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Abstract
In this paper, a novel algorithm for computing the derivatives of
eigensolutions of asymmetric damped systems with distinct and repeated
eigenvalues is developed without using second-order derivatives of the
eigenequations, which has a significant benefit over the existing published
methods. To achieve this, the algorithm is proposed by (1) imposing consistent
normalization conditions for both left and right eigenvectors throughout the
computational system, and (2) solving sensitivity problems using the chain
rule. These contributions add significant value to the proposed method. Addi-
tionally, the numerical difficulty is overcome by suggesting justifying Nelson
(1976)’s technique based on the normalization conditions. Even though the
proposed algorithm is simple and easy to implement, the employment of chain
rule with new normalization in this note has never been reported in the litera-
ture, especially for the problem of eigensensitivity. Because this new algorithm
does not require the second-order derivatives of the eigenequations, the ana-
lytical and numerical solutions for eigensensitivity offered by this method are
less complicated than existing available solutions. The validity and applicability
of the method are demonstrated through five numerical examples, showcasing
its implementation in displacement- and state-space equations (rotordynamic
system). Also, verifications are found to be in reasonable agreement with the
approximated method.
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1 INTRODUCTION

The solution of the eigenproblem sensitivities of the structural and mechanical systems with respect to structural
design parameters plays an essential role in dynamic model updating, structural design optimization, structural dynamic
modification, damage detection, model reanalysis, and many other applications.1–3 For some specific systems, the deriva-
tive of the eigenvector may be computed with the eigenvector corresponding to distinct and/ or repeated eigenvalues,
and the main difficulty in the computation is the singularity problem. Consequently, many computational techniques
and methods have been developed to solve the eigensolution sensitivities of the systems with distinct and repeated
eigenvalues.1–7
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The first expression of the first-order derivatives of the eigensolution for the symmetric undamped system was given
by Fox and Kapoor8 by employing the modal expansion technique. Their method was extended to solve the sensitivity
analysis of the asymmetric non-conservative systems by Rogers9 and Plaut and Huseyin10; however, the latter method
only adapted for the first-order representation of the equation of motion. Adhikari11 produced the exact expression
for the derivative of complex eigenvalues and eigenvectors of the second-order damped system. Later, with the clas-
sical normal modes, Adhikari12 employed an approximated method to compute the derivative of complex modes for
non-proportionally symmetric damped systems. Then, this method was extended to the first- and second-order deriva-
tives of the eigensolutions of the asymmetric systems with viscous damping by Adhikari.13 Similarly, Zeng14 proposed
the modified modal method for solving the complex eigenvectors in the symmetric damped systems and the extension of
this modified method was then performed for the general asymmetric damped systems by Moon et al.15 However, these
methods were reported with less accuracy.1

Nelson16 presented an efficient algorithm for calculating eigenvector derivatives with distinct eigenvalues for the
self-adjoint asymmetric system by expressing the derivative of each eigenvector as a particular solution and a homoge-
neous solution. However, the weakness of Nelson’s method was found with the repeated eigenvalue system; consequently,
the extensions were conducted by many researchers (e.g., Mills-Curran,17 Ojalvo,18 Dailey19) to solve the derivatives of
eigenvalues and eigenvectors of the real symmetric eigensystems with repeated eigenvalues. Later, the improvement was
performed to compute the eigensolution derivatives in the case of repeated eigenvalues with the repeated first-order
eigenvalue derivatives by Shaw and Jayasuriya.20 Then, Tang et al.21 and Tang and Wang22 investigated the eigensolution
derivatives with repeated eigenvalues for general asymmetric systems. Subsequently, Friswell and Adhikari23 extended
Nelson’s method to symmetric and asymmetric systems with viscous damping. Similarly, Xu and Wu2 developed a method
to compute eigensolution derivatives of damped systems with distinct and repeated eigenvalues by imposing a new
normalization condition. It is worth pointing out that the methods mentioned above belong to the Nelson-type method.

Besides, Lee et al.24 proposed an iterative method, while Burchett and Costello25 proposed a QR-based algorithm,
which is a way to decompose a matrix into Q and R matrices, where Q is an orthogonal matrix and R is an upper triangle
matrix, for sensitivity analysis of eigensystems with distinct and repeated eigenvalues. Xie and Dai26 employed a Davidson
method for solving the first-order eigensolution derivatives of the symmetric generalized eigenvalue problems. Lee27

analyzed the design sensitivity of repeated eigenvalues and associated eigenvectors by suggesting the adjoint method,
in which the computation of the adjoint variables from the simultaneous linear system equations could be performed
without using the linear combination of the eigenvectors. Burchett28 developed a computation technique in conjunction
with the QZ algorithm, which is a method to find orthogonal matrices Q and Z. Thus, the derivatives of system poles and
transmission zeros are computed simultaneously with the poles and zeros themselves. Recently, Yoon et al.29 proposed a
highly efficient general method for sensitivity analysis of eigenvectors with repeated eigenvalues for the symmetric system
without passing through adjacent eigenvectors in calculating the partial derivatives of any prescribed eigenvector basis.
However, these methods hardly solve the eigenproblem sensitivities for the non-self-adjoint asymmetric systems.

For solving the eigen derivatives, the linear system of algebraic equations is employed;30–32 however, this method was
only restricted to the first-order representation of the equation of motion.1 Likewise, this method was also used with
symmetric coefficient matrices for undamped systems with distinct33 and repeated eigenvalues.34 Later, their algebraic
methods were extended to the second-order symmetric damped systems with distinct and repeated eigenvalues.35,36 How-
ever, Wu et al.37 reported that these methods (e.g., References 34,35) were not correct due to a mistake in the derivation
of the normalization for solving the repeated eigenvalues.1

On the contrary, for the non-symmetric system, the algebraic methods were extended to the derivatives of eigen-
values and eigenvectors,38 and a further extension was made by Chouchane et al.39 to the second-order derivatives of
the eigensolutions and reported that their method might compute the higher-order eigensolution derivatives. Later, Xu
et al.4 developed an efficient algebraic method to calculate the eigensolution derivatives of asymmetric damped sys-
tems by employing a new normalization and pointed out that their method was computationally more efficient than
the method proposed by Reference 38. However, these methods4,38,39 are limited to the case of distinct eigenvalues and
additionally, because the components of the constraints and system matrices in the coefficient matrices are not all of the
same order of magnitude, the algebraic method may be ill-conditioned.1 Consequently, Li et al.1 proposed an efficient
method for computing the derivatives of the eigenvalues and associated eigenvectors of asymmetric damped systems
with distinct and repeated eigenvalues by introducing a new additional normalization for the left eigenvectors. The
authors reported that their methods are computationally efficient because the left and right eigenvector derivatives can
be computed in a parallel way, and the components of coefficient matrices are all of the same order of magnitude.
Wang and Dai3 proposed the algorithm for computing the eigenpair derivatives of asymmetric quadratic eigenvalue
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problems with distinct and repeated eigenvalues by imposing the additional normalization condition. It was reported
that this method is numerically stable, and the homogenous solutions are computed by the second-order derivative of the
eigenequations.

Likewise, Wang and Yang6 developed a method for sensitivity calculation of defective repeated eigenpairs of the
generalized eigenvalue and quadratic eigenproblems. They stated that the computed results are useful for investigating
optimal structural design, model updating, and structural damage detection. Besides, Wang et al.7 proposed another new
algorithm for calculating the derivatives of the semisimple eigenvalues and corresponding eigenvectors of an asymmetric
damped system, in which the eigenvectors derivatives are divided into a particular solution and a homogenous solu-
tion, where the particular solution is solved by employing the generalized inverse matrix. Later, Wang et al.5 extended
the method7 for computing the eigenpair derivatives of the damped system by dividing it into a particular solution
and a general solution of the corresponding homogenous equation. Despite the successful development of various tech-
niques for computing derivatives of complex eigenvectors with distinct and repeated eigenvalues,1–7 to the best of the
authors’ knowledge, there is still no report highlighting the most suitable method for practical design optimization of
rotordynamic systems. Furthermore, when dealing with complex rotating structures, which involve components such as
elastic, Coriolis, and centrifugal stiffness matrices, as well as mass, gyroscopic, and damping matrices, and so forth,40

the existing methods may be costly and time-consuming to achieve design optimization objectives, such as maximizing
critical speed, due to the tediousness and complexity of the employment of the second-order derivatives of the eigenequa-
tions and the inconsistent normalization condition (e.g., Reference 4). Consequently, a more simpler approach should
be proposed.

Therefore, this paper presents a new algorithm for solving the derivatives of the eigensolutions corresponding to the
distinct and repeated eigenvalues in an asymmetric damped system without utilizing the second-order derivatives of
the eigenequations, which has a substantial advantage over the existing available methods. To accomplish this, the new
algorithm is developed by (1) imposing simple normalization conditions for the left and right eigenvectors and making
the conditions to be consistent in the entire computational system and (2) solving the sensitivity problems by using the
chain rule. These contributions represent significant advancements in the field of the present method, distinguishing
it from existing approaches where normalization conditions lack consistency during the computational procedure, as
demonstrated in Reference 4. Notably, this new method offers an alternative to previous techniques by utilizing the chain
rule, while eliminating the need for the second-order derivatives of the eigenequations, providing substantial benefits
over existing solutions. Consequently, the present method is simpler and more straightforward to implement in analytical
and numerical programs. In addition, numerical stability might be achieved by suggesting justifying Nelson16 technique
on the basis of the new normalizations. Importantly, the developed method presented herein is crucial for solving the
derivatives of the critical speeds and the derivatives of the unbalanced responses to update and find the optimum solu-
tions of the rotordynamic system, such as minimizing unwanted noise (level vibration), increasing the magnitude of the
critical speeds of the rotating structures, and so forth. The proposed methodology for the sensitivity analysis of asymmet-
ric damped systems is presented in Section 2. The numerical examples to illustrate the implementation and the validation
of the proposed method; and the conclusion and recommendation for future work are presented in Sections 3 and 4,
respectively.

2 PROPOSED METHOD

The general equation of motion for free vibration of a linear damped system with n degrees of freedom is expressed by

M(q)r̈(t) + C(q)ṙ(t) + K(q)r(t) = 0 (1)

where M(q),C(q) and K(q) ∈ Rn×n are respectively the mass, damping, and stiffness matrices which are in function of the
actual design variable q. r̈(t), ṙ(t) and r(t) stand for the vector of acceleration, velocity, and displacement, and t denotes
the time. It is noticed that the mass matrix is nonsingular, and the system matrices are nonsymmetric matrices. From
Equation (1), the right and left eigenvectors can respectively be computed by Equations (2) and (3).1–7

(
𝜆

2
i (q)M(q) + 𝜆i(q)C(q) + K(q)

)
𝜑i(q) = 0, i = 1, 2, … ,n (2a)

(
𝜆

2
i (q)M(q) + 𝜆i(q)C(q) + K(q)

)T
𝜓i(q) = 0, i = 1, 2, … ,n (2b)

 10970207, 2023, 21, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7331 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [19/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4690 PHUOR and YOON

where 𝜑i(q) ∈ Cn and 𝜓i(q) ∈ Cn are the i-th right and left eigenvectors. 𝜆i(q) ∈ Cn is the ith eigenvalue. The
2n-dimensional first-order eigenvalue problem can also be obtained by transforming Equation (2) into the state-space
equation.2,40

E(q)𝜂i(q) = 𝜆i(q)F(q)𝜂i(q), i = 1, 2, … ,n (3a)

ET(q)𝜉i(q) = 𝜆i(q)FT(q)𝜉i(q), i = 1, 2, … ,n (3b)

where, E(q) =
[
−K(q) 0

0 M(q)

]
,F(q) =

[
C(q) M(q)
M(q) 0

]

𝜂i(q) =

{
𝜑i

𝜆i𝜑i

}

, 𝜉i(q) =

{
𝜓i

𝜆i𝜓i

}

As the mass matrix is nonsingular, the normalization of the eigenvector of the state-space equation (Equation 3) and
displacement-space equation (Equation 2) can be expressed as in Equations (4a) and (4b), respectively.

𝜉

T
i (q)F(q)𝜂i(q) = 1, i = 1, 2, … ,n (4a)

𝜓

T
i (q) (2𝜆i(q)M(q) + C(q))𝜑i(q) = 1, i = 1, 2, … ,n (4b)

For solving the sensitivity analysis of the asymmetric system, it is well acknowledged that it is not sufficient to
ensure the uniqueness of the eigenvector by employing the normalization in Equation (4). Obviously, Equation (4) is
also satisfied, and it may be checked by multiplying the left eigenvectors by any nonzero scalar and dividing the right
eigenvectors by the same scalar. Consequently, to guarantee the uniqueness of the eigensolutions in this paper, additional
normalizations should be imposed, which are presented with the respective eigensolution derivatives.

2.1 Eigensolution derivatives of repeated eigenvalue

The expressions of the eigenproblems are defined by

(
𝜒

2
m(q)M(q) + 𝜒m(q)C(q) + K(q)

)
um(q) = 0 (5)

(
𝜒

2
m(q)M(q) + 𝜒m(q)C(q) + K(q)

)Tvm(q) = 0 (6)

where,

𝜒m(q) = 𝜆m = 𝜆lIm

um(q) =
[
𝜑

1
m(q) 𝜑

2
m(q) · · · 𝜑

m
m(q)

]

vm(q) =
[
𝜓

1
m(q) 𝜓

2
m(q) · · · 𝜓

m
m (q)

]

where 𝜒m(q) is the (m ×m)matrix in which its diagonal contains the eigenvalue, Im is the identity matrix of order m, and
𝜆l is the lth eigenvalue of multiplicity m (1 < m ≤ n) for the eigenspace spanned by the columns of um(q) or vm(q). Similar
to Equation (4), for q = q0, the normalization of the eigenvectors at the lth eigenvalue can be written as

{
𝜓

j
m

}T
(2𝜆lM + C)𝜑k

m = 𝛿jk (7)

where𝜓 j
m and𝜑k

m are respectively the left and right eigenvectors corresponding to the eigenvalue (𝜆l). 𝛿jk is the Kronecker
delta, where 𝛿jk = 1 if j = k and otherwise, 𝛿jk = 0. From this concept, the orthogonal normalization for the um and vm of
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PHUOR and YOON 4691

the m repeated eigenvalues can be expressed as

vT
m (2𝜆mM + C)um = Im (8)

2.1.1 The eigenvalue sensitivity and adjacent eigenvectors

For the repeated eigenvalues, the derivative of the eigenvalue has to be computed directly by solving the eigenproblem,
which contains the adjacent eigenvectors. Thus, the adjacent eigenvectors in terms of um(q) and vm(q) can be expressed by

Um(q) = um(q) ⋅ 𝜎 (9)

Vm(q) = vm(q) ⋅ 𝜏 (10)

where 𝜎 and 𝜏 are the (m ×m) nonsingular transformation matrices. Consequently, the eigenproblems in Equations (5)
and (6) become

(
𝜒

2
m(q)M(q) + 𝜒m(q)C(q) + K(q)

)
Um(q) = 0 (11)

(
𝜒

2
m(q)M(q) + 𝜒m(q)C(q) + K(q)

)TVm(q) = 0 (12)

Then, by applying the differentiation for q = q0, Equation (11) becomes

(2𝜆lM + C)Um
𝜕𝜒m

𝜕q
= −

(
𝜆

2
l M + 𝜆lC + K

)
𝜕Um

𝜕q
−
(
𝜆

2
l
𝜕M
𝜕q

+ 𝜆l
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
Um (13)

By pre-multiplying both sides of Equation (13) with vT
m and employing Equations (8)–(10), the derivative of the

eigenvalue can be obtained by solving the right eigenvalue problem in Equation (14).

D ⋅ 𝜎 = 𝜎 ⋅
𝜕𝜒m

𝜕q
(14)

By following the same procedures for the left eigenvector, the eigenvalue derivative can also be computed by

DT ⋅ 𝜏 = 𝜏 ⋅
𝜕𝜒m

𝜕q
(15)

where,

D = −vT
m

(
𝜆

2
l
𝜕M
𝜕q

+ 𝜆l
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
um (16a)

By following the same arguments mentioned above, D can also be calculated in the state-space equation as in
Equation (16b).

D = −vssT
m

(
𝜆l
𝜕E
𝜕q

− 𝜕F
𝜕q

)
ussm (16b)

where ussm = um, vssm = vm, if the displacement-space equation is considered.
It is worth mentioning that the derivatives of the eigenvalues can be achieved by the need of only the eigenvalue and

associated eigenvectors and the derivatives of the system matrices. In addition, the 𝜎 and 𝜏 must be normalized in such a
way that

V T
m (2𝜆mM + C)Um = Im, for the displacement − space equation (17a)
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4692 PHUOR and YOON

VssT
m ⋅ F ⋅ Ussm = Im, for the state − space equation (17b)

where, Ussm = ussm ⋅ 𝜎,Vssm = vssm ⋅ 𝜏.

2.1.2 The eigenvector sensitivity

From Equation (17), the normalization equation can also be 𝜏T
𝜎 = Im. However, this normalization is not sufficient to

ensure the uniqueness of eigenvectors because the equation is still verified when multiplying 𝜎 by any nonzero scalar and
dividing 𝜏 by the same scalar.4 Therefore, to guarantee uniqueness, an additional normalization should be imposed for
q = q0 as in Equation (18).

{
Uj
}

i = 1 and
{

Vj
}

i = 1,where j = 1, 2, … ,n (18)

where
{
■j

}
i is the ith component of the jth eigenvector. The ith component is selected in such a way that the absolute

value of the corresponding component in the eigenvector is the largest, as seen in Equation (19).

|||
{

Uj
}

i
|||
|||
{

Vj
}

i
||| = max

k=1,2,… ,n

|||
{

Uj
}

k
|||
|||
{

Vj
}

k
||| (19)

Consequently, ̃Um and ̃V m denote the right and left eigenvectors after applying the normalization (Equation (18)).
Then, in order to fulfill the normalization in Equation (17a), the final eigenvectors may be recalculated by

um =
̃Um

(
̃V T

m (2𝜆mM + C) ̃Um

)1∕2 and vm =
̃V T

m
(
̃V T

m (2𝜆mM + C) ̃Um

)1∕2 (20)

Similarly, in the state-space equation, the eigenvectors can be expressed as

ussm =
̃Ussm

(
̃VssT

m ⋅ F ⋅ ̃Ussm
)1∕2 and vssm =

̃VssT
m

(
̃VssT

m ⋅ F ⋅ ̃Ussm
)1∕2 (21)

Consequently, by employing Equation (13), the eigenvector derivative 𝜕 ̃Um∕𝜕q can be computed as in Equation (22a).
Also, by applying similar arguments, the derivative of the left eigenvector 𝜕 ̃V m∕𝜕q is given as in Equation (22b).

Bm
𝜕

̃Um

𝜕q
= AUm (22a)

BT
m
𝜕

̃V m

𝜕q
= AVm (22b)

where,

Bm = 𝜆2
mM + 𝜆mC + K (23)

AUm = − (2𝜆mM + C) ̃Um
𝜕𝜒m

𝜕q
−
(
𝜆

2
m
𝜕M
𝜕q

+ 𝜆m
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
̃Um (24)

AVm = −(2𝜆mM + C)T ̃V m
𝜕𝜒m

𝜕q
−
(
𝜆

2
m
𝜕M
𝜕q

+ 𝜆m
𝜕C
𝜕q

+ 𝜕K
𝜕q

)T
̃V m (25)

Because Bm may be singular, Equation (22) is hardly solved. Consequently, Equation (22) can be solved by using
Nelson16 technique. Therefore, the right and left eigenvectors derivatives for the displacement-space equation can be
computed using the chain rule as in Equations (26a) and (26b), respectively.
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PHUOR and YOON 4693

𝜕um

𝜕q
= 𝜕um

𝜕

̃Um

𝜕

̃Um

𝜕q
(26a)

𝜕vm

𝜕q
= 𝜕vm

𝜕

̃V m

𝜕

̃V m

𝜕q
(26b)

Using the same procedures, the derivative of the eigenvectors in the state-space equation can be expressed as in
Equation (27).

𝜕ussm

𝜕q
= 𝜕ussm

𝜕

̃Ussm

𝜕

̃Ussm

𝜕q
(27a)

𝜕vssm

𝜕q
= 𝜕vssm

𝜕

̃Vssm

𝜕

̃Vssm

𝜕q
(27b)

2.2 Eigensolution derivatives of distinct eigenvalue

When m = 1, the system is calculated with the distinct eigenvalue and by differentiating Equation (2) with respect to the
design variable q for q = q0, the differential equations of the right and left eigenvectors can be written as in Equations (28)
and (29), respectively.

(2𝜆iM + C)𝜑i
𝜕𝜆i

𝜕q
= −

(
𝜆

2
i M + 𝜆iC + K

)
𝜕𝜑i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
𝜑i (28)

(2𝜆iM + C)T𝜓i
𝜕𝜆i

𝜕q
= −

(
𝜆

2
i M + 𝜆iC + K

)T 𝜕𝜓i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)T

𝜓i (29)

By pre-multiplying both sides of Equation (28) with 𝜓T
i and employing the normalization conditions Equations (3)

and (4), the eigenvalue derivative of the distinct eigenvalue can be computed by

𝜕𝜆i

𝜕q
= −𝜓T

i

(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
𝜑i (30a)

With the same arguments, the eigenvalue derivative of the distinct eigenvalue in the state-space equation can be
computed by

𝜕𝜆i

𝜕q
= −𝜉T

i

(
𝜆i
𝜕E
𝜕q

− 𝜕F
𝜕q

)
𝜂i (30b)

As mentioned earlier, the normalization condition in Equation (4) is not sufficient. Therefore, an additional normal-
ization should be imposed for q = q0 as in Equation (31).

{
𝜑j
}

i = 1 and
{
𝜓j
}

i = 1,where j = 1, 2, … ,n (31)

The ith component can be chosen in such a way that the absolute value of the corresponding component in the
eigenvector is the largest, as in Equation (32).

|||
{
𝜑j
}

i
|||
|||
{
𝜓j
}

i
||| = max

k=1,2,… ,n

|||
{
𝜑j
}

k
|||
|||
{
𝜓j
}

k
||| (32)

Consequently, 𝜑̃j and 𝜓̃ j denote the right and left eigenvectors after applying the normalization (Equation (31)). Then,
in order to fulfill the normalization in Equation (4), the final eigenvectors may be recalculated by

𝜑i =
𝜑̃i

(
𝜓̃

T
i (2𝜆iM + C) 𝜑̃i

)1∕2 and 𝜓i =
𝜓̃

T
i

(
𝜓̃

T
i (2𝜆iM + C) 𝜑̃i

)1∕2 (33)
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4694 PHUOR and YOON

Consequently, by employing Equations (28) and (29), the eigenvector derivatives 𝜕𝜑̃i∕𝜕q and 𝜕𝜓̃ i∕𝜕q can be computed
as in Equations (34) and (35), respectively.

Bi
𝜑̃i

𝜕q
= AUi (34)

BT
i
𝜕𝜓̃ i

𝜕q
= AVi (35)

where,

Bi = 𝜆2
i M + 𝜆iC + K (36)

AUi = − (2𝜆iM + C) 𝜑̃i
𝜕𝜆i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
𝜑̃i (37)

AVi = −(2𝜆iM + C)T𝜓̃ i
𝜕𝜆i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)T

𝜓̃ i (38)

It is well known that Equations (34) and (35) are hardly solved due to the singularity problems. Consequently, by
applying Nelson16 technique, the eigenvector derivatives 𝜕𝜑̃i∕𝜕q and 𝜕𝜓̃ i∕𝜕q can be computed. Finally, the right and left
eigenvectors derivatives in the displacement-space equation can be computed using the chain rule as in Equations (39a)
and (39b), respectively.

𝜕𝜑i

𝜕q
= 𝜕𝜑i

𝜕𝜑̃i

𝜕𝜑̃i

𝜕q
(39a)

𝜕𝜓i

𝜕q
= 𝜕𝜓i

𝜕𝜓̃ i

𝜕𝜓̃ i

𝜕q
(39b)

Similarly, following the same procedures above, the right and left eigenvectors derivatives can also be computed in
the state-space equation using the chain rule as Equations (40a) and (40b), respectively.

𝜕𝜂i

𝜕q
= 𝜕𝜂i

𝜕𝜂̃i

𝜕𝜂̃i

𝜕q
(40a)

𝜕𝜉i

𝜕q
= 𝜕𝜉i

𝜕

̃

𝜉i

𝜕

̃

𝜉i

𝜕q
(40b)

2.3 Discussion on the numerical stability of the proposed method

In the existing methods (e.g., References 1–7), the derivative of the eigenvectors has been performed by using the lin-
ear combination of the eigenvectors. On the contrary, the proposed method in this note is carried out by employing
the chain rule. More precisely, Figure 1 illustrates the diagram that compares the computation procedures produced
by the existing methods and a newly proposed method in this paper. Moreover, it is worth noticing that the eigen-
solutions derivatives are derived from the proposed computational procedures, making the normalization conditions
more consistent than the computational procedures employed by some researchers, for example, Xu et al.4 These
conditions are demonstrated and verified with the numerical examples provided in Section 3. Consequently, to the
best of the authors’ knowledge, the authors believe that this proposed computational method would provide reliable
responses because the iterative loop work is required in design optimization. From a mathematical point of view, in
the entire computational procedure of the proposed method, the numerical instability may occur at only the solu-
tion of the Equations (41a) and (41b) for the repeated eigenvalue and Equations (42a) and (42b) for the distinct
eigenvalue.

(
𝜆

2
mM + 𝜆mC + K

)
𝜕

̃Um

𝜕q
= − (2𝜆mM + C) ̃Um

𝜕𝜒m

𝜕q
−
(
𝜆

2
m
𝜕M
𝜕q

+ 𝜆m
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
̃Um (41a)
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PHUOR and YOON 4695

F I G U R E 1 Flow diagram illustrating the comparison of the present and the existing methods.

(
𝜆

2
mM + 𝜆mC + K

)T 𝜕 ̃V m

𝜕q
= −(2𝜆mM + C)T ̃V m

𝜕𝜒m

𝜕q
−
(
𝜆

2
m
𝜕M
𝜕q

+ 𝜆m
𝜕C
𝜕q

+ 𝜕K
𝜕q

)T
̃V m (41b)

(
𝜆

2
i M + 𝜆iC + K

)
𝜕𝜑̃i

𝜕q
= − (2𝜆iM + C) 𝜑̃i

𝜕𝜆i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)
𝜑̃i (42a)

(
𝜆

2
i M + 𝜆iC + K

)T 𝜕𝜓̃ i

𝜕q
= −(2𝜆iM + C)T𝜓̃ i

𝜕𝜆i

𝜕q
−
(
𝜆

2
i
𝜕M
𝜕q

+ 𝜆i
𝜕C
𝜕q

+ 𝜕K
𝜕q

)T

𝜓̃ i (42b)

As stated earlier, These issues are well recognized and can be overcome by utilizing Nelson16 technique which was
widely known as the powerful technique for solving the nonsingular problem by many researchers (e.g., Mills-Curran,17

Nelson,16 Ojalvo,18 Dailey19). And due to the normalization equations equal to one (constant) in Equation (18) for the
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4696 PHUOR and YOON

problem with the repeated eigenvalue and Equation (31) for the problem with the distinct eigenvalue, the authors suggest
justifying Nelson16 techniques by deleting the row and column of the denominator matrix and deleting the row of the
numerator vector corresponding to the component with respect to the normalization in Equations (19) and (32). There-
fore, numerical stability can be maintained and guaranteed. As a result, by utilizing Equations (41) or (42), the chain
rule technique can be applied, and consequently, the eigenvector sensitivities can be easily computed. Moreover, this
proposed method is simple and easy to implement and build the in-house codes in combination with the finite element
method, which has been proven to be an efficient method for solving the elastic and plastic problems in structure and
geomechanics.40–45

3 NUMERICAL EXAMPLES

To illustrate the validity of the proposed method, five examples are raised and considered in this paper. For the first
example, the eigensolution sensitivities of a damped rigid rotor on flexible supports, which are modeled using the springs
and dashpots, are solved with the distinct eigenvalue. The second is contemplated a three-degrees of freedom rotordy-
namic model, which is an asymmetric damped system and consists of five springs, four damping, and three disks. This
example is focused on the derivatives of eigenvalue and eigenvector with both distinct and repeated eigenvalues. Moreover,
the eigensolution derivatives of the finite element rotordynamic system are also numerically computed and provided, as
in example 3. Consequently, in order to validate the proposed method, the approximated results of the linear approxima-
tion of the perturbed system are calculated by Taylor series and compared with the actual results, where the expression
of the approximated results1,3 is written as

̃Θchanged = Θinitial +
𝜕𝛩

𝜕q
Δq (43)

And the errors (Er) can be determined by

Er(%) =
|| ̃Θchanged − Θchanged||

Θchanged
× 100 (44)

where, Θinitial,Θchanged, ̃Θchanged andΔq are the eigensolution’s initial value, the eigensolution’s actual value, the approxi-
mated value of the eigensolution, and the change in design parameter, respectively. All simulations are performed by the
in-house codes written in the framework of Matlab R2017b on an Intel® Core™ i7-4770 CPU @3.4GHz processors and
32GB RAM.

3.1 Example 1

This example presents the calculation of the sensitivity analysis of the eigensolution with the distinct eigenvalue of the
asymmetric system for the rotordynamic model,1,2,13 as shown in Figure 2, in which the mass, damping the stiffness
matrices are provided below. In addition, by choosing the real parameter q as the mass of the rotor, one set q0 = 122.68
and therefore,

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m0 0 0 0
0 m0 0 0
0 0 2.8625 0
0 0 0 2.8625

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⇒
𝜕M
𝜕q

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

K = 1e6 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2.1 0 0 0.025
0 3 −0.05 0
0 −0.05 0.1875 0

0.025 0 0 0.13125

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⇒
𝜕K
𝜕q

= 0
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PHUOR and YOON 4697

F I G U R E 2 A damped rigid rotor on flexible supports.

T A B L E 1 Comparison of the eigenvalues for the distinct eigenvalue problem of example 1.

Mode no Eigenvalues 𝝀initial

Eigenvalues derivatives
𝝏𝝀∕𝝏q Eigenvalues 𝛌changed Eigenvalues 𝛌̃changed Error (%)

1 −8.225 + 130.172i 6.877e − 2 − 0.522i −8.156 + 129.653i −8.156 + 129.650i 0.0023

2 −8.225 − 130.172i 6.877e − 2 + 0.522i −8.156 − 129.653i −8.156 − 129.650i 0.0023

3 −10.405 + 153.514i 0.335 − 0.389i −10.084 + 153.099i −10.070 + 153.125i 0.0192

4 −10.405 − 153.514i 0.335 + 0.389i −10.084 − 153.099i −10.070 − 153.125i 0.0192

5 −11.652 + 159.217i −0.271 − 0.252i −11.909 + 158.994i −11.923 + 158.965i 0.0202

6 −11.652 − 159.217i −0.271 + 0.252i −11.909 − 158.994i −11.923 − 158.965i 0.0202

7 −29.689 + 347.527i −1.685e − 4 − 9.618e − 4i −29.689 + 347.526i −29.689 + 347.526i 0.0000

8 −29.689 − 347.527i −1.685e − 4 + 9.618e − 4i −29.689 − 347.526i −29.689 − 347.526i 0.0000

C = 1e3 ×

⎡
⎢
⎢
⎢
⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 0.125 0.53315
0 0 −0.53315 0.125

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⇒
𝜕C
𝜕q

= 0

As a result, four pairs of the conjugate complex eigenvalues of the initial system are computed such as −8.225 ±
130.172i, −10.405 ± 153.514i, −11.652 ± 159.217i, and −29.689 ± 347.527i. When m0 = q = 122.68, and Equation (4b) is
employed to normalize the right and left eigenvectors, the eigenvalue derivatives can be computed as in Table 1. In addi-
tion, to validate the proposed method, we perturb m byΔm = Δq = 1. It is found that the calculated eigenvalue derivatives
are in excellent agreement with those computed by the approximated method, in which the calculated maximum error
is about 0.0202%, as seen in Table. 1.

Moreover, to validate the proposed method in calculating the sensitivity analysis of the eigenvectors, the computed
result is only listed for those corresponding to the eigenvalue 𝜆7 = −29.689 + 347.527i. Unlike the eigenvalue derivative,
the eigenvectors derivatives require another normalization condition (see Equation 31). Subsequently, the derivatives of
the right and left eigenvectors can be computed by the proposed method and presented in Tables 2 and 3, respectively.
Also, the verifications are carried out with the results computed by the approximated method. It is observed that reliable
agreements are met between the two. More precisely, the maximum errors are respectively 0.5048% and 1.1621% provided
at the second degree of freedom for right and left eigenvectors. Obviously, the computed eigensolutions and the eigensolu-
tion derivatives in Tables 1, 2, and 3 are all satisfied with Equations (2a), (2b), and (4b). Consequently, the normalizations
of the computational procedures used in this note are consistent for the entire system.
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4698 PHUOR and YOON

T A B L E 2 Comparison of the right eigenvectors for the distinct eigenvalue problem of example 1.

DOF Eigenvector 𝝋7

Eigenvector
derivatives 𝝏𝝋7∕𝝏q Eigenvector 𝛗changed Eigenvector 𝛗̃changed Error (%)

1 −2.682e − 5 − 1.971e − 5i 1.248e − 7 + 9.697e − 8i −2.658e − 5 − 1.952e − 5i −2.670e − 5 − 1.962e − 5i 0.4698

2 −4.767e − 5 + 6.817e − 5i 2.488e − 7 − 3.440e − 7i −4.717e − 5 + 6.749e − 5i −4.742e − 5 + 6.783e − 5i 0.5048

3 0.0137 − 0.0143i 0.0000 + 0.0000i 0.0137 + 0.0143i 0.0137 + 0.0143i 0.0004

4 −0.0121 − 0.0120i −2.920e − 8 − 1.836e − 8i −0.0121 − 0.0120i −0.0121 − 0.0120i 0.0006

T A B L E 3 Comparison of the left eigenvectors for the distinct eigenvalue problem of example 1.

DOF Eigenvector 𝝋7

Eigenvector
derivatives 𝝏𝝋7∕𝝏q

Eigenvector
𝛗changed Eigenvector 𝛗̃changed Error (%)

1 2.682e − 5 − 1.971e − 5i 1.022e − 7 + 1.211e − 7i −2.658e − 5 − 1.952e − 5i −2.693e − 5 − 1.960e − 5i 1.0810

2 −4.767e − 5 − 6.817e − 5i 3.341e − 7 − 2.629e − 7i −4.717e − 5 + 6.749e − 5i −4.733e − 5 + 6.843e − 5i 1.1621

3 0.0137 + 0.0143i 0.0000 + 0.0000i 0.0137 + 0.0143i 0.0137 + 0.0143i 0.0004

4 0.0121 − 0.0120i −5.394e − 8 − 4.515e − 8i −0.0121 − 0.0120i −0.0121 − 0.0120i 0.0008

F I G U R E 3 The three degrees of freedom rotor dynamic model.

Furthermore, for additional validation of the developed algorithm with the approximate method, two more design
variables (Δq= 1.2268 (proportion of 1.2268

122.68
= 1%) and 2.4536 (proportion of 2.4536

122.68
= 2%)) are selected to compute the

errors. Consequently, the derivatives of the right and left eigenvectors are determined and tabulated in Tables S1–S4 in
the Supplemental Material (SM) forΔq= 1.2268 and 2.4536, respectively. It is found that the maximum error between the
exact and approximate eigenvectors are respectively found to be 1.42% and 2.86% for Δq= 1.2268 and Δq= 2.4536. These
computed errors reveal a consistent increase as the design variables increase, suggesting that the proposed method in
this manuscript consistently generates acceptable errors. Hence, the accuracy and efficiency of the present method can
be deemed satisfactory.

3.2 Example 2

In contrast to the first example, the second example presents the computation of the eigenvalue and eigenvector deriva-
tives with both the distinct and the repeated eigenvalues of a three degrees of freedom rotordynamic model.1,3 The
asymmetric damped model is illustrated in Figure 3, in which the mass, damping, and stiffness matrices are respectively
provided by

M =
⎡
⎢
⎢
⎢
⎣

m1 +m0 0 0
0 m2 +m0 0
0 0 m3 +m0

⎤
⎥
⎥
⎥
⎦
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PHUOR and YOON 4699

K =
⎡
⎢
⎢
⎢
⎣

k1 + k2 −k2 0
−k2 k2 + k3 + k5 −k3

0 −k3 k3 + k4

⎤
⎥
⎥
⎥
⎦

D =
⎡
⎢
⎢
⎢
⎣

c2 + c3 + c4 −c4 −c2

−c4 c1 + 2c4 −c4

−c2 −c4 c2 + c4

⎤
⎥
⎥
⎥
⎦

The gyroscopic matrix of the computed rotordynamic model is assumed by

G =
⎡
⎢
⎢
⎢
⎣

0 −c4 −c2

c4 0 −c4

c2 c4 0

⎤
⎥
⎥
⎥
⎦

Consequently, the system of the damping matrix becomes

C = D + G =
⎡
⎢
⎢
⎢
⎣

c2 + c3 + c4 −2c4 −2c2

0 c1 + 2c4 −2c4

0 0 c2 + c4

⎤
⎥
⎥
⎥
⎦

Let us assume m1 = m2 = m3 = 2.5 kg, k1 = k4 = k5 = 2000 N∕m, k2 = k3 = 0 N∕m, c1 = c2 = c3 = 10 N ⋅ s∕m and
c4 = 0 N ⋅ s∕m. The mass m0 is chosen to be the design parameter q, and the eigensolution derivatives are considered at
m0 = 0 kg. Therefore,

M =
⎡
⎢
⎢
⎢
⎣

2.5 0 0
0 2.5 0
0 0 2.5

⎤
⎥
⎥
⎥
⎦

⇒
𝜕M
𝜕q

=
⎡
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

⎤
⎥
⎥
⎥
⎦

K =
⎡
⎢
⎢
⎢
⎣

2000 0 0
0 2000 0
0 0 2000

⎤
⎥
⎥
⎥
⎦

⇒
𝜕K
𝜕q

=
⎡
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

C =
⎡
⎢
⎢
⎢
⎣

20 0 −20
0 10 0
0 0 10

⎤
⎥
⎥
⎥
⎦

⇒
𝜕C
𝜕q

=
⎡
⎢
⎢
⎢
⎣

0 0 0
0 0 0
0 0 0

⎤
⎥
⎥
⎥
⎦

The computations are performed by transforming the quadratic eigenproblem equations into the state-space equation
(see Equation 3). As a result, the problem is solved with two distinct eigenvalues:−4 + 28i and−4 − 28i, and two-repeated
eigenvalues: −2 + 28.2135i and −2 − 28.2135i.

• For distinct eigenvalue

In this case, to illustrate the procedure of the proposed methodology, the eigenvalue (−10 + 28i) is employed. Conse-
quently, the computed derivative of the eigenvalue using Equation (30b) is 1.6 − 5.4857i. Using Equations (31) and (33),
the right and left eigenvectors calculated are
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4700 PHUOR and YOON

𝜂 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0598 − 0.0598i
0
0

1.4343 + 1.9124i
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝜉 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0598 + 0.0598i
0

−0.195 − 0.1195i
1.4343 − 1.9124i

0
−2.8685 + 3.8247i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Finally, the eigenvector sensitivities can be computed by employing Equations (40a) and (40b).

𝜕𝜂

𝜕q
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0.0068 − 0.0051i
0
0
0

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

𝜕𝜉

𝜕q
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−0.0068 + 0.0051i
0

0.0137 − 0.0102i
0

0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Similar to Example 1, to demonstrate the validation of the proposed method, we perturb m by Δm = Δq =
0.025. Table 4 presents the comparisons of the magnitudes of the right eigenvectors computed by the present
and the approximated methods. Similarly, Table 5 is for the left eigenvectors. It is observed that the eigensolu-
tions calculated in Tables 4 and 5 are all obeyed the normalization Equations (3a), (3b), and (4a). Therefore,
the normalization conditions are consistent. Moreover, it is found that reasonable agreements are obtained, and
the maximum error is 0.7575% given by the right and the left eigenvectors. Therefore, from the engineering per-
spective, it may conclude that the proposed method may provide good results for solving the distinct eigenvalue
problem.

T A B L E 4 Comparison of the right eigenvectors for the distinct eigenvalue of example 2.

DOF Eigenvector 𝜼1

Eigenvector
derivatives 𝝏𝜼1∕𝝏q Eigenvector 𝛈changed Eigenvector 𝜼changed Error (%)

1 0.0598 − 0.0598i 0.0068 − 0.0051i 0.0596 − 0.0596i 0.0599 − 0.0599i 0.5060

2 0 0 0 0 0

3 0 0 0 0 0

4 1.4343 + 1.9124i 0 1.4249 + 1.8970i 1.4343 + 1.9124i 0.7575

5 0 0 0 0 0

6 0 0 0 0 0

T A B L E 5 Comparison of the left eigenvectors for the distinct eigenvalue of example 2.

DOF Eigenvector 𝝃1

Eigenvector
derivatives 𝝏𝝃1∕𝝏q Eigenvector 𝝃changed Eigenvector 𝝃changed Error (%)

1 0.0598 + 0.0598i −0.0068 + 0.0051i 0.0596 + 0.0596i 0.0596 + 0.0596i 0.3324

2 0 0 0 0 0

3 −0.1195 − 0.1195i 0.0137 − 0.0102i −0.1192 − 0.1192i −0.1192 − 0.1198i 0.3324

4 1.4343 − 1.9124i 0 1.4249 − 1.8970i 1.4343 − 1.9124i 0.7575

5 0 0 0 0 0

6 −2.8685 + 3.8247i 0 −2.8498 + 3.7941i −2.8685 + 3.8247i 0.7575
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PHUOR and YOON 4701

• For repeated eigenvalue

The two-repeated eigenvalue (−2 + 28.2135i) is contemplated in this case. By using solving the eigenproblem in
Equation (14), the derivative of the eigenvalues is

𝜕𝜒m

𝜕q
= 𝜕𝜆l

𝜕q
Im =

[
0.8 − 5.6143i 0

0 0.8 − 5.6143i

]

After normalization, the magnitudes of the 𝜎 and 𝜏 are

𝜎 =

[
0 1
1 0

]

, 𝜏 =

[
0 1
1 0

]

The right and left eigenvectors normalized by Equation (18) are

̃Ussm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.0050 − 0.0705i
−0.0025 − 0.0353i

0
0

1.0000 + 0.0000i
0

0
−0.0025 − 0.0353i
2.0000 − 0.0000i

0
1.0000 + 0.0000i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

̃Vssm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
−0.0025 + 0.0353i

0
0

1.0000 + 0.0000i
0

0
−0.0025 + 0.0353i

0
0

1.0000 + 0.0000i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Consequently, the right and left eigenvectors calculated by Equation (21b) are

ussm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0.1191 − 0.1191i
0.0595 − 0.0595i

0
0

1.5606 + 1.7988i
0

0
0.0595 − 0.0595i
3.1212 + 3.5975i

0
1.5606 + 1.7988i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

vssm =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0.0595 + 0.0595i

0
0

1.5606 − 1.7988i
0

0
0.0595 + 0.0595i

0
0

1.5606 − 1.7988i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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4702 PHUOR and YOON

Finally, employing Equations (40a) and (40b), the derivatives of the eigenvectors can be computed:

𝜕ussm

𝜕q
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 −0.0128 − 0.0111i
−0.0064 − 0.0055i

0
0

0
0

0
−0.0064 − 0.0055i

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

𝜕vssm

𝜕q
=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
0.0154 + 0.0196i

0
0

0
0

0
0.0154 + 0.0196i

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Tables 6 and 7 illustrate the comparisons of the values of the eigenvectors computed by the present method and
the approximated method for the right and the left eigenvectors, respectively. Likewise, the eigensolutions calculated in
Tables 6 and 7 are conformed with the normalization Equations (3a), (3b), and (4a); consequently, the normalization
conditions are consistent. As a result, close agreements are found, and the maximum errors are respectively 0.7511% and
0.9911% produced by the right and the left eigenvectors. Thus, from the engineering point of view, it can infer that the
proposed method can produce good results by solving the repeated eigenvalue problem.

Additionally, to further validate the developed algorithm in comparison with the approximate method, two addi-
tional design variables (Δq= 0.050 (proportion of 0.050

2.5
= 2%) and 0.075 (proportion of 0.075

2.5
= 3%)) are chosen to calculate

the errors. As a result, the derivatives of the right and left eigenvectors are determined and presented in Tables S5–S8
in the SM for Δq= 0.050 and 0.075, respectively. The maximum errors between the exact and approximate eigenvec-
tors are observed to be 1.98% and 2.98% for Δq= 0.050 and Δq= 0.075, respectively. These computed errors consistently
increase as the design variables become larger, indicating that the proposed method in this manuscript consistently
yields errors within acceptable ranges. Therefore, the accuracy and efficiency of the present method can be considered
satisfactory.

T A B L E 6 Comparison of the right eigenvectors for the repeated eigenvalue problem of example 2.

DOF Eigenvector ussm

Eigenvector
derivatives 𝝏ussm∕𝝏q Eigenvector usschanged Eigenvector ̃usschanged Error (%)

1 0 0 0 0 0

2 0.0595 − 0.0595i −0.0064 − 0.0055i 0.0594 − 0.0594i 0.0594 − 0.0597i 0.3419

3 0 0 0 0 0

4 0 0 0 0 0

5 1.5606 + 1.7988i 0 1.5496 + 1.7848i 1.5606 + 1.7988i 0.7511

6 0 0 0 0 0

1 0.1191 − 0.1191i −0.0128 − 0.0111 0.1188 − 0.1188i 0.1188 − 0.1193i 0.3419

2 0 0 0 0 0

3 0.0595 − 0.0595i −0.0064 − 0.0055i 0.0594 − 0.0594i 0.0594 − 0.0597i 0.3419

4 3.1212 + 3.5976i 0 3.0992 + 3.5696i 3.1212 + 3.5975i 0.7511

5 0 0 0 0 0

6 1.5606 + 1.7988i 0 1.5496 + 1.7848i 1.5606 + 1.7988i 0.7511
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PHUOR and YOON 4703

T A B L E 7 Comparison of the left eigenvectors for the repeated eigenvalue problem of example 2.

DOF Eigenvector vssm

Eigenvector
derivatives 𝝏vssm∕𝝏q Eigenvector vsschanged Eigenvector ̃vsschanged Error (%)

1 0 0 0 0 0

2 0.0595 + 0.0595i 0.0194 + 0.0196i 0.0594 + 0.0594i 0.0599 + 0.0600i 0.9911

3 0 0 0 0 0

4 0 0 0 0 0

5 1.5606 − 1.7988i 0 1.5496 − 1.7848i 1.5606 − 1.7988i 0.7511

6 0 0 0 0 0

1 0 0 0 0 0

2 0 0 0 0 0

3 0.0595 + 0.0595i 0.0194 + 0.0196i 0.0594 − 0.0594i 0.0599 − 0.0600i 0.9911

4 0 0 0 0 0

5 0 0 0 0 0

6 1.5606 − 1.7988i 0 1.5496 + 1.7848i 1.5606 − 1.7988i 0.7511

F I G U R E 4 The finite element rotating shaft model of the turbocharger.

T A B L E 8 The geometrical parameters of the rotating shaft.

Element number 1 2 3 4 5 6 7 8 9 10 11 12 13

Length (mm) 3.4 4.5 15.2 6 7.1 9.5 12.65 16.15 3 11.2 6.6 9.6 3.3

Diameter (mm) 4.1 4.1 4.1 4.1 4.1 6 6 6 6 9.9 14.2 11 8

3.3 Example 3

The finite element rotating shaft model of the turbocharger,46 as illustrated in Figure 4, is used in this example. This rotor
model is an asymmetric damped system. The geometrical parameters of the model are tabulated in Table 8. The rotor
shaft is discretized into 13 Rayleigh beam elements which have 14 nodes in total and four degrees of freedom at each
node, and consequently, the number of DOFs in total is 64. The parameters of the rigid disks as an impeller are provided
at node 3 with the mass, the diametral inertia (Id), and polar inertia (Ip) by md = 1.3328e−2 kg, Id = 1.274e−6 kgm2 and
Ip = 2.156e−6 kgm2, respectively. In addition, at node 12, a turbine (rigid disk) is also installed with md = 4.3414e−2 kg,
Id = 3.136e−6 kgm2 and Ip = 5.88e−6 kgm2. Also, the same spring support coefficients of the bearing are given at nodes 7
and 9 with the stiffness kxx = kyy = 106 N∕m and damping cxx = cyy = 3 Ns∕m. The material properties of the rotor model
are Young’s modulus of 2.1e11 N∕m2 and density of 7800 kg∕m3. It is worth noting that the gyroscopic effects are included
in this finite element rotordynamic system, and the formulations of the Rayleigh beam and the rigid disk are available in
Appendix A, for the fixed reference system (for detail, you may refer to References 47, 48).

Figure 5 presents the Campbell diagram for the first 10 modes computed in this example. To establish this diagram,
the rotational speeds are applied from 0 to 5000 (Hz) with an increment of 500 (Hz). From the intersection of the for-
ward whirling (FW) mode lines with the 1P line in this diagram for the fixed reference system, the values of the critical
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4704 PHUOR and YOON

F I G U R E 5 Campbell diagram of the finite element turbocharger.

T A B L E 9 Computation of the eigenvalues and their derivatives.

Number of modes Eigenvalues 𝝀 Eigenvalues derivatives 𝝏𝝀∕𝝏q

1 −3.2577e − 1 − 1.7086e + 3i −5.2604e + 4 + 4.4617e + 7i

2 −3.2577e − 1 + 1.7086e + 3i −5.2604e + 4 − 4.4617e + 7i

3 1.7829e + 3 − 6.3080e + 2i −1.4825e + 8 − 4.6234e + 8i

4 1.7829e + 3 + 6.3080e + 2i −1.4825e + 8 + 4.6234e + 8i

⋮ ⋮ ⋮

57 −2.9933e + 1 − 1.0075e + 6i 2.3750e + 6 + 6.7780e + 8i

58 −2.9933e + 1 + 1.0075e + 6i 2.3750e + 6 − 6.7780e + 8i

59 −3.0201e + 1 − 1.0078e + 6i −2.2688e + 6 + 7.0625e + 8i

60 −3.0201e + 1 + 1.0078e + 6i −2.2688e + 6 − 7.0625e + 8i

speeds (ΩCr) of the first and second FW modes are respectively found at about 500 Hz and 3000 Hz (or 30,000 rpm and
180,000 rpm). And it is found that these computed results are in good agreement with the existing results produced by
Straub.46

To illustrate the computation of the eigensolution derivatives, the design parameters q to be the shaft diameter and
shaft length of each element are chosen, and the rotational speed value is selected at 2500 (Hz) (the central value of
rotating speed). It is worth noting that the modal superposition-based model order reduction40 is also applied with a total
basis of n = 30. Consequently, the dimension of the reduced DOF in the state-space equation is 2n = 60. Subsequently, the
eigenvalues and their derivatives are computed by using Equation (30b) and tabulated in Table 9. In addition, Tables 10
and 11 provide the right and left eigenvectors and their derivatives computed by employing Equations (40a) and (40b)
for the first eigenvalue (i.e., 𝜆1 = −3.2577e − 1 − 1.7086e + 3i), respectively. Moreover, the right and left eigenvectors and
their derivatives for 𝜆60 = −3.0201e + 1 + 1.0078e + 6i can also be calculated and respectively tabulated in Tables 12 and
13. Similarly, it is observed that the calculated results in Tables 9–13 are obeyed the normalization Equations (3a), (3b), and
(4a); and consequently, the normalization conditions are consistent. Moreover, numerical stability can also be achieved.

3.4 Example 4

A rotating simply supported shaft, which has a slenderness ratio of 0.148 as seen in Figure 6, is utilized to conduct
the sensitivity analysis in 3D finite element in the co-rotating reference system. Thus, the Coriolis effect is taken into
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PHUOR and YOON 4705

T A B L E 10 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.0871 − 0.6859i −2.3364e + 4 − 5.4131e + 4i

2 −0.1496 − 0.2971i 3.9338e + 4 − 3.0690e + 4i

3 0.0451 + 0.3549i −1.2428e + 4 + 4.4840e + 3i

4 −1.5328 + 0.0013i −7.1192e + 4 + 6.3546e + 1i

⋮ ⋮ ⋮

57 −0.0022 + 0.0418i 1.3571e + 1 − 1.2286e + 3i

58 0.0117 + 0.0001i 2.0116e + 3 + 4.2791e + 0i

59 −0.0006 − 0.0134i 1.5680e + 0 − 2.3480e + 3i

60 −0.0033 + 0.0006i 3.8488e + 3 − 3.5513e + 0i

T A B L E 11 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 0.0766 − 0.1861i 6.1686e + 10 + 2.3290e + 11i

2 −0.1320 − 0.1021i −1.0337e + 11 + 1.0874e + 11i

3 0.0416 + 0.0223i 3.0865e + 10 − 1.0294e + 11i

4 −0.0626 + 0.0003i −2.2039e + 11 + 1.6014e + 9i

⋮ ⋮ ⋮

57 0.000 + 0.000i −1.0739e + 1 − 2.8748e + 3i

58 0.000 + 0.000i 2.6309e + 3 + 1.2355e + 1i

59 0.000 + 0.000i 4.5178e + 0 − 2.2497e + 3i

60 0.000 + 0.000i 3.4253e + 3 − 5.5766e + 0i

T A B L E 12 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆60.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.000 + 0.000i −2.6951e − 5 + 4.2669e − 4i

2 0.000 + 0.000i −1.7491e − 5 − 6.8841e − 4i

3 0.000 + 0.000i 3.7107e − 5 + 2.1854e − 4i

4 0.000 + 0.000i 9.8676e − 6 + 7.7419e − 4i

⋮ ⋮ ⋮

57 −0.0044 − 0.0001i −4.5762e + 3 + 4.8731e + 1i

58 0.0002 + 0.0038i 1.5387e + 2 − 7.6244e + 2i

59 0.5013 + 0.0001i 0.000 + 0.000i

60 0.0044 + 0.5236i 6.0543e + 3 + 4.7666e + 5i
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4706 PHUOR and YOON

T A B L E 13 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆60.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 4.3754 + 0.9066i −9.9582e + 6 + 3.3756e + 4i

2 2.7815 − 1.6520i −6.3670e + 6 + 1.5808e + 5i

3 0.6390 + 0.4974i −1.5292e + 6 − 1.7821e + 4i

4 −0.0185 − 5.0641i 2.0910e + 4 + 6.0758e + 5i

⋮ ⋮ ⋮

57 0.000 + 0.000i −6.6136e + 3 + 5.2235e + 1i

58 0.000 + 0.000i 3.4334e + 2 − 2.5161e + 2i

59 0.5013 − 0.0001i 0.000 + 0.000i

60 0.0039 + 0.4750i −7.5809e + 3 − 1.0259e + 6i

F I G U R E 6 A rotating simply supported shaft in 3D finite element analysis.

computation.40 The properties of the structure are Young’s modulus (Eshaft) of 2e11 N∕m2, the density (𝜌shaft) of 7800 kg∕m3,
Poisson’s ratio of 0.3, the length of the shaft (lshaft) of 1 m, and the radius of the shaft (Rshaft) of 0.2 m; consequently, the
slenderness ratio is 0.1. This structure, which is an asymmetric system, is meshed with 709 nodes and 160 elements (80
15-node pentahedron elements and 80 20-node hexahedron elements), and 2127 degrees of freedom (DOFs). To perform
the eigensensitivity analysis as well as verification of the responses of the model, the rotating speed is applied from 0
to 1000 Hz (0 to 60,000 rpm) with an increment of 200 Hz (12,000 rpm). In addition, the general equation of motion of
the rotating structure in the co-rotating reference system in the three-dimensional finite element used in this example is
given in Appendix B and the detail is found in References 40,49. It is also assumed that the simply supported boundary
condition is applied at both ends of the rotating shaft.

Figure 7 illustrates the Campell diagram of the rotating simply supported shaft and it is found that critical speeds
for the first and second forward whirling modes are respectively ΩCr = 749 and 2358 Hz, and ΩCr = 666 and 1950 Hz
are for the first and second backward whirling modes, respectively. Consequently, by taking the present solution as
the reference, the relative errors of the non-dimensional critical speed are −1.22%, and −5.32% for first and second
forward whirling modes, 0.29% and 2.6% for first and second backward whirling modes as compared to those com-
puted by Nelson48 by using Timoshenko beam theory, in which the non-dimensional critical speed is expressed by
[
𝜌shaftl2

shaftΩ
2
Cr∕

(
Eshaft ×

(
Rshaft∕2lshaft

)2
)]1∕4

.
In this example, to perform the eigensensitivity analysis, the density (𝜌shaft) of the rotating shaft is selected to

be a design parameter q, while the speed of the rotation is taken at 400 (Hz) (24,000 rpm). Moreover, the modal
superposition-based model order reduction, which is found to be an efficient technique to reduce the computational time
for solving the rotordynamic system,40 is also implemented with n = 70 in this example. Thus, the dimension of the system
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PHUOR and YOON 4707

F I G U R E 7 Campbell diagram of the rotating shaft.

T A B L E 14 Computation of the eigenvalues and their derivatives.

Number of modes Eigenvalues 𝝀 Eigenvalues derivatives 𝝏𝝀∕𝝏q

1 1.3379e − 7 − 2.0474e + 3i −0.0000 + 0.2917i

2 1.0051e − 5 + 2.0474e + 3i −0.0000 − 0.2917i

3 −2.3202e − 9 − 3.7912e + 3i −0.0000 + 0.1403i

4 2.8110e − 8 + 3.7912e + 3i 0.0000 − 0.1403i

⋮ ⋮ ⋮

137 −9.5002e − 11 − 6.5152e + 4i −0.0000 + 4.1884i

138 −8.6836e − 11 + 6.5152e + 4i −0.0000 − 4.1884i

139 1.5565e − 10 − 6.5681e + 4i 0.0000 + 4.2076i

140 −7.3933e − 11 + 6.5681e + 4i 0.0000 − 4.2076i

is reduced to 2n = 140. As a result, by employing Equation (30b), the magnitudes of the eigenvalues and the eigenvalue
derivatives can be computed as presented in Table 14. Furthermore, with the use of Equations (40a) and (40b), the right
and left eigenvectors and their derivatives for the first eigenvalue (i.e., 𝜆1 = 1.3379e − 7 − 2.0474e + 3i) can be determined
and provided in Tables 15 and 16, respectively. Likewise, for 𝜆140 = −7.3933e − 11 + 6.5681e + 4i, the right and left eigen-
vectors and their derivatives might also be calculated as given in Tables 17 and 18, respectively. Similar to the previous
examples, from the computed solutions in Tables 14–18, it is found that Equations (3a), (3b), and (4a) are conformed.
Therefore, the normalization conditions are consistent and the numerical stability of the system is successfully achieved.

3.5 Example 5

Another 3D finite element model of a shaft-disc-blade (SDB) assembly system, as illustrated in Figure 8, is also used to
calculate the eigensolution derivatives. The geometrical properties of this structure are given in Table 19 and the structure,
which is an asymmetric system, is generated with 45,685 nodes, 9504 elements (2160 15-node pentahedron elements and
7344 20-node hexahedron elements), and 137,055 DOFs. The material properties are Young’s modulus (ESDB) of 207.8 GPa,
the density (𝜌SDB) of 7806 kg/m3, and Poisson’s ratio of 0.3. To carry out the analysis of the eigensolution derivatives, the
rotating speed is applied from 0 to 1000 Hz (0 to 60,000 rpm) with an increment of 100 Hz (6000 rpm). It is noted that the
general equation of motion of the rotating structure in the co-rotating reference system in the three-dimensional finite
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4708 PHUOR and YOON

T A B L E 15 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.0000 + 0.0000i −4.5345e − 13 + 7.2893e − 14i

2 −0.0568 + 0.5196i 4.6918e − 13 − 1.6751e − 12i

3 0.5227 + 0.0000i 0.0000 + 0.0000i

4 0.0000 + 0.0000i −1.4232e − 14 − 2.4548e − 14i

⋮ ⋮ ⋮

137 0.0000 + 0.0000i +3.5124e − 18i

138 0.0000 + 0.0000i +9.5521e − 18i

139 0.0000 + 0.0000i −1.7613e − 18i

140 0.0000 + 0.0000i 4.8350e − 15 − 1.2314e − 14i

T A B L E 16 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 0.0000 + 0.0000i −3.0724e − 6 + 4.6894e − 7i

2 −0.0568 + 0.5196i 1.0508e − 5 − 2.9168e + 2i

3 0.5227 + 0.0000i 0.0000 + 0.0000i

4 0.0000 + 0.0000i −5.0255e − 9 + 1.2556e − 8i

⋮ ⋮ ⋮

137 0.000 + 0.000i +1.5478e − 17i

138 0.000 + 0.000i +6.2927e − 18i

139 0.000 + 0.000i −1.6761e − 17i

140 0.000 + 0.000i −8.4444e − 14 − 1.4715e − 13i

T A B L E 17 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆140.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.000 + 0.000i −3.1771e − 22i

2 0.000 + 0.000i +1.1100e − 26i

3 0.000 + 0.000i −2.7812e − 26i

4 0.000 + 0.000i −2.5588e − 19i

⋮ ⋮ ⋮

137 0.0000 + 0.0000i +2.5751e − 18i

138 0.0482 + 0.4273i −9.2229e − 18i

139 0.4300 + 0.0001i 0.000 + 0.000i

140 0.0000 + 0.0000i 4.6097e − 13 + 2.7355e − 13i
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PHUOR and YOON 4709

T A B L E 18 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆140.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 0.000 + 0.000i −3.3585e − 13 + 5.6555e − 13i

2 0.000 + 0.000i 2.3790e − 15 − 3.4879e − 19i

3 0.000 + 0.000i 1.0011e − 15 − 1.1145e − 18i

4 0.000 + 0.000i 3.4363e − 11 + 2.0390e − 11i

⋮ ⋮ ⋮

137 0.0000 + 0.0000i 1.0772e − 16 + 9.6699e − 17i

138 0.0482 + 0.4273i 2.0958e − 16 − 2.1680e − 4i

139 0.4300 + 0.0001i 0.000 + 0.000i

140 0.0000 + 0.0000i −3.8815e − 13 − 2.2958e − 13i

F I G U R E 8 A shaft-disc-blade assembly model in 3D finite element.

element is used in this example as seen in Appendix B and the detail is referred to References 40,49. In addition, it is
assumed that the simply supported boundary condition is applied at both ends of the structure.

Due to the large system, the model order reduction based on the modal superposition technique with the basis of
n = 80 is used. Thus, the dimension of the system in this example is reduced to 2n = 160. Consequently, the Campbell
diagram of the shaft-disc-blade system can be established as seen in Figure 9. It is observed that the critical speeds for
BW1, BW2, BW3, BW4, BW5, and BW6 modes (BW= backward whirling) are respectively found at 116, 220, 243, 500,
700, and 825 (Hz). Moreover, the critical speed for FW2 (FW= forward whirling) mode is found at 213 (Hz) or 12,780
(rpm). It is worth stating that the magnitudes of these critical speeds are computed and found to be agreed well with those
computed by Phuor and Yoon40 by employing the modal superposition-based model order reduction with a n = 60 basis.

Similar to Example 4, the density (𝜌SDB) of the rotating shaft-disc-blade (SDB) system is chosen to be a design parameter
q to conduct the derivative of the eigensolutions and the speed of the rotation is considered at 600 (Hz) (36,000 rpm) in this
example. Also, it should be noted that the fast assembly technique of the element matrices50 in the finite element method
combined with the parallel for-loop in Matlab is implemented. Accordingly, with the employment of Equation (30b), the
eigenvalues and their derivatives of the system might be determined and tabulated in Table 20. Additionally, similar to
the previous examples, for 𝜆1 = 9.2688e − 8 − 1.7924e + 3i, the right and left eigenvectors and their derivatives may be
calculated and given in Tables 21 and 22, respectively. In the same way, for 𝜆160 = 6.1889e − 9 + 4.9606e + 4i, the right
and left eigenvectors and their derivatives can also be computed as provided in Tables 23 and 24, respectively. Similar
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4710 PHUOR and YOON

T A B L E 19 Geometrical properties of the shaft, disc, and blade.

Structures (see Figure 8) Dimension (m)

Length Inner radius Outer radius

A 0.4 0 0.02

B 0.1 0.02 0.04

C 0.01 0.04 0.15

D 0.05 0.15 0.16

E 12@0.05 with the revolution of 6◦ 0.16 0.225

F I G U R E 9 Campbell diagram of a shaft-disc-blade system in 3D finite element.

T A B L E 20 Computation of the eigenvalues and their derivatives.

Number of modes Eigenvalues 𝝀 Eigenvalues derivatives 𝝏𝝀∕𝝏q

1 9.2688e − 8 − 1.7924e + 3i 0.0000 − 0.0863i

2 −6.9545e − 10 + 1.7924e + 3i 0.0000 + 0.0863i

3 −2.7295e − 7 − 3.2813e + 3i −0.0000 + 0.0307i

4 −1.5916e − 8 + 3.2813e + 3i 0.0000 − 0.0307i

⋮ ⋮ ⋮

157 −4.3042e − 8 − 4.9399e + 4i 0.0000 + 3.1223i

158 −5.0634e − 8 + 4.9399e + 4i −0.0000 − 3.1223i

159 5.5881e − 8 − 4.9606e + 4i 0.0000 + 3.0986i

160 6.1889e − 9 + 4.9606e + 4i 0.0000 − 3.0986i

to the aforementioned examples, from Tables 20 to 24, it is observed that Equations (3a), (3b), and (4a) are conformed;
consequently, numerical stability is well obtained with consistent normalization conditions.

3.6 Discussion on accuracy

Based on examples 1–2, it can be observed that the computed results obtained from the proposed method by not employ-
ing the second-order derivatives of the eigenequations exhibit errors of approximately 1% when compared to the results
generated by the approximate method for the proportion of the design variable magnitude of about 1%. Consequently,
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PHUOR and YOON 4711

T A B L E 21 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.0000 + 0.0000i 4.9462e − 10 − 1.2963e − 10i

2 0.0000 + 0.0000i −7.5451e − 9 − 5.5791e − 9i

3 0.0007 + 0.0013i −1.3596e − 8 − 2.0972e − 9i

4 −27.8334 + 39.7377i −2.1221e − 12 + 2.0205e − 10i

⋮ ⋮ ⋮

157 −1.1554 − 0.7952i −3.4547e − 5 − 3.9593e − 5i

158 −0.2660 − 1.3663i −1.2219e − 6 − 6.1989e − 5i

159 0.0409 + 0.0158i 4.3813e − 7 − 2.3050e − 7i

160 0.0060 + 0.0006i 5.4979e − 6 − 3.9324e − 6i

T A B L E 22 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆1.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 1.9650e − 6 − 6.3937e − 7i 2.0947e − 4 + 6.6559e − 4i

2 3.6046e − 4 − 1.1859e − 4i 0.0192 + 0.0303i

3 0.0007 + 0.0013i 0.0131 − 0.3226i

4 −27.8334 + 39.7377i −1.4950e − 4 − 9.8894e + 3i

⋮ ⋮ ⋮

157 0.000 + 0.000i −5.3637e − 5 − 1.1583e − 5i

158 0.000 + 0.000i −1.2522e − 5 − 2.0176e − 5i

159 0.000 + 0.000i 1.7225e − 6 + 2.4589e − 7i

160 0.000 + 0.000i 4.7504e − 7 − 3.8804e − 8i

T A B L E 23 Computation of the right eigenvectors and their derivatives for the eigenvalue 𝜆160.

Reduced DOF Right eigenvector 𝜼 Right eigenvalues derivatives 𝝏𝜼∕𝝏q

1 0.000 + 0.000i −1.0597e − 11 + 2.9517e − 12i

2 0.000 + 0.000i 5.0508e − 13 − 1.8455e − 13i

3 0.000 + 0.000i 1.3162e − 12 + 7.7910e − 13i

4 0.000 + 0.000i −2.1074e − 12 + 2.3698e − 11i

⋮ ⋮ ⋮

157 31.9806 + 0.0000i 0.0000 + 0.0000i

158 20.6571 + 17.8384i 6.5380e − 5 + 1.5593e − 4i

159 −5.7335 + 2.8326i 4.5913e − 4 − 2.9393e − 4i

160 1.6087 + 3.8662i −1.8549e − 4 − 4.3889e − 4i
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4712 PHUOR and YOON

T A B L E 24 Computation of the left eigenvectors and their derivatives for the eigenvalue 𝜆160.

Reduced DOF Left eigenvector 𝝃 Left eigenvalues derivatives 𝝏𝝃∕𝝏q

1 1.3169 − 0.3392i −2.2006e − 4 + 5.7611e − 4i

2 −5.9896 − 4.3899i 0.0110 − 0.0055i

3 −9.6333 + 17.1517i 0.0182 − 0.0119i

4 0.7333 − 1.0901i −0.0005 + 0.0034i

⋮ ⋮ ⋮

157 31.9806 − 0.0000i 0.0000 + 0.0000i

158 20.6571 + 17.8384i 0.0031 − 0.0163i

159 −5.7335 + 2.8326i 0.0157 − 0.0121i

160 1.6087 + 3.8662i −0.0070 − 0.0170i

the errors associated with the present method are higher than those reported in the method proposed by Wang and Dai,3
which introduces an additional normalization condition to extend the system of linear equations with nonsingular coef-
ficient matrices in conjunction with the second-order derivatives of the eigenequations. However, these present errors
remain within an acceptable range when compared to the method developed by Li et al.,1 which yields errors of around
1% by introducing a new normalization for the left eigenvector with the second-order derivatives of the eigenequations.
Furthermore, it is worth noting that some of the proposed techniques for computing eigensolution sensitivities did not
provide information on the accuracy or error of their respective techniques. Examples of such techniques include those
proposed by Adhikari and Friswell,13 Xu and Wu,2 Xu et al.,4 Wang and Yang,6 Wang et al.,5 and so forth.

In this paper, the verifications of computed results in Examples 3–5 for a large system are challenging to provide due
to several reasons. Firstly, the order of the eigensolutions can be shifted during the analysis, making it difficult to control
their orders. Secondly, maintaining the order of the eigensolutions proves to be a complex task. Thirdly, certain systems
exhibit non-zero derivatives of the eigenvector while the magnitude of the eigenvector (or its element) itself is zero, as
outlined in Li et al.1

As a consequence, it becomes evident that none of the previously published solutions for the derivatives of eigenval-
ues and eigenvectors have provided verifications of their methods on large systems.1–7 However, examples 3–5 clearly
demonstrate that the proposed method in this paper can successfully compute the derivatives of eigensolutions for large
rotordynamic structures. Notably, this method achieves accurate results without relying on second derivatives of the
eigenequations. Furthermore, it is versatile enough to be utilized in both fixed and co-rotating coordinate systems, incor-
porating the modal superposition (MS) method-based model order reduction technique. Therefore, the method proposed
in this paper offers a more efficient and cost-effective approach for computing eigensensitivity.

4 CONCLUSION

In this paper, a new algorithm has been proposed for computing eigensolution derivatives with distinct and repeated
eigenvalues for asymmetric damped systems, specifically focusing on rotordynamic systems. The proposed method elim-
inates the need for second-order derivatives of the eigensolutions and introduces two significant advancements. First,
new normalization conditions for the left and right eigenvectors are introduced ensuring consistency conditions through-
out the computational system. Second, the sensitivity problems are solved by employing the chain rule, offering a fresh
perspective compared to existing methods that rely on linear combinations of eigenvectors.

The Application of the chain rule for eigensolution sensitivity computation in this paper is unprecedented in the lit-
erature, as evident in Figure 1. This positions the developed method as an alternative to previous approaches utilizing
the chain rule. In addition, stability is successfully achieved by suggesting justifying Nelson16 technique on the basis
of the new normalization conditions. A key advantage of the present algorithm is its independence from second-order
derivatives of the eigenequations, setting it apart from existing methods. This greatly simplifies its implementation in
both analytical and numerical programs. Consequently, the developed approach significantly reduces computational
complexity and time requirements.
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PHUOR and YOON 4713

To validate the correctness and effectiveness of the proposed method, five numerical examples are presented demon-
strating the computation of eigensolution derivatives in displacement-space and state-space equations for damped
rotordynamic systems. Verifications are provided and found to be in reasonable agreement with the approximate method,
thereby highlighting the acceptable accuracy of the developed approach compared to some available solutions.

In conclusion, the proposed algorithm presents a major advancement in the field, offering a more efficient and
time-saving solution for computing eigensolution derivatives in asymmetric damped systems. Its novel approach utilizing
the chain rule and independence from second-order derivatives positions it as a valuable alternative to existing methods.
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APPENDIX A. FOR EXAMPLE 3

• The lagrangian equation of motion of the rigid disk with the constant speed restriction (Ω) in the fixed reference system
can be written as47

([
Md

T
]
+
[
Md

R
]) {

q̈d} − Ω
[
Gd] {q̇d} =

{
Qd}

where,

[
Md

T
]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

md 0 0 0
0 md 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

[
Md

R
]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 Id 0
0 0 0 Id

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

[
Gd] =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 Ip

0 0 Ip 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

[
̂Md

T

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 −md 0 0
md 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

[
̂Md

R

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 0 −Id

0 0 Id 0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

[
̂Gd

]
=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0
0 0 0 0
0 0 −Ip 0
0 0 0 −Ip

⎤
⎥
⎥
⎥
⎥
⎥
⎦

where, md is the disk mass, Id is the disk diametral inertia,
{

Qd} is the external force vector, and IP is the disk polar
inertia.

• The lagrangian equation of motion for the finite rotor element with the constant spin speed restriction (Ω) in the fixed
body system can be expressed as47

([
Me

T
]
+
[
Me

R
]) {

q̈e} − Ω
[
Ge] {q̇e} +

[
Ke

B
] {

qe} =
{

Qe}

where,

[
Me

T
]
= 𝜇l

420

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

156 0 0 22l
0 156 −22l 0
0 −22l 4l2 0

22l 0 0 4l2

54 0 0 −13l
0 54 13l 0
0 −13l −3l2 0

13l 0 0 −3l2

54 0 0 13l
0 54 −13l 0
0 13l −3l2 0

−13l 0 0 −3l2

156 0 0 −22l
0 156 22l 0
0 22l 4l2 0

−22l 0 0 4l2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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[
Me

R
]
= 𝜇r2

120l

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

36 0 0 3l
0 36 −3l 0
0 −3l 4l2 0
3l 0 0 4l2

−36 0 0 3l
0 −36 −3l 0
0 3l −l2 0
−3l 0 0 −l2

−36 0 0 −3l
0 −36 3l 0
0 −3l −l2 0
3l 0 0 −l2

36 0 0 −3l
0 36 3l 0
0 3l 4l2 0
−3l 0 0 4l2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
Ge] = 2𝜇r2

120l

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 36 −3l 0
36 0 0 −3l
−3l 0 0 4l2

0 −3l 4l2 0

0 −36 −3l 0
36 0 0 −3l
−3l 0 0 −l2

0 −3l l2 0
0 36 −3l 0
−36 0 0 −3l
−3l 0 0 l2

0 −3l −l2 0

0 36 3l 0
36 0 0 3l
3l 0 0 4l2

0 3l 4l2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
Ke

B
]
= EI

l3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

12 0 0 6l
0 12 −6l 0
0 −6l 4l2 0
6l 0 0 4l2

−12 0 0 6l
0 12 −6l 0
0 6l 2l2 0
−6l 0 0 2l2

−12 0 0 −6l
0 12 6l 0
0 −6l 2l2 0
6l 0 0 2l2

12 0 0 −6l
0 12 6l 0
0 6l 4l2 0
−6l 0 0 4l2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

[
̂Me

T

]
= 𝜇l

420

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 156 −22l 0
156 0 0 −22l
−22l 0 0 4l2

0 −22l 4l2 0

0 54 13l 0
−54 0 0 −13l
13l 0 0 −3l2

0 −13l 3l2 0
0 −54 13l 0

54 0 0 −13l
13l 0 0 3l2

0 −13l −3l2 0

0 156 22l 0
156 0 0 −22l
22l 0 0 4l2

0 −22l 4l2 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

where, 𝜇 is the element mass per unit length, l is the length of the shaft, {Qe} is the external force vector, and r is here the
radius of the shaft.

APPENDIX B. FOR EXAMPLES 4 AND 5

• The general equation of motion of the rotating structure with the constant speed restriction (Ω) in the co-rotating
reference system in three-dimensional finite element analysis can be written as40,49

M ⋅ r̈(t) + [Cd + Cc(Ω) + Cb(Ω)] ⋅ ṙ(t) + [Ke + Kc(Ω) − Ks(Ω) + Kb(Ω)] ⋅ r(t) = f (t)
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where,

M =
∫ ∫ ∫

Ve

[N]T[N]𝜌 ⋅ dVe

Cc(Ω) = 2Ω
∫ ∫ ∫

Ve

[N1]T
[

0 −1
1 0

]

[N1] 𝜌 ⋅ dVe

[Ke] =
∫ ∫ ∫

Ve

[B]T ⋅ [D] ⋅ [B] ⋅ dVe

[Ks(Ω)] = Ω2
∫ ∫ ∫

Ve

[N1]T [N1] 𝜌 ⋅ dVe

[Kc(Ω)] = Ω2
∫ ∫ ∫

Ve

[N2]T [N2] 𝜌 ⋅ dVe

Kb(Ω) and Cb(Ω) are respectively the stiffness and damping matrices induced by the bearing system. f(t) and C_d are
the external force vector and the structural damping, respectively. r(t), ṙ(t) and r̈(t) respectively denotes the vector of
displacement, velocity and acceleration responses of the rotordynamic system.
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