
hardware and computer-aided engineering (CAE) software. 
Although constructing a computational mesh in an adaptive 
manner can solve some of these problems, some applications 
require uniform high-fidelity meshes to solve physics prob-
lems, such as high-frequency wave propagation problems, 
fluid mechanics at high Reynolds numbers, and microscale 
(or multiscale) structural problems.

Driven by the desire to solve increasingly large and com-
plex topology optimization problems without modifying 
the mesh, engineers have developed a variety of techniques 
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(see Table 1). As the first approach to solve large-scale TO 
problems, mathematicians and engineers tried to replace the 
direct solvers, variants of the Gaussian factorization, with 
iterative solvers such as conjugate gradient (CG) [11 13], 
MINRES and GMRES (Amir and Sigmund 2011; Amir et al. 
2010). In the parallel computing approach, the problem is 
divided into subdomains that are solved by iterative solver 
using different processors, whereas the interface coupling 
problem is solved using the local solutions at subdomain 
levels. The best known and perhaps the most promising 
parallel solvers belonging to the class of domain decom-
position methods would be Schur complement (Noor et al. 
1978), Gaussian elimination (Wilson 1974), and finite ele-
ment tearing and interconnection solver (FETI) (Farhat and 
Roux 1991). Those methods are widely adopted by the sci-
entific computing community and introduced to the topol-
ogy optimization community (Evgrafov et al. 2008; Wadbro 
and Berggren 2009; Schmidt and Schulz 2011; Aage and 
Lazarov 2013; Aage et al. 2015, 2017). Since Evgrafov’s 
the pioneering research on the advantages and difficulties of 
large-scale TO with a parallel solver, this parallel comput-
ing method has become a canonical approach in develop-
ing solutions for large-scale TO (Evgrafov et al. 2008; Aage 
et al. 2015, 2017).

Alternatively, one can opt for model reduction (MR) as an 
indirect approach for the computational efficiency of an anal-
ysis in the context of TO (Irons 1965; Yoon 2010; Ma et al. 
1993; Jensen 2007; Cornwell et al. 1983; Liu et al. 2015; 
Zhao et al. 2018). MR methods have been utilized to solve 
dynamic problems that require iterative calculation of the 
system response at each time (or frequency) step. To the best 
of our knowledge, Ma was the first to introduce the mode 
superposition (MS) method, the oldest and most widely 
used MR technique, to a dynamic compliance minimization 

problem within the framework of the homogenization-
based topology; they discussed the representation error of 
the original FRF using the MS method (Ma et al. 1993). 
After the first attempt, various MR methods, such as the 
modal displacement method, the modal acceleration method 
(Cornwell et al. 1983) are applied for efficient dynamic TO 
problems. Alternatively, a reanalysis-based approximation 
method is used which determines the structural response 
after any topological change using the initial (or previous) 
response of the structure. The reduction basis in reanalysis-
based approximation is obtained within the Krylov subspace 
spanned by initial response using iterative solvers. There are 
several ways based on Krylov subspace methods such as the 
Ritz vector, hybrid Proper Orthogonal Decomposition and 
so on (Yoon 2010; Carlberg et al. 2016; Amir 2015; Choi 
et al. 2019).

Even with the above direct and indirect approaches, 
dynamic TO for extremely large-scale structures remains 
challenging. Based on our observations, certain iterative 
solvers tend to become ill-conditioned in both the context 
of a large-scale mesh and during the late stages of the opti-
mization process. This tendency can occasionally impede 
the straightforward applicability of iterative solvers to prob-
lems involving large-scale optimization. In the case of the 
dynamic TO in the frequency domain, not only ill-condi-
tioned system matrices resulting from Solid Isotropic Mate-
rial with Penalization (SIMP) and stiff/void materials but 
also dynamic system matrices around resonance frequency 
deteriorate the numerical scalability, and thus completely 
different preconditioning strategies are required to keep 
CG solvers numerically scalable in the frequency response 
solver and the optimization iteration. Also, it's worth con-
sidering that certain modal-based reduction methods might 
face limitations when applied to the context of large-scale 

Table 1   Representative studies 
and their system size of 
topology optimization problems 
solved in recent years

Year References Max #DOFs System

2001 Sigmund (2001) 2.40 E + 03 2D static compliance
2004 Kim et al. (2004) 4.07 E + 06 3D static compliance
2005 Vemaganti and Lawrence (2005) 1.15 E + 05 3D static compliance
2006 Mahdavi et al. (2006) 2.56 E + 04 2D static compliance
2007 Wang et al. (2007) 1.01 E + 06 3D static compliance
2008 Evgrafov et al. (2008) 1.54 E + 06 2D and 3D static compliance
2009 Wadbro and Berggren (2009) 4.41 E + 06 2D static (thermal) compliance
2011 Schmidt and Schulz (2011) 1.07 E + 07 3D static compliance
2013 Aage and Lazarov (2013) 1.47 E + 07 3D static compliance
2015 Alexandersen et al. (2016) 3.30 E + 08 3D static (thermal) compliance
2017 Aage et al. (2017) 4.30 E + 08 3D static compliance
2020 Kang et al. (2020) 2.45 E + 06 3D eigenfrequency
2021 Träff et al. (2021) 6.98 E + 07 3D static compliance
2021 Li et al. (2021) 2.93 E + 05 2D and 3D dynamic compliance
2022 Kristiansen and Aage (2022) 8.1 E + 06 3D dynamic compliance
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topology optimization. This stems from the inherent chal-
lenge of conducting modal analyses within systems of sig-
nificant scale. For this reason, TO methods for large-scale 
dynamic systems have rarely been studied compared to static 
systems (see Table 1).

Meanwhile, the partial design problem in this paper 
refers to a design case in which the design domain is only a 
part (or parts) of the whole analysis domain, as is common 
in many engineering design disciplines, i.e., a case in which 
the global (analysis) domain is composed of multiple design 
and non-design domains. The partial design problem can be 
easily found in various engineering problems because most 
engineering designers would want to have more control over 
the substructures so that they can select the proper design 
domain based on their realistic requirements, constraints, 
and further reflect their valuable intuition and experience 
into the optimization design process. One obstacle in the 
partial design problem is that the state (e.g., displacement, 
pressure, temperature etc.) and the design variables in the 
non-design domain as well as the design domain should be 
obtained for the optimization. Static condensation, which is 
the physical coordinate-based reduction scheme, is a com-
mon approach to eliminate those variables in non-design 
domain (Botkin and Yang 1991). However, even if the inac-
curacy problem in the dynamic analysis is excluded, the 
static condensation method has the same limitation as gen-
eral model reduction approaches because a reduction basis 
of static condensation is derived from the inverse of the stiff-
ness matrix in the non-design domain.

To overcome these difficulties, we first introduce a con-
cept of dynamic substructuring (or simply substructuring) 
with a repetitive geometry into the SIMP and density-based 
TO. The substructuring approach which was derived from 
both the idea of the domain decomposition and the model 
reduction is a way to obtain the approximated substructural 
dynamic behavior of large and/or complex structures by 
dividing them into several smaller and/or simpler intercon-
nected substructures of which the dynamic behavior is much 
easier to obtain. The dynamic behavior of the entire struc-
ture is then obtained by assembling these dynamic behaviors 

of substructures. The schematic diagram of TO using the 
substructuring approach is shown in Fig. 1. After the first 
substructuring ideas were developed by the paper of Hurty 
in 1960 (Hurty Walter 1960), various attempts had followed 
resulting in the milestone methods by (Craig and Bampton 
1968), (Rubin 1975) and (MacNeal 1971) in the 1960s and 
1970s.

The paper also introduces the idea of repetitive geometry, 
which has been widely utilized for the homogenization of 
multi-scale problem or the periodically multi-partitioned 
problem (Zhang and Sun 2006; Wu et al. 2019), to create, 
memorize, and reduce the large-scale subsystem in the non-
design domain. The FE models in the non-design domain are 
split and omitted by the idea of repetitive geometry, while 
the FE models in the design domain remain intact. This effi-
ciently reduces the size of large scaled system in non-design 
domain and eliminates the need to obtain a response of the 
whole system for partial TO. Although the substructuring 
approach had been reported in a previous study by Kikuchi 
and Ma. (Ma et al. 2005), the detail process of methodology 
to introduce substructuring technique into the framework of 
topology optimization had not been clearly demonstrated, 
and following studies, especially on the large-scale TO 
for dynamic problems are lacking. This paper provides a 
detailed methodology to introduce the substructuring tech-
nique into the framework of topology optimization, specifi-
cally for dynamic problems. Additionally, the paper provides 
an example of the substructuring approach for partial topol-
ogy optimization of a stiff structure in the frequency domain.

Thus, we first review the general framework of the TO, 
MR, and substructuring, then establish the framework of 
partial TO with the substructuring approach, and finally pre-
sent a new method using the idea of repetitive geometry for 
large-scale TO problems. In Sect. 2, the basic concepts of 
the TO, the model reduction and the domain decomposition 
techniques are reviewed. In Sect. 3, we present a new TO 
procedure utilizing the concept of substructuring. Section 4 
is dedicated to solving large-scale TO problems to illustrate 
the performance and capabilities of the present method, 
comparing with other conventional TO framework with MR 

Fig. 1   Schematic diagram of substructuring approach for topology optimization of Arian V (https://​www.​arian​espace.​com/​vehic​le/​ariane-​5/)

https://www.arianespace.com/vehicle/ariane-5/
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scheme. The concluding section summarizes the findings 
and future research topics.

2 � Overview of topology optimization using 
model reduction approach

This section briefly reviews the finite elements of formula-
tion of the linear dynamic problem in frequency domain and 
the basic concept of the model reduction approach.

2.1 � Equilibrium equations of a dynamic system

Newton’s second equation is solved for the time-varying 
response of a linear solid structure with a time-varying force 
� (t) , such that:

where �, �, and � are the assembled mass, damp-
ing, and stiffness matrices with appropriate boundary 
conditions(Bathe 2006), respectively. The time-varying 
displacement, velocity, and acceleration vectors are rep-
resented by �(t) , �̇(t) , and 𝐮̈(t) , respectively. In this paper 
the viscous damping matrix � can be written as the case 
of proportional damping � = �� + �� where � and � is 
damping coefficient. Assuming the harmonic response and 
excitation �(t) = �eiωt, � (t) = �eiωt , the following dynamic 
stiffness matrix S can be defined for the solution in the fre-
quency space. 

2.2 � General framework of the topology 
optimization

For the TO-based on the Solid Isotropic Material with Penal-
ization (SIMP) approach a variable � ∈ L∞(Ω) in design 
domain Ω ∈ ℝ

d plays a role of the design being optimized. 
Generally, the design variable � ∈ [0, 1],which called struc-
tural density, is introduced to control the material distribu-
tion in Ω through the interpolation function:

The nominal Young's modulus and the structural density 
are E0 and �0 , respectively and the stiffness and mass penalty 
number are denoted by pk and pm . Also Emin ≈ 10−9 × E0 
represents a lower bound of Young’s modulus for void ele-
ment. The linear dynamic Eq. (1), boundary conditions and 
material interpolation function (3) are all discretized into 
NE finite elements:

(1)𝐌𝐮̈(t) + 𝐂𝐮̇(t) +𝐊𝐮(t) = 𝐟 (t)

(2)�(ω) = � + iω� − ω2� and � = �(ω)−1�

(3)E(�) = Emin + �pk
(
E0 − Emin

)
, �(�) = �0�

pm

where the stiffness and mass matrices of e-th element in the 
domain Ωe are �e and �e , respectively. The shape function, 
strain–displacement matrix, and constitutive matrix with a 
Poisson’s ratio � are denoted by � , � , and �.

In many practical applications (linearized elastic, liner 
wave propagation, heat transfer, and stokes flow), a topology 
optimization problem can be formulated as:

where f = f (�, �) denotes the objective function satisfying 
the state equation for the problem, which can be the static 
(and dynamic) compilation(Bendsøe and Kikuchi 1988; Ma 
et al. 1993, 1995) in this study, the mean eigenvalue(Ma 
et al. 1994; Pedersen 2000), deformation(compliant mech-
anism)(Kikuchi et al. 1998; Nishiwaki et al. 1998), stress 
value(Le et al. 2010; Yang and Chen 1996; Yoon 2014) 
or any others;  g = g(�, �) denotes the constraint func-
tion; � =

{
�1, �2, ..., �NE

}T denotes the vector of the design 
variables;.

2.3 � Method of the domain decomposition

An idea of domain decomposition, the foundation of modern 
parallel computing and substructuring, has been the root of 
various methods for solving ever larger and more complex 
problems. To explain the principles of the domain decompo-
sition scheme, we consider a finite element model defined on 
a global domain Ω , which is divided into Ns , each spanning 
a subdomain Ω(s) and interface boundary Γ . For simplicity, 
the undamped equations of motion in subdomain Ω(s) can 
be written as:

where the superscript (s) denotes the substructure s , and �(s) 
is the vector of connecting (or interactional) force and/or 
moment with the neighboring substructures.

(4)� =

NE∑
e=1

�e ⋅ E
(
�e
)
,� =

NE∑
e=1

�e ⋅ �
pm
e

(5)

�e = ∫
Ωe

�T��dΩ , �e = ∫
Ωe

�0�
T�dΩ,

� =
E0

1 − �2

⎡⎢⎢⎣

1 � 0

� 1 0

0 0 (1 − �)∕2

⎤⎥⎥⎦

(6)

Minimize
�

f (�, �)

Subject to (state equations)

g(�, �) ≤ 0

0 ≤ �e ≤ 1 ∀e ∈ {1, 2, ...,NE}

(7)𝐌(s)𝐮̈(s) +𝐊(s)𝐮(s) = 𝐟 (s) + 𝐠(s)
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After generating the FE matrices in substructural level, 
each substructure was assembled under the following two 
conditions:

(1)	 Compatibility: the displacements of the substructures 
at the interface boundary DOFs must be identical

(2)	 Equilibrium: the sum of the interactional forces 
between neighboring substructures must be equal to 
zero

Now the s-th subdomain vectors and matrices are parti-
tioned distinguishing the boundary and interior DOFs:

where the subscript i and b denote the internal DOFs and 
the boundary DOFs, respectively. Following the equations 
of motion at the substructure level, the global equations of 
motion that have not yet been assembled can be expressed 
in the form of a block-diagonal matrix denoted by upper 
bar (−):

where,

Note that by definition of Eq. (9,10), the FE matrices have 
duplicate interface DOFs. Next, the compatibility condition 
can be written in matrix form as:

where � is a signed Boolean matrix (if the interface DOFs 
match with each other) operating on the interface DOFs of 
the substructures. The rows of � state that any pair of match-
ing interface DOFs u(k)

b
 and u(l)

b
 must have the same displace-

ment, that is, u(k)
b

− u
(l)

b
= 0.

Similar to the compatibility condition, the equilibrium 
condition can be written as:

(8)
�(s) =

[
�

ii
�

ib

�
bi
�

bb

](s)
�(s) =

[
�

ii
�

ib

�
bi
�

bb

](s)

�(s) =

[
�
i

�
b

](s)
� (s) =

[
�
i

�
b

](s)
�(s) =

[
�

�
b

](s)

(9)𝐌𝐮̈ +𝐊𝐮 = 𝐟 + 𝐠

(10)

� = diag
�
�(1), ...,�(Ns)

�
=

⎡
⎢⎢⎣

�(1) ⋯ �

⋮ ⋱ ⋮

� ⋯ �(Ns)

⎤
⎥⎥⎦
,

� = diag
�
�(1), ...,�(Ns)

�
,

� =

⎡⎢⎢⎣

�(1)

⋮

�(Ns)

⎤⎥⎥⎦
,� =

⎡⎢⎢⎣

� (1)

⋮

� (Ns)

⎤⎥⎥⎦
,� =

⎡⎢⎢⎣

�(1)

⋮

�(Ns)

⎤⎥⎥⎦
.

(11)�� = � or
[
� �b

][ �i
�b

]
= �

where � is a Boolean matrix localizing the interface DOF of 
the substructures in the dual set of DOFs. The columns of � 
state that the sum of any pair of interface connecting forces 
g
(k)

b
 and g(l)

b
 is equal to zero, that is, g(k)

b
+ g

(l)

b
= 0.

Now, the total system can be described by above Eqs. 
(9–12):

Mathematically, an assembled FE model is obtained by 
following statements:

where � represents the unique set of interface DOFs for 
the assembled system and � are the Lagrange multipliers 
of d’Alembert’s principle of virtual work, corresponding 
physically to the connecting (constraining) force intensity 
(see Lagrange multiplier field in Fig. 2). Using this state-
ment in Eq. (14), the compatibility condition of Eq. (11) is 
satisfied for any set of � (i.e.,��� = �∀� ). Hence, the two 
Boolean matrices represent each other’s null space, namely, 
� = null(�), �T = null

(

�T)
�T = null

(
�T

)
 . Consequently, 

the global system in Eq. (7) can be described as “dual form”:

Now one can solve the subdomain problems in parallel by 
knowing  �b and � , which can be obtained by solving coarse 
boundary problem, �bb = �T

b
� − �b . This dual approach led 

to the parallel solvers for FEM known as dual Schur comple-
ment methods of FETI (finite elements tearing and intercon-
necting) (Noor et al. 1978). Meanwhile a “primal form” can 
be written by the choice of DOFs in the unique set �:

where,

A primal or dual-assembled system is obtained depend-
ing on whether a compatibility or equilibrium condition is 

(12)�T� = � or
[
� �T

b

][ �

�b

]
= �

(13)

⎧
⎪⎨⎪⎩

𝐌𝐮̈ +𝐊𝐮 = 𝐟 + 𝐠

𝐁𝐮 = 𝟎

𝐋T𝐠 = 𝟎

(14)� = ��

(5)� = −�T�

(16)

{
𝐌𝐮̈ +𝐊𝐮 = 𝐟 − 𝐁T𝛌,

𝐁𝐮 = 𝟎

or

[
𝐌 𝟎

𝟎 𝟎

][
𝐮̈

𝛌

]
+

[
𝐊 𝐁

𝐁T 𝟎

][
𝐮

𝛌

]
=

[
𝐟

𝟎

]
.

(17)𝐌𝐮̈ +𝐊𝐮 = 𝐟

(18)� = �T��, � = �T��, � = �T�
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satisfied a priori. More details of the general framework of 
substructure assembly are comprehensively documented in 
the work of Kleck and Rixen(Klerk et al. 2008).

2.4 � General framework of the model reduction 
scheme for optimization problem

The computing power has significantly increased since the 
emergence of TO. But even by the most advanced and state-
of-the-art computational systems, it is still a challenging to 
obtain TO solution within moderate computation cost and 
time because one should iteratively calculate the response 
of the large-scale system during optimization process. 
These difficulties could be simply overcome by construct-
ing coarser mesh, but more precise and sophisticated opti-
mization design is required with the development of manu-
facturing technology. Therefore, a method that reduces the 
dynamic problem without modifying the mesh is necessary. 
Such methods are called model order reduction, in which the 
full set of DOFs (physical space) is approximated by a set of 
possible displacement shapes and corresponding amplitudes 
called the generalized DOFs (generalized space). Using a 
proper transformation matrix � , also called a reduction 
basis, the approximated displacement vector �̃ of the origi-
nal displacement vector � and its generalized coordinate � 
can be defined as:

For a  system with N  degrees of  freedom, 
� ∈ ℝ

N×M(N > M) where m is dimension of approximated 
model. All kinds of structural modes (i.e., eigenmodes, 
static modes, interface modes, approximated modes, etc.) 
can be used to generate the reduction basis � . For exam-
ple, if a reduction basis is created by the eigenmodes, the 
method is called the mode superposition (MS) method. 

(19)� ≈ �̃ = ��

The equations of motion in Eq. (1), except for damping, 
can be written as:

where � is the error or residual load because the generalized 
DOFs do not span the entire solution space; it represents 
the approximation error in Eq. (19). The inner product of 
� with any subspace spanned by the reduction basis � is 
zero because the error represents the part of the equation 
that lies outside the subspace of the reduction basis (i.e., 
�T� = � ). Using this property, the reduced equations of 
motion denoted by tilde (~) can be expressed as follows:

where,

Now the system size reduced from N × N  to M ×M . 
After solving the above reduced system for the generalized 
coordinate � , the approximated solution �̃ can be obtained 
using Eq. (19), which is generally referred to as the recov-
ery process in MR approach. The optimization formula-
tions (6) are approximated by replacing the exact solution 
� with approximated solution �̃ and the computational cost 
can be reduced by obtaining the responses of the reduced 
order system instead of full order system. Note that the 
model reduction approach does not always guarantee lower 
computational costs because the reduction basis must be 
iteratively updated as the topological shape changes during 
the optimization process.

(20)𝐌𝐑𝐪̈ +𝐊𝐑𝐪 = 𝐟 + 𝐫

(21)𝐌̃𝐪̈ + 𝐊̃𝐪 = 𝐟

(22)

⎧⎪⎪⎨⎪⎪⎩

�̃ = �T��

�̃ = �T��

�̃ = �T�

�̃ = �T�

Fig. 2   Schematic diagram of partial topology optimization applying substructuring
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3 � Solutions in the framework 
of substructuring for partial topology 
optimization of large FE model

3.1 � Framework of partial topology optimization 
in frequency domain

The partial design problem refers to cases where the design 
domain and the analysis domain do not match, which can be 
easily found in various engineering problems. In contrast to 
conventional single domain TO, in which a given amount 
of the material is assigned to the entire analysis domain, 
partial TO allows the designer to assign different amounts 
of the material, or even different materials, to the various 
subdomains of the structure while keeping the non-design 
domain intact. For example, Fig. 2 depicts the 'structure 
fixture simultaneous design' where a global domain that is 
divided into two subdomains, where the model in non-design 
domain is not changed during optimization process. In gen-
eral, a partial TO problem is defined as a TO problem that 
has multiple subdomains and only some of the subdomains 
are design domains. The objective function of the partial TO 
problem can be related to the performance/functionality of 
the entire analysis domain or to that of a single domain or of 
multiple domains considered in the design problem. Now the 
partial TO problem of a random stiff structure in frequency 
domain can be formulated by following statements:

where f (s),w(s) and g(s) denotes the s-th objective, weight 
and constraint function for the s-th substructure in the s-th 
subdomain out of a total of Ns subdomains in the design 
domain Ω(D) ⊆ Ω , respectively; � =

{
�1, �2, ..., �NE

}T denotes 
the vector of the design variables.

3.2 � Introduction of new topology optimization 
frameworks using substructuring approach

The TO framework using MR approach, described in the pre-
vious Sect. 2.4, still has some limitations for partial design 
problems of large-scale models: (1) The process of finding 
a basis, such as eigen-analysis or Krylov expansion, gener-
ally requires more computational power than the process of 
obtaining a static solution. In scenarios where the problem 
size expands to an extent where the attainment of a static 
solution becomes elusive, the quest for a suitable reduc-
tion basis could potentially face challenges. This prompts 

(23)

Minimize
�

f =
Ns∑
s=1

w(s) ⋅ f (s)(�, �)

Subject to �� = �

g(s)(�, �) ≤ 0 ∀s ∈
�
1, 2, ...,Ns

�
0 ≤ �(�) ≤ 1 ∀� ∈ Ω(D)

a consideration of the adaptability of the MR approach 
within the domain of static optimization problems; (2) The 
reduction basis should be recalculated with each iteration 
as the topological shape changes during the optimization 
process. Even in the dynamic problem, the MR approach is 
not suitable because this kind of overhead could outweigh 
the benefits of order reduction; (3) Even if the responses of 
the reduced system can be obtained using MR schemes, the 
responses should be recovered to the original large system to 
obtain objective and sensitivity values for the TO.

A substructuring approach, which is a method of parti-
tioning, reducing, and assembling models, could be much 
more effective than conventional MR schemes for partial 
optimization problems. The substructuring approach can 
be broadly divided into a top-down style and a bottom-up 
style. The former, such as FETI mentioned in Sect. 2.3, 
directly generates a global system (or global model, global 
FE matrix) and splits the global system into subdomain (or 
substructural) systems, while the latter generates the subdo-
main systems respectively and assembles those systems into 
the global level after reduction. In this study, the bottom-up 
approach is used for partial topology optimization to avoid 
handling the full order global matrix.

To explain the concept of the TO using a substructuring 
scheme, let us consider the equations of motion in Eq. (7) 
again. Using the generalized set of DOFs in Eq. (19), the 
system in Eq. (7) can be reduced:

where,

For a common denominator for the coupling substruc-
tures, the DOFs on the boundaries of the substructures are 
preserved, and only the DOFs on the internal substructures 
�
(s)

i
 are reduced to a generalized coordinate �(s) . Therefore, 

the approximated equations of motion in Eq. (19) are:

It is to be noted that the superscript (s) is not explicitly 
shown for following equations to minimize notational clut-
ter. To avoid confusion, it is explicitly mentioned when the 
global matrix is considered along with substructural matrix. 
In general, two types of component modes are considered for 
a reduction basis � for substructuring: dynamic and static 
mode. The former mode accounts for the dynamic behavior 

(24)𝐌̃(s)𝐪̈(s) + 𝐊̃(s)𝐪(s) = 𝐟 (s) + 𝐠̃(s)

(25)

⎧⎪⎪⎨⎪⎪⎩

�̃(s) = �(s)T�(s)�(s)

�̃(s) = �(s)T�(s)�(s)

�̃ (s) = �(s)T� (s)

�̃(s) = �(s)T�(s)

(26)
[
�i
�b

](s)
≈

[
�i

�b

](s)
�(s) where �(s) =

[
�i

�b = �b

](s)
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of the substructure, whereas the latter mode accounts for the 
interaction between neighboring substructures, ensuring that 
compatibility conditions after assembly are satisfied:

Since the substructuring was introduced in the finite element 
method, tremendous number of methods have been developed 
to create a more accurate and robust reduction basis, in this 
study the earliest method introduced by Craig and Bampton 
is adopted because of its simplicity and reliability. The Craig-
Bampton (CB) method utilizes internal vibration mode (eigen-
mode) and constraint mode as the dynamic and static mode, 
respectively in Eq. (27). The former is obtained by solving the 
eigenvalue problem of the substructure fixed on its interface 
boundary, while the latter is defined as a unit displacement on 
one boundary DOF keeping all others fixed. Both modes can 
be obtained based on the above statement in Eq. (8):

Here  �i,j and  �i,j are the j th eigenfrequency and associ-
ated eigenmode of the internal substructure, respectively, 
while a set of internal vibration modes and constraint modes 
are denoted by  �i and �c , respectively. Now, we can obtain 
the following approximate displacement:

or

Here a problem is the system on the interior DOFs is so 
large that one cannot conduct the process to obtain these 
modes. To solve this problem, an idea of repetitive partition-
ing is introduced. In our presented method the non-design 
domain is partitioned into the repetitive partitions of the same 
discretization and the rest of the partitions as show in Fig. 2. 
As a result, FE model in large-scale non-design is constructed 
only by a single repetitive FE substructure(partition) and the 
residual. Now the reduced subsystems in Eq. (24) are assem-
bled as primal form by same procedure in Sect. 2.3. The 
reduced equations of motion that have not yet been assem-
bled can be expressed in the form of a block-diagonal matrix:

where,

(27)� = �dyn + �stat

(28)
(
�

ii
− �2

i,j
�

ii

)
�
i,j
= �, �i =

[
�1,�2, ...

]
, � =

[
�i

�

]

(29)� =

[
�i

�b

]
=

[
−�−1

ii
�

ib

�

]

(30)� = �dyn + �stat ≃ �� +��b

(31)� =

[
�i

�b

]
≃ �̃ =

[
�i �i

� �

][
�i

�b

]
= ��

(32)𝐌̃𝐪̈ + 𝐊̃𝐪 = 𝐟 + 𝐠̃

Now, M ×M assembled reduced system ( N > M ) can be 
obtained by the compatibility condition and compatibility 
condition without the need to directly calculate the huge 
original total system matrices:

where,

On the other hand, the FE model in the design domain 
remains intact to avoid the disadvantages of the MR 
approach in optimization framework (It is noteworthy 
that the substructural model in design domain could be 
reduced by condensation approach that maintains physi-
cal meaning even after reduction, but this case will not 
be dealt with in order to clarify our idea). Therefore, the 
generalized(reduced) response by substructuring in Eq. (32) 
can be rewritten as:

Now, let us consider the optimization problem (23). In 
this paper, we consider following two objective functions 
proposed in works of Jacob (Amir et al. 2010) and Ma et al. 
(Evgrafov et al. 2008):

Here, mean-compliance f1 is a function of the exciting fre-
quency � and dynamic-compliance f2 is the integration of the 
objective function above within a certain frequency(angular 

(33)

̄̃
𝐌 = diag

(
𝐌̃(1), ..., 𝐌̃(Ns)

)
,

̄̃
𝐊 = diag

(
𝐊̃(1), ..., 𝐊̃(Ns)

)
,

𝐪̄ =
[
𝐪(1)T , ..., 𝐪(Ns)T

]T
,

̄̃
𝐟 =

[
𝐟 (1)T , ..., 𝐟 (Ns)T

]T
,

̄̃𝐠
⋅

=
[
𝐠̃(1)T , ..., 𝐠̃(Ns)T

]

(34)𝐌̃𝐪̈ + 𝐊̃𝐪 = 𝐟 or 𝐒̃𝐪 − 𝐟 = 𝟎

(35)
𝐪 = 𝐋𝐪, 𝐌̃ = 𝐋T𝐌̃𝐋, 𝐊̃ = 𝐋T𝐊̃𝐋, 𝐟 = 𝐋T𝐟 , 𝐒̃ =

(
𝐊̃ − 𝜔2𝐌̃

)

(36)�=
[
u
(D)T , q(ND)T

]
=
[{

u
T
i
, uT

b

}(D)
,
{
q
T
i
, qT

b

}(ND)
]T

(37)q = �� =
[
u
(D)T , q

(ND)T

i

]T
, u

(D)

b
= q

(ND)

b

(38)f1 =
|||� (�)

T�(�)
||| (mean − compliance minimization)

(39)

f2 =

ω
s

∫
ω
s

f1(�) d�

=
∑
i

w
i
f1

(
�
i

)
(Dynamic − compliance minimization)
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velocity) range [ �
s
,�

e
 ] and wi,�i is the set of quadrature 

weights and points. Now, the Eqs. (38,39) can be written 
based on the relation in Eqs. (19,22) as follows:

Meanwhile, for the sensitivity value for the objective 
function and the constraint with respect to design variable 
� , the adjoint variable method (AVM) and Lagrange multi-
plier method are adopted. The sensitivity value in the static 
system can be derived via the followings:

where Lagrange multiplier � is the vector of adjoint vari-
ables. By differentiating the Lagrange equation L  with 
respect to the design variable �(D) in design domain, the 
sensitivity can be obtained:

where, �T = −2�T . Meanwhile, the stiffness matrix K in 
Eq. (4) can be written as:

where,

Here, �(D) is the Boolean matrix that operate on the DOF 
associated with the elements within the design. The size of 
�(D)

g
 is N × N , equal to the global assembled system matrix 

and the size of �(D) is Nd × Nd , equal to the local subsystem 
matrix in the design domain. Also note that the system in non-
design domain can be reduced by substructuring approach. 
Recalling the state variables in partially reduced system in 
Eq. (37), Boolean matrix for reduced system can be written as:

(40)f1 ≃
|||�̃ (𝜔)

T�(𝜔)
|||

(41)f2 ≃

ωs

∫
ωs

|||�̃ (𝜔)
T�(𝜔)

|||d𝜔

(42)L = �T� + �T(�� − � ) (Lagrange equation)

(43)

d
d�(D)

=
(

2�T� + �T�
) ��
��(D)

+ �T ��
��(D)

� + �T ��
��(D)

�

= −�T ��
��(D)

�

(44)
� =

NE(D)
∑

e=1

(

�e
)pk ⋅ �e+

NE(ND)
∑

e=1

(

�e
)pk ⋅ �e

= �(D)
g +�(D)

g

(45)�(D)
g

=

NE(D)∑
e=1

(
�e
)pk

⋅ �e =

[
�(D) �

� �

]

(46)�(D)
g

= �(D)T�(D)�(D),

(47)�(D) = �(D)�.

where, q =
[
u
(D)T , q

(ND)T

i

]T
.

Now the sensitivity equation in Eq. (43) would write:

Because the design variable � is only in the design 
domain which is not generalized i.e.,� = �(D) , Eq. (43) can 
be rewritten as:

Accordingly, state variables in the non-design domain 
�(ND) or �(ND) are no longer required for sensitivity values 
and there is no need to calculate the reduction basis for every 
TO iteration because the FE model in non-design domain 
is not change. The schematic diagram of proposed method 
and optimization process is illustrated in Fig. 2 and Fig. 3.

Similarly, the sensitivity values of dynamic compliance 
f
1
 and f

2
 can be obtained as follows.

Here conj(�(D)) denotes the complex conjugate of the state 
variables in the design domain.

4 � Numerical examples

To illustrate the performance of substructuring approach for 
partial topology optimization applications, this section presents 
several numerical problems. All the optimization procedures 
are implemented in the framework of MATLAB (MATLAB 
2022b, 64bit, Gold 6342 24 cores, 512 GB) and the design 
domains and material properties are arbitrary chosen without 
loss of generality. To solve the optimization problem, a mathe-
matical optimization algorithm (method of moving asymptotes 
(MMA)) is employed here. For the convergence criteria of 
the large-scale optimization process, a small value of absolute 

(48)�(D) = �̃(D)�

(49)

d
d�(D)

= −�T
��(D)

g

��(D)
�

= −�(D)T ��
(D)

��(D)
�(D)

(50)
dL

d�
= −u(D)T

�K(D)

�� (D)
u(D)

(51)
df1

d�
= 2Real

(
�T(

��(D)

��(D)
�(D))

)

(52)
df2

d�
= 2∫

ωe

ω
s

Real

(
�T(

��(D)

��(D)
�(D))

)
dω

(53)λ = −
1

2
conj(�(D))
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change of design variables and a large value of the maximum 
iteration are set compared to general optimization problems.

(54)
max

(||�iter. − �
iter.−1

||
/ ||�iter.−1||

)

< 10
−3

and Maximum iteration = 500

where the iteration number is denoted by iter. Also we note 
that the eigenvalue problems for the presented examples are 
only partially solved by the Krylov–Schur algorithm (Stew-
art 2002) and thus, eigenmode selection methods, such as the 
frequency cutoff method, are substituted by the frequency 
response function(FRF) analysis.

Fig. 3   Optimization processes a without MR schemes, b with con-
ventional MR schemes and c with substructuring. Note that all pro-
cesses associated with the model reduction are now conducted prior 
to the optimization iteration, which reduces the significant number of 
design variables. As a result, additional benefit can be expected; gen-
erally, when the eigenmode-based MR scheme is used for dynamic 
TO, mode switching phenomena among eigenfrequencies (Koh et al. 

2020) or the localized eigenmodes occur during an optimization pro-
cess (Yoon 2010; Pedersen 2000), which deteriorates the approxima-
tion accuracy of the FRFs and generates gray elements in optimized 
results. But the proposed approach, in which the model in design 
domain does not utilize eigenmodes, is no longer affected by these 
side effects

Fig. 4   Cantilever benchmark design problem. a Problem definition (Elastic modulus (E) = 1 Pa, density (�) = 1 kg/m3 , Poisson ratio (�) = 0.3) and 
b Resulting frequency responses
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In order to ensure existence of optimal design to the 
dynamic TO problem and prevent checkerboard patterns in 
the design, filtering method is used on the sensitivities of 
the objective function. It must be emphasized that the filter 
is essential to reduce the gray elements especially in the 
dynamic TO problems in practice. For TO problems hav-
ing the multiple design domains, the filter can be given as:

(55)

d
⌢

f

d𝛾k
=

1

𝛾k

NE(D)∑
i=1

Hi

NE(D)�
i=1

Hi𝛾k
df

d𝛾k
,

Hi =

�
rmin − dist(k, i),

�
i ∈ NE(D)��dist(k, i) ≤ rmin

�

0,
�
i ∈ NE(D)��dist(k, i) > rmin

� (filtering within whole design domain

where the operator dist(k,i) is defined as the distance 
between center of k-th element and i-th element and rmin 
is the radius of the circle that controls which sensitivities 
contribute to the filtering of the sensitivity with respect to 
the k-th design variable. Also,NE(D) is number of elements 
in the whole design domain.

4.1 � Cantilever beam problem

For the first example a cantilever beam with three sub-
domains ( Ω(1),Ω(2),Ω(3) ) in Fig. 4 is proposed to solve the 
structure-fixture simultaneous design considering dynamic 
compliance. The size of the beam is 6 m × 3 m having ran-
dom material properties (Elastic modulus (E) = 1 Pa, density 
(�) = 1 kg/m3 , Poisson ratio (�) = 0.3) and 300 × 50 Q4 ele-
ments (element size is 0.02 m). The left side of the beam 
is clamped and a harmonic force F = 1 N is applied in the 
bottom of the left size. The resulting frequency responses 
of 0 to 0.5 rad/s is shown in the Fig. 4 as a reference solu-
tion. Before the partial design problem, the conventional 
static compliance problem in the whole design domain 
( Ω(D) = Ω(1) ∪ Ω(2) ∪ Ω(3) ) is considered. The static compli-
ance is minimized to within 30% of the whole design domain 
volume. Figure 5 illustrates the optimization layout for the 
static compliance problem using both the conventional and 
proposed substructuring approaches. Note that the filtering 
radius is set to 1.5 times of the element length. Comparing 
Fig. 5a and b, a slight discrepancy in the optimization results 
under the same conditions becomes apparent, attributed to 
the numerical errors arising from the implementation of the 
substructuring approach. The relative error of sensitivity 
values in initial state (iter. = 1) is shown in Fig. 6a. On the 
other hand, Fig. 5c illustrates the variations in the optimal 
results when constraints are applied to each individual sub-
domain. Comparing Fig. 5c and d, it becomes evident that a 
more favorable topology can be achieved with refined mesh. 
Furthermore, as a reference of our computing hardware and 
software configurations, we have provided a summary of 
the elapsed time required to execute a single iteration of the 
optimization loop, as detailed in Table 2.

Fig. 5   Results of static compliance problem. Optimization layout of a 
conventional approach with single volume constraint ( V

/
V0 < 0.3 , V0 

is initial volume), b substructuring approach with single volume con-
straint, c substructuring approach with multiple volume constraints 
( V (k)

/
V
(k)

0
< 0.3 , k = 1,2,3), and d substructuring approach with mul-

tiple volume constraints and refined mesh (element size = 0.005)
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Now three different optimization approaches will be com-
pared in the partial optimization problem: the conventional 
TO without any reduction scheme, the TO with conventional 
MR approach, and the proposed TO with substructuring 
approach. Considering clarity and simplicity for implemen-
tation of TO process, the MS and CB method are adopted as 
conventional MR and substructuring approach, respectively. 
For the MS and substructuring cases, 20 dominant structural 
and substructural modes are selected. Each subdomain in the 
Fig. 4 will be set as design domain once, while the remain-
ing subdomains becomes non(passive)-design domains. In 
addition, the in Eq. (55) is adopted here with filtering radius 
rmin = 0.03 (1.5 times of element length). The dynamic com-
pliance in the low frequency interval ( � ∈ [0, 0.001] rad/s , 
Δ� = 0.001∕NS,NS = 50 ) is minimized to within 30% of the 
design domain volume (76% of the whole domain volume) 
to show similar layout of the design layout minimizing the 
static compliance as an reference result.

For the presented example with 15000 elements and 
19803 DOFs takes about 5385.39 s, 821.45 s, 750.48 s 
in average, which shows effectiveness of the presented 
substructuring approach. Even the size of reduced matrix 
for the substructuring approach is much larger the size of 
reduced matrix for the conventional MR approach, less 
computation time is needed to reach optimization results 
because the conventional MR approach should solve eigen-
value problem at each iteration. These results demonstrate 
a notable advantage of presented substructuring approach. 
Figures 7 and 8 show the layout and frequency response 
function curves of the topology optimization with respect 
to the applied method. Both the full order model (FOM) 
and the conventional MR utilized passive design variable, 
�(ND) = 1 , resulting in almost the same optimization layout 
as shown in Fig. 7a and b. However, at the bottom result 
of Fig. 7b, the topology did not converge properly, and the 
FRF curve of the result could not be obtained (Fig. 8c). 

Fig. 6   Relative error of sensitiv-
ity values for each element. 
a Whole design domain case 
( Ω(D) = Ω(1) ∪ Ω(2) ∪ Ω(3) ), 
b Partial design domain case 
( Ω(D) = Ω(1))

Table 2   Main processes and 
computation times for topology 
optimization with respect to 
system size (A single repetition)

System Size 1.32E + 03 5.04E + 03 1.21E + 05 4.82E + 05 3.01E + 06 1.20E + 07
Computation time (s)

Design variable update 0.0103 0.0143 0.2542 1.1361 6.2153 23.8362
System solve 0.0519 0.0610 1.0179 5.0801 43.2872 363.6840
Sensitivity calculation 0.0030 0.0018 0.0561 0.1177 0.4903 1.7265
MMA optimizer 0.0130 0.0982 0.6099 4.4339 18.4316 65.8600
Total 0.2339 0.3328 2.2523 11.5929 72.2597 470.0241

Fig. 7   Optimization results with 
a full order model (w/o reduc-
tion scheme), b conventional 
MR scheme (mode superposi-
tion method), c) presented 
substructuring scheme
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This issue arises from using localized modes, which are 
common in designs featuring significant density variations 
(known as “0–1” designs), during the model reduction 
process. It's a notable problem that occurs when applying 
mode-based order reduction to topology optimization. In 
addition, a noteworthy observation emerges: the disparity 

in the sensitivity values of elements with the interface 
DOF (relative errors are depicted in Fig. 5), does not sig-
nificantly affect the optimal design outcome contrasting 
Fig. 7a and c.

Fig. 8   Comparison of the frequency response curves of optimized design with respect to the FOM, MR, and substructuring methods for each 
design domain case; a Ω(D) = Ω(1) , b Ω(D) = Ω(2) , and c Ω(D) = Ω(3)

Fig. 9   Hammerhead pier design problem. a Problem definition with four different design layer ( E(1) = 100 Pa,E(2) = 200 Pa,E(3) = 300 Pa

,E(4) = 400 Pa ) and b compliance response curve to frequency
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4.2 � Hammerhead pier optimization

A hammerhead pier was chosen as the next example. This 
structure can model a massive bridge structure for which 
the consideration of harmonic resonance is required. The 
objective of this example is to design a center layer of the 
hammerhead pier considering gradually increasing structural 
stiffness. The top layer and the pier part are considered as 
non-design domains while the four supporting middle lay-
ers are optimized for minimum dynamic compliance sub-
ject to graded stiffness and harmonic distributed loads as 
depicted in Fig. 9a. In this example, the elastic moduli(E) 
for the non-design domain and four subdomains are set to be 
100, 100, 200, 300, and 400 Pa from the bottom to the top, 
respectively. Other material properties are set to be same 
as the previous example (density (�) = 1 kg/m3 , Poisson 
ratio = 0.3) and the problem geometry is discretized with 
0.005 m × 0.005 m Q4 elements. The dynamic compliance 

in the both low frequency domain ( � ∈ [0, 0.5] rad/s) and 
high frequency domain(ω ∈ [1.25, 1.4] rad/s) with small 
number of frequency steps(Δ� =

(
�e − �s

)/
NS,NS = 50 ) 

will be minimized in this example. The frequency responses 
(compliance value at a specific frequency) and target fre-
quency ranges for dynamic topology optimization problem 
can be found in Fig. 9b, Fig. 10a and d. An 1 m × 1 m repeti-
tive geometry with same discretization is used to define the 
large-scale FE models in the non-design domains resulting 
in a FE model having 2,080,000 elements and 4,202,472 
DOFs(Note that the total number of DOFs is calculated as 
the sum of the DOFs of each subdomain). And 10 dominant 
substructural modes are selected for the reduction of FE 
matrices in the non-design domains. Figure 10 shows the 
results of the example obtained by assigning the 30% vol-
ume constraint for each subdomain and implementing filter 
with rmin = 0.015 . As shown in Fig. 10c, optimized design 
in the low-frequency range shows that a fractal-like structure 

Fig. 10   Optimization results for hammerhead pier. a Compliance 
response curve to frequency, b objective function value history, c 
optimized layout in low-frequency domain ([0, 0.5](rad/s)). d Com-

pliance response curve to frequency, e objective function value his-
tory, f optimized layout in high frequency domain ([1.25, 1.4](rad/s))
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which easily can be found in nature structures in addition to 
a smooth transition between the subdomains.

Meanwhile optimized design in the high frequency range 
shows different appearance from that in the low frequency 
range. The most notable aspect of the optimization results 
in the high-frequency range is the increase in gray elements, 
a phenomenon frequently observed in other literature on 
topology optimization of dynamic systems or eigenvalue 
maximization problems (Yoon 2010; Zhao et al. 2018; Li 
et al. 2021). This increase often leads to some disconnec-
tion between the design subdomains. Mathematically, these 
gray elements arise due to the differences in penalty values 
for stiffness and mass. The typical penalty values ( pk = 3 , 
pm = 1 ) result in a very small stiffness when compared to 
mass. Consequently, these elements are much more flexible 
in comparison to areas with elements having full densities. 
They primarily affect the lowest eigenmodes (or resonant 
frequencies) of the entire structure, but do not influence the 
stiffness of the entire structure. In other words, the gray ele-
ments are not essential for preserving the overall structural 
rigidity, and therefore may not require a continuous connec-
tion to each other. The gray elements used to be interpreted 
as porous materials from an engineering perspective, but still 
designer may want a black/white design. Various finite ele-
ment techniques have been investigated to eliminate the gray 
component. In this example, we opted for the two different 

approaches. One is putting higher penalty values on mass 
penalizing (pm = 6). The other is utilizing the minimum den-
sity proposed by Tenek and Hagiwara(Tenek and Hagiwara 
1994). A minimum density factor of 0.1 ( �min = 0.1 ) is cho-
sen. Figure 11 shows the optimized design in the high fre-
quency range with the higher penalty values and minimum 
density value. As shown in Fig. 11b, a higher mass penalty 
value may reduce the gray region but blurs the micro-topol-
ogy of static results. Meanwhile, the gray background in 
Fig. 11d shows that the problem of a topology optimization 
has been replaced with an optimization of reinforcement. 
The optimized design in Fig. 11d become similar to the 
optimized design in the low frequency domain (Fig. 10c), 
with some reinforcing structures around the main fractal-like 
structure. Another noteworthy point is that the mode shifting 
during the dynamic optimization process causes an irregular 
increase in the objective function value, which can be seen 
through the objective function history curve in Fig. 9b and e 
(Note that the convergence criteria in Eq. (54) was not used 
to show the iteration history under same conditions).

4.3 � Deep beam restoration and supporter 
optimization

An attempt to show the effectiveness of presented tech-
nique for design strengthening for engineering structures 

Fig. 11   Optimization results 
of hammerhead with higher 
mass penalty (pm = 6) and 
minimum density ( �min = 0.1 ). 
a Compliance response curve 
to frequency and b optimized 
layout with higher mass penalty, 
c Compliance response curve 
to frequency and d optimized 
layout with minimum density

Fig. 12   Degraded deep beam 
marked in red and supporters. 
a Problem geometry and b 
compliance response curve to 
frequency
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suffering from the effects of material degradation is made 
in this section. It is proposed to solve minimum compli-
ance problem of asymmetric structure due to the material 
degradation and further restoration process for weakened 
substructures. Restoration process is conducted as a topol-
ogy optimization task, in which the strengthening with 
a low volume of structural density (0.5) and maximal 
stiffness are sought for. As an example of strengthening, 
a deep beam with a concentrated force equal to F = 100 
N and supporter are presented as shown in Fig. 12. The 
material properties for the supporting structure are set to 
E = 1000 Pa,� = 1 kg/m3,� = 0.3, and those for the deep 
deem are set to E = 10 Pa,� = 1 kg/m3,� = 0.3. The problem 
is discretized with 0.002 m × 0.002 m Q4 elements yield-
ing 17,000,000 elements and 34,130,124 DOFs and a 1 m 
× 1 m repetitive geometry with same discretization, and 10 
dominant substructural modes are selected for the reduc-
tion of the non-design domains. Lastly, the filter radius is 
set to rmin = 0.004.

Figure 13 shows the optimization results of the example 
with volume constraint of 0.4 for the supporter structures 
( Ω(1),Ω(2) ) and 0.5 for the degraded substructure ( Ω(3) ). In 

this optimization problem, it took 134 and 187 iterations 
to satisfy the convergence criteria in Eq. (54) for problems 
in the low [0 0.16](rad/s) and high [0.48 0.5](rad/s) tar-
get frequency range. Figure 13b and d show the iterations 
history of each problem. Figure 14a and b show a smooth 
transition of the material between the substructures that 
would be difficult to achieve if the filtering was performed 
separately.

In addition, the results in Figs. 13d and 14b, a mono-
tonic convergence of objective function value and fewer 
gray elements in optimization layout result, denote that 
resonant frequency shift or instability phenomenon during 
the topology optimization in high-frequency range causes 
gray elements in the optimal layout and this phenomenon 
does not always happen.

5 � Conclusions

This study introduces a new dynamic topology optimi-
zation process that uses a substructuring approach for 
large-scale systems in the frequency domain. The method 

Fig. 13   Optimization results of degraded deem beam and supports. a 
Compliance response curve to frequency around the low target fre-
quency ([0, 0.16](rad/s)), and b objective function value history. c 

Compliance response curve to frequency around the high target fre-
quency ([0.48, 0.5](rad/s)), and d objective function value history
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enables solving large-scale topology optimization prob-
lems in a more practical and realistic manner, taking into 
account the simultaneous design of multi-component 
structures, composed of different materials, and with dif-
ferent constraints. The traditional optimal design problem 
requires determining the response of the entire system, 
even if only a part of the system needs to be optimized, 
which can be challenging for complex and large-scale 
structures. Solving a frequency domain system necessi-
tates iterative inverse operations, and frequency-dependent 
matrix conditions make it challenging to use pcg solv-
ers and their preconditioners, which are typically used to 

solve large-scale problems. To solve this issue, this paper 
introduces a partial topology optimization technique that 
utilizes two fundamental principles: (1) substructuring 
approach and (2) repetitive geometry. The nodal varia-
bles related to the non-design domains are segmented and 
removed by repetitive geometry, and finally approximated 
by the substructuring technique (Although we employ the 
basic Craig–Brampton method here, the presented optimi-
zation process can utilize any kind of dynamic substructur-
ing method). Thereby presented partial TO process allows 
the designer to deal with much larger systems by only 
handling the nodal variables related to the design domains 
as well as different objectives and constraints among the 

Fig. 14   Optimization results 
of degraded deem beam and 
supports. a Optimized layout 
in low frequency domain ([0, 
0.16](rad/s)), and b in high-
frequency domain([0.48, 0.5]
(rad/s))
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different design subdomains at the same time. Several 
topology optimization examples have been presented to 
demonstrate the performance of the proposed method in 
large-scale topology optimization problems.
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