Computer-Aided Design 44 (2012) 1277-1296

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Constraint force design method for topology optimization of planar
rigid-body mechanisms

Gil Ho Yoon*, Jae Chung Heo

School of Mechanical Engineering, Hanyang University, Republic of Korea

ARTICLE INFO ABSTRACT
Arfic{e history: ) This study develops a new design method called the constraint force design method, which allows
Received 25 April 2011 topology optimization for planar rigid-body mechanisms. In conventional mechanism synthesis methods,

Accepted 11 July 2012 the kinematics of a mechanism are analytically derived and the positions and types of joints of a fixed

configuration (hereafter the topology) are optimized to obtain an optimal rigid-body mechanism tracking
the intended output trajectory. Therefore, in conventional methods, modification of the configuration or
topology of joints and links is normally considered impossible. In order to circumvent the fixed topology
limitation in optimally designing rigid-body mechanisms, we present the constraint force design method.
This method distributes unit masses simulating revolute or prismatic joints depending on the number
of assigned degrees of freedom, analyzes the kinetics of unit masses coupled with constraint forces,
and designs the existence of these constraint forces to minimize the root-mean-square error of the
output paths of synthesized linkages and a target linkage using a genetic algorithm. The applicability
and limitations of the newly developed method are discussed in the context of its application to several

Keywords:

Topology optimization
Rigid-body mechanism
Constraint force method

rigid-body synthesis problems.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This research presents a new mechanism synthesis method to
determine the optimal configuration of links, i.e., the topology,
including the joint type and optimal dimensions of rigid-link
mechanisms. Ever since the concept of topology optimization
(TO) was introduced, it has been applied to a large range of
engineering problems and has recently become an important
engineering tool [1-4]. Most recent and rigorous studies of TO
focus on applications toward multiphysics problems as well as
structural problems to optimize an objective that is subject to
several constraints based on the finite element (FE) method.
Among the many studies, TO of compliant and rigid mechanisms,
as shown in Fig. 1, has also been actively researched by
numerous scientists and engineers [1,4-19]. A number of studies
have been carried out to discover the optimal topologies for
compliant and rigid-body mechanisms by varying the material
properties of the finite elements or the connectivity information
of planar rigid-body mechanisms [5-19]. However, there are
few TO methods that can provide mechanisms consisting of
rigid links and joints as provided by conventional mechanism
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synthesis methods in the form of analytical formulations [18].
Therefore, to allow TO of rigid links for trajectory generation
problems, we present a new TO method called the constraint
force design method, which uses a genetic algorithm (GA) [20,
21]. In [21], using the planar truss representation and the branch
and bound method, the articulated mechanism is studied for path
generation.

Most publications on dimensional syntheses dealing with
path trajectory generation problems take an analytical approach
using kinematics equations [22-27]. Typically, several precision
positions on a target trajectory are first defined as reference
points or target positions. Then, by changing the positions of the
joints as well as the lengths of rigid links with a fixed topology,
an optimal rigid-body linkage that minimizes the gap between
the target positions and the current positions of a given design
is pursued. Indeed, existing mechanism synthesis methods have
limited workspace because of the fixed topologies of rigid-body
links. Therefore, performance analyses of several fixed topologies
appear to be essential. Furthermore, it is known that these
mechanism synthesis approaches can possess what is known as
prescribed timing conditions, which coordinate every position
with a given value at the given time and input parameter (often
an input angle or position).

To conduct the TO of rigid-body mechanisms dealing with
the trajectory generation problem, in this study we present a
new method called the constraint force design method, which
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Fig. 1. Topology optimization and the design of a compliant mechanism [1,4].

parameterizes the existence of artificial forces satisfying the length
constraints among masses with binary design variables, as shown
in Fig. 2. With the newly developed approach, we expect to explore
topologies satisfying given path trajectories. To implement this
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Fig. 4. Application of the length constraint method.

approach, we interpret unit masses as revolute or prismatic joints
and the artificial forces acting on the unit masses to impose the
relative lengths as rigid links. Unlike other mechanism synthesis
approaches, we perform kinetic rather than kinematic analyses
to analyze the positions of joints and links [28-34]. For the
optimization formulation, we devise an objective function that
minimizes the gap between the target trajectory and the current
trajectory of a design as well as the number of rigid links. To tackle
this optimization problem with many local optima effectively, the
existence of the aforementioned artificial forces, which implies
the existence of their corresponding links, is determined using a
GA[20].

In this paper, after describing the analysis of rigid-body
mechanisms using the Lagrangian formulation in Section 2, an
optimization formulation using binary design variables is studied
in Section 3. The employed GA is also described in Section 3. In
Section 4, several numerical examples of rigid-body mechanism
synthesis are presented to demonstrate the potential of the present
approach. Finally, our findings and topics for future research are
summarized and discussed.
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Fig. 2. Concept of the present TO for rigid-body mechanism design.
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Fig. 3. Concept of the force constraint design method applied to a four-bar linkage. (a) Conventional analytical approach, and (b) the force constraint design method.
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(b) a mechanism with no free degrees of freedom, and (c) the history of £ in the
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2. Rigid-body mechanism analysis using the Lagrangian formu-
lation

2.1. Concept of the constraint force design method

Designing rigid-body mechanisms for various path trajectories
has been an important and fundamental problem for many indus-
trial applications such as for medical devices, transportation, and
ordinary tool design [22-27]. Indeed, various mechanism synthe-
sis methods for discovering optimal rigid-body mechanisms have
been proposed. However, the majority of these methods are based
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Fig. 7. Design parameterization of the existence of artificial constraint forces.

on analytical and mathematical approaches that parameterize and
optimize the dimensions of rigid links including the positions and
types of joints; it is impossible to change configurations or topolo-
gies with these methods. From the perspective of optimization,
these kinds of analytical and mathematical approaches can be con-
sidered size- and shape-optimization methods that are highly fa-
vorable for structural optimization with fixed topologies. Despite
the vast amount of research on analytical approaches, studies ex-
ploring the optimal topologies of rigid-body mechanisms that give
the closest trajectory to the target trajectory remain rare. In our
opinion, if it were possible to discover optimal topologies for the
target trajectory, it would be easy to satisfy complex output tra-
jectories. To this end, in this study we newly develop the con-
straint force design method for optimizing the topology of planar
rigid-body mechanisms. One of the distinct features of this method
compared to existing mechanism synthesis methods is that kinetic
analyses of a given mechanism are carried out instead of calculat-
ing kinematic information.

The key ideas of the present constraint force design method are
that unit masses are represented as revolute or prismatic joints
depending on displacement constraints, and that the artificial
forces maintaining the relative lengths among the unit masses
are represented as rigid links. To illustrate the basic concept,
let us consider the trajectory simulation of the simplest four-
bar mechanism in Fig. 3(a), whose trajectory can be obtained
analytically. On the one hand, by rotating the driver (the left bar)
with a certain angular speed, the trajectory of the target point is
calculated by the guidance equation (kinematics) (Fig. 3(a)). On the
other hand, to simulate this four-bar mechanism using the present
approach, we first randomly distribute unit masses to simulate the
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Fig.6. A comparison between kinematic and kinetic analyses for the four-bar mechanism with 1, 2+/2 and 2 for its lengths. (a) The trajectory of kinetic analysis (the motions
of the unit mass of the crank are equally constrained in order to impose the rotation of the crack) and (b) the comparisons of the trajectories between the kinetic analysis

and the kinematics analysis.
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to-be-connected joints, as shown in Fig. 3(b). Here, nine masses are
distributed to simulate revolute joints without any displacement
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Illustrative example of the present method for two four-bar mechanisms.

or length constraints. Then, to mimic the four-bar mechanism of
Fig. 3(a), length constraints are imposed among these nine masses
during kinetic analysis. In other words, to simulate movements of
the joints of the four-bar rigid link, the auxiliary forces maintaining
the relative lengths, which are same as the actual lengths of the
links, are imposed in the solution procedure of Newton’s second
law. Such analysis methods with artificial forces for relative length
conditions are well established and many numerical methods
have been developed [28-34]. Among them, the SHAKE algorithm
based on the Lagrangian multiplier method is employed in this
study. With this kinetic analysis including the auxiliary forces, the
resulting trajectories of the masses are identical to the trajectories
we seek to emulate.

1 The basic concept of the above-mentioned method is identical to that
underlying the discrete element and molecular dynamics methods [29,30,34].
The differences among the methods lie in the fact that different potentials and
associated forces are applied. However, the same principle and numerical codes can
easily be transferred to from one method to another.



G.H. Yoon, J.C. Heo / Computer-Aided Design 44 (2012) 1277-1296 1281

Start

Initial population

Crossover

Mutation

Calculate fitness

itihirt

Stop criteria
satisfied?

Fig. 10. General procedure of the genetic algorithm.

2.2. Basic principle of the Lagrangian formulation

Newton’s second law.

The set of dynamic equations of masses with forces imposing
the relative lengths among masses can be described by Newton’s
second law using the Lagrange equation as follows [34]:

d -
(i=1,2,3,....0) (rj =1, — 1}, I =1; - Ty) M
L= %Zmif? —U®) @ =r-1), @
i

where L is the Lagrangian (the summation of kinetic energy and
potential energy). The position and velocity of the i-th mass are
denoted by r; and r;, respectively. The current distance vector and
the imposed relative distance between the i-th and j-th masses
are denoted by r; and dj;, respectively; the second power of the
length between the two masses is a scalar value rﬁ The number of
considered masses and the number of length constraints of the i-
th mass are denoted by n and Nl-RL, respectively. Furthermore, it is
assumed that each particle has a constant mass m. The Lagrangian
multiplier for the k-th length constraint is denoted by Ay in (1).
From the Lagrange equation above, the general equations
regarding the motion of each mass are obtained as follows:

mi;=fi+g (=1,2,3,...,n), (3)

where the forces applied to the i-th mass independently of the
other masses is denoted by f;, and the summed force acting on the
i-th mass from the length constraints is denoted by g; [28-34]. The
acceleration vector of the i-th mass is denoted by ;.

To solve the above equations numerically, the well-established
leap-frog method and the Verlet method are implemented. First,
the position vector at time t + h is expressed with the position
vector at time t through Taylor expansion:

Fi(t + h) = ri(t) + hiy(t) + (B2 /2)F(t) + O(h®), (4)

where the time integration step is denoted by h. The truncation
error after the third expansion is denoted by 0(h?). The velocity at

time t can be approximated by the position vectors at t + h and
t—h.
ti(t) = [Fi(t + h) — ri(t — h)]/2h 4 O(h%), (5)

where the truncation error is denoted by O(h?). Note that in the
employed approximation, the position vector at time t + h is
denoted by F;. Substituting (5) into (4) results in the following.

2
f,‘(t + h) = l',‘(t) + %f',‘(f + h) — %l‘i(t — h) + h?'l:i(t), (63)
1~~t h) = r;(t 1-t h hz"-t 6b
Erl( + )_rl()_irl( - )"‘51'1( ), (6b)
Bt + h) = 2r;(t) — ri(t — h) + W°¥F(0). (7)

Commonly, the higher-order error terms, i.e., 0(h%) and O(h?), can
be ignored and the position vector of the i-th mass can be written
using (3) as follows:

2
5i(t +h) = 2r;(t) — it — h) + %fi(t)- (8)

The above equation implies that it is possible to calculate the
position of the i-th mass at time t +h numerically using the location
attime t and t — h and the external force (or acceleration) at time t.
In the derivations above, we do not consider the length constraints
that simulate the constant lengths of rigid links. Indeed, we use the
upper tilt for the uncorrected position to distinguish the updated
position vector by (6) and (8) from the corrected position vector
that considers the length constraint condition.

Length constraint method: the SHAKE algorithm.

As stated in the preceding sections, in order to impose the
constant length condition among masses, the auxiliary force, g;,
must be calculated and imposed upon each mass. To calculate
these forces efficiently, the SHAKE algorithm is used. Through the
imposition of the length conditions, we can modify the uncorrected
position T; with g; (see [28-34] for more details). To explain the
basic concept of this method and algorithm, let us consider the
structure of Fig. 4.

We assume that the distance between the i-th and j-th masses
at time t is dj. In addition, the positions of the two masses at
time t + h are calculated by (8). However, because the positions
do not satisfy the length constraints, they must be corrected by
considering the length constraint or applying the forces, g;, at time
t + h, as shown in Fig. 4.

For the length constraint method, the current distance vector
between the i-th and j-th masses is set to r; = r; — r; and the
distance for the k-th rigid link is set to dj; as follows:

;= |r— rj\z =d; for the k-th rigid link. (9)

While solving Newton’s second law to update the position
of each mass, the length constraint described above should be
properly imposed using the Lagrangian multiplier in (1). To impose
this condition, we first define the scalar oy, as follows:

op=r,, —d . (10)
For the sake of clarity and convenience, the distance vector and
the distance for the k-th rigid link are denoted by r;,;, and d;;,,
respectively; to our knowledge, these are common notations. The
constraint force g; in (3) can then be written as follows:

NR
g = — Z)\.kaO‘k and (Vjo‘k = erj), (11)
k=G;

where C; is the set of the constraints directly involving r;. Eq. (8)
can then be corrected as follows:

- h?
ri(t +h)=r;(t+h) — — E A Vioy. (12)
m;
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For this numerical correction step, the Lagrangian multipliers methods to calculate these Lagrangian multipliers. In this study,
A¢ are unknown and determined. There are many numerical the heuristic SHAKE method is implemented. Note that the above
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simulation process is discrete with respect to time. Therefore, to
obtain the detailed trajectory of a given mechanism, a fine time
step, h, should be used.

In this update method, we modify (12) with a scalar & as
follows:

~ 2
ri(t+h) =1t +h) — Zigry(t),
m;

] " (13)
fj(f +h) = i“j(f + h) + ZESI'U(I)

Here, T; and 1; denote the uncorrected intermediate position
vectors of the i-th and j-th masses, and & is an auxiliary constant
replacing the Lagrangian multiplier. To discover the £ value that
satisfies the length constraint, the following conditions are re-
derived; the updated positions with constant & should satisfy the
length constraints.

- ~ - =2 2 =z 22

r,-zj = [ —1)?%, = (- r)?, T = ds (14)
From the above conditions, it is possible to derive a second-order
polynomial equation for &.

2
= &, (15)
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One solution of (15) is as follows:

. i —d; B 1 - d (16)
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Fig. 15. Parameter effects on the number of links in the solution. The effects of (a) population numbers and (b) the number of input displacement points.
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(b) the obtained design and (c) the comparison.

As expected, even by updating the position vectors with a
constant &, the length constraints are not satisfied because of
the assumption in (13). Therefore, several iterations of (13)-(16)
are in effect required. Furthermore, by simplifying the solution
of &, the following iterations can alternatively be used for the
heuristic update by replacing r; with r; and ignoring the constant
in (16).

Fi(t + h) = 2r;(t) — ri(t — h) + h2F:(t) (17)
1~'i(t+h) =T(t +h) —&ry(t), (18)
i‘j(f +h) = f‘j(t +h) + Srjj(t)
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After several iterations of (17)-(19), the corrected positions l:‘i and

I; become identical to the solutions of (12). There are also similar
approaches to add the rotation constraint among the unit masses.
These methods can be applied to model arbitrary shape rigid links
or constraint an angle between two rigid links. See [28] and the
references therein for more details.

To illustrate the behavior of the SHAKE algorithm, Fig. 5
considers two mechanisms that are simple but sufficient to show
the characteristics of the algorithm. The first is a standard four-
bar mechanism, and the second has an additional rigid bar. Given
this additional bar, the second mechanism clearly cannot move.
Using the implemented SHAKE algorithm, we rotate the left rigid
link 36°, simulate the motions of the remaining masses, and plot
the calculated £ in Fig. 5(c). Given that the locations of the masses
in the first mechanism rotate without any problem, the & values
of the three links converge to zero. In contrast, the £ value of
the additional bar of the second mechanism does not converge,
indicating that this is a singular point. During the optimization
process, when such non-convergences of £ are observed, we halt
the SHAKE algorithm and assign a very large value to the objective
function (21) for the GA.

To check the accuracy of the kinetic analysis compared with the
solution of the kinematic analysis, a simple four-bar mechanism
analysis is performed in Fig. 6. To impose the rotation motion of
the crank, the unit mass of the crank without the clamp condition
is constrained to follow the trajectory of the crank; for the sake
of illustration, six points equally divided are considered without
loss of generality. As shown in Fig. 6 and Table 1, the solutions of
the kinematic analysis are accurate. From an analysis point of view,
the kinetic analysis is expensive but it can still be used as a basis of
structural optimization for a rigid-body mechanism.

3. Binary topology optimization formulation for rigid-body
mechanisms

This section aims to parameterize the existence of the
constraint force and present an optimization formulation for
the GA with integer design variables. The most state-of-the-
art analytical approaches applicable to real mechanisms design
feature workspace limitations, due in part to the fixed topology of
the mechanism. Therefore, it would be convenient for a numerical
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Fig. 19. The extension of the design variables.
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relative displacement inputs, and prescribed target displacements of the four-bar mechanism, (c) a design obtained through the developed optimization procedure, and (d)

the actual movements of the design.

Table 1

The comparison between the kinematic and kinetic analyses of the four-bar mechanism.
Position 1 2 3 4 5 6
Kinematics (2,2) (1.3659, 1.8968) (0.8490, 1.6356) (0.5352,1.3617) (0.3984, 1.1979) (0.4,1.2)
Kinetics (2,2) (1.3659, 1.8968) (0.8490, 1.6356) (0.5351,1.3617) (0.3984, 1.1978) (0.4,1.2)

optimization algorithm to exploit and optimize the reachable design variable y; as follows (Fig. 7):

workspace by changing the topologies of the mechanisms. To 5

achieve this, the present study introduces integer design variables  T;(t + h) = Fi(t + h) — £r;;(t) v, (20)

that determine the existence of the artificial length constraint
forces among the masses in the SHAKE algorithm.

3.1. Parameterization of the existence of constraint forces

As stated in the preceding section, for the TO of rigid-body
mechanisms, it is essential to devise a proper parameterization
method for the existence of length constraint forces in (12).
We find that we can assign one design variable to each link.
By assigning a design variable with a value of 1 to the k-th
design variable, the effective constraint forces for the k-th length
constraint are applied to the corresponding masses. However,
if the k-th design variable is assigned a value of 0, then the
artificial constraint forces should disappear and the corresponding
masses should move freely without any constraints. To implement
this simple but effective feature numerically, we multiply the
constraint force for the k-th link by the design variable . Note
that because the values of & in (13) are different for each link,
parameterization of the magnitude of the artificial constraint force
as a standard density-based optimization is not allowed. For the
feature above, we multiply the k-th length constraint in (18) by the

B+ h) = (¢ + h) + Er(One

This simple parameterization of the auxiliary constraint forces
makes it possible to conduct TO of the rigid-body mechanism.

For an illustrative example of the realization of the rigid-body
mechanism in the present parameterization method, let us con-
sider the two rigid-body mechanisms in Fig. 8(a), (b). To model
these mechanisms, nine equally spaced unit masses are distributed
for the simulation of revolute joints. Without loss of generality,
the masses are indexed from 1 to 9 in Fig. 8(c). In this configu-
ration of indexed masses, 36 total connections or pairs are gen-
erated to simulate the rigid links. The links are also indexed as in
the table of Fig. 8(c); given that the locations of the unit masses
are fixed, there is a possibility that a rigid-body mechanism does
not exist. This is a limitation of the present method. By assign-
ing one design variable to each link, the total number of design
variables becomes 36 (9 x 8/2). After this assignment to rep-
resent the first four-bar mechanism (Fig. 8(c)), all design vari-
ables except y1, y15 and y35 are set to zero. In this configuration,
for the second node moving along the prescribed input trajec-
tory as a driver, the ninth mass precisely tracks the target tra-
jectory of the first four-bar mechanism. For the second four-bar
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Fig. 21. Synthesis of the second four-bar mechanism. (a) A reference four-bar mechanism, (b) a distribution of eight masses, relative displacement inputs, and prescribed
target displacements of the four-bar mechanism, (c) a design obtained through the developed optimization procedure, and (d) the actual movements of the design.

mechanism, all design variables except y», 141, and y3s are set to
zero.

Although the above-mentioned parameterization method can
describe arbitrary topologies, some limitations remain because of
the initial mass distribution. In other words, because the position
of each mass is determined by engineers or scientists before an
optimization process, it may not be possible to discover an optimal
topology for an arbitrary path trajectory as shown in Fig. 9. To
overcome this limitation, we can develop an adaptive method to
refine the positions of masses for future research topics. However,
as the aim of this study is to demonstrate the validity of the concept
for the first time, we concentrate on the validation of the present
method as applied to path trajectories for which a distribution of
masses exists.

3.2. Optimization formulation: GA

Given that the parameterization of the length constraint force
uses binary design variables, a genetic algorithm (GA) mimicking
the evolutionary process of nature may be one of the most suitable
algorithms for the optimization problem of present concern [20].
The overall process of the simple GA used in this study is presented
in Fig. 10.

To incorporate the GA into the optimization problem of interest,
a fitness function must be devised. We note that in the process
of discovering a rigid-body mechanism, we also seek to generate
syntheses of planar rigid-body mechanisms with fewer rigid links

at the same time. Thus, two objective functions are combined as
follows?:

Np N
? = Z ”rlljv - r((/t/,TargetH +o Z)/k, (21)
k=1

k=

where the k-th calculated trajectory of a work point of a given
design and the k-th target trajectory of the work point are denoted
by rf, and rﬁ,,trajectory, respectively; as we only consider the
displacements of unit masses, the speeds of the unit masses can
be chosen arbitrarily. The number of work points and the number
of design variables are denoted by N, and N, respectively. The first
term of (21) measures the differences between the path of the work
point and the target trajectory as shown in Fig. 11(a). Furthermore,
to minimize the usage of links, a second term with a scaling factor
of « is added. Without the second term, rigid-body mechanisms
with unnecessary branches are obtained as shown in Fig. 11(b).

3.3. An extension to design support

The developed optimization approach also can be extended to
identify the optimal locations of clamp boundary conditions. For

2 Although alternatively to the object in (21), we can consider the actual length

of links as follows. Alternative Object: @ = ;ji] Hr"jv - rﬁ,vmget ” +a Y vl
(where I is the length of the k-th link).
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Fig. 22. Local optima issue. (a) A given trajectory, (b) an obtained local optimum, and (c) a second local optimum.

this purpose, a design variable vector is added to the existing
design variable vector as follows:

Y=1[¥Y1- VYN, VN1 YNtm], (22)
——— ———

Link Boundary condition

where y, to yy are the design variables determining the existence
of each rigid link and yyn41 to ynim are the design variables
determining the clamp condition. The number of masses is denoted
by M. For illustrative purposes, consider the example in Fig. 12.
As shown in Fig. 12(a), by assigning 1 to yy+1 and yn49, the two
masses are clamped; hence, they can be considered as clamped
revolute joints. On the other hand, by setting yn.9 to zero, this
clamped condition can be removed as shown in Fig. 12(b). Thus,
by optimizing these additional design variables, it is possible to
identify optimal clamp conditions while designing the mechanism.
An extension to clamp one direction displacement can also be
considered without loss of generality.

4. Synthesis of two-dimensional rigid-link mechanisms

To validate the usefulness and performance of the developed
theory and numerical method in the preceding sections, the TO of
several syntheses of two-dimensional rigid-body mechanisms are
considered.

Example 1 (Synthesis of Four-bar Mechanism System). Four-bar
mechanism 1.

For the first numerical example, the simple four-bar link
mechanism shown in Fig. 13 is considered. Despite its simple
geometry, this mechanism can demonstrate the potential of the
developed optimization procedure for mechanism design. To
calculate the reference input and output trajectory points, the
revolute joint marked by (A) is first rotated counter-clockwise
and the trajectory points of joint (B) are recorded as shown. For
a numerical test, the ten marked points of work point B are
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Fig. 23. Synthesis of a four-bar mechanism with a triangular body. (a) A reference four-bar mechanism, (b) a distribution of 12 masses, relative displacement inputs, and
prescribed target displacements of the four-bar mechanism, (c) a design obtained through the developed optimization procedure, and (d) the actual movements of the

design.

established as the target points. For TO, nine unit masses are
uniformly distributed and the degrees of freedom of the bottom
two corner nodes are clamped. The total number of possible links
connecting these masses is 36; indeed a 36-bit array is generated
for the design variables. By applying the developed optimization
procedure, the four-bar mechanism in (c) can be obtained after 60
GA iterations. As shown in the figure, it is possible to obtain the
rigid-body mechanism successfully.

Fig. 14 shows the fitness curve and the intermediate layouts
during GA iterations. At around the 15th iteration, a design that
precisely tracks the target trajectory can be found with extra
branches or links. The remaining GA iterations remove these
unnecessary branches. As illustrated, the developed approach can
effectively discover the four-bar mechanism.

Fig. 15 shows the effects of the number of target trajectory
points in (21) and the population number in discovering the
optimal layout on the number of links. We can interpret the
convergence of the number of links to 4 as the convergence of
the GA populations to the solution. From this figure, it appears
that the increase in the number of target points accelerates the
convergence of the GA populations to the solution, although it
takes considerable computation time per GA iteration. We also
test the effect of population number, as shown in Fig. 15(b). As

is observed in other types of problem, increasing the number
of populations leads to better solutions in the GA framework.
Because the scaled sum of the number of links is added to the
norm of the distance differences in (21), the present optimization
algorithm is influenced by the choice of «. With a relatively large
value, it does converge to the zero-link mechanism, whereas, with
a relatively small value, some extra branches remain, as shown
in Fig. 16. Thus, some executions of trial by error should be
conducted to define a range of this value. Based on our numerical
tests, a range about one to several tens of the distance norm is
acceptable. Also because the present optimization algorithm is
based on the genetic algorithm, the computation time is increased
by the number of the design variables. To test this feature, we
extend the design domain of the Fig. 13 in Fig. 17. As shown,
by extending the design domain, the numbers of the design
variables are increasing exponentially. As a result, the optimization
time as well as the solution time is increased, as shown in
Fig. 17.

Effect of mass.

Until now, unit masses have been employed for the four-bar
mechanism design. To test the effect of the ratio of the masses on
optimization, the above four-bar mechanism is re-solved with the
different masses as in Fig. 18; the mass values of the four points are
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Fig. 25. Slider-crank mechanism. (a) A reference four-bar mechanism, and (b) a distribution of eight masses, relative displacement inputs, and prescribed target
displacements of the four-bar mechanism.

set to 10. It turns out that the change of the masses of the four-bar becomes large. Nevertheless, the resulting trajectory is the same.
mechanism does affect the SHAKE algorithm. Because the heavier Therefore, the same result can be obtained. Fig. 18 compares the
mass moves slowly, the iteration number of the SHAKE algorithm design iterations of each case.
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Fig. 26. Obtained designs for the slider-crank mechanism.

Parameterization of the locations of the unit masses.

As stated in Fig. 9, the initial distribution of the unit masses
is important in terms of the optimization and there is a high
possibility not to obtain the mechanism. To overcome this
limitation, it is possible to parameterize the locations of the unit
masses as follows:

Y=1I[y1- YN PN+1° - VN+mx2] (23)
— S —
Link Location variables
vi €[0,1] when1<y <N (24)

y; € [1,resol] whenN+ 1<y, <N+M x 2,

where y; to yy are the design variables determining the existence
of each rigid link and yn11 to Ynimx2 are the design variables
determining the locations of the masses. The number of masses is
denoted by M. The resolution of the locations is denoted by “resol”
in (24) in Fig. 19. With the above formulation, the unit masses can
move inside the small rectangular boxes around each mass with
equal “resol” abscissa.

To test this extension, the rigid-body mechanism in Fig. 20(a),
which is a modified four-bar mechanism, is considered as
a reference mechanism and evenly distributed masses are
considered in Fig. 20(b). To find this mechanism, the movements
of the masses are parameterized as in (24). Fig. 20(c) shows
the obtained design which is exactly the same as the design of
Fig. 20(a).

Four-bar mechanism 2.

As a second optimization example, we consider the synthesis

of another four-bar mechanism, shown in Fig. 21. Compared with

the trajectory of the first four-bar mechanism, we observe a
relatively complex trajectory. The initial mass distributions and
target trajectory points used for the GA are presented in Fig. 21(b).
As in the first example, dozens of iterations result in the optimal
rigid-body design shown in Fig. 21(c).

Local optima issue.

From several numerical tests, it is also possible to show
that the developed approach can identify many local optima
simultaneously using the advantages of multiple GA populations.
In contrast, only a single local optimum can be found in the
conventional TO theory based on a gradient-based optimizer; this
feature is regarded as its shortcoming. However, using the GA
framework, we can circumvent the local optima issue effectively
with the help of multiple populations. For example, we solve the
mechanism design problem of providing the target trajectory using
the input trajectory shown in Fig. 22(a), which is actually obtained
from the design of Fig. 22(b). After solving this optimization
problem with the newly developed approach, we obtain the two
solutions in Fig. 22(b) and (c). The target trajectory of the two
solutions precisely matches the target trajectory in (a), although
the layouts are different. In conclusion, it appears that we can
readily discover multiple solutions because of the peculiar solution
search characteristics of the GA.

Example 2 (Synthesis of Four-bar Link System with an Additional
Body). To consider the synthesis of a more complex mechanism,
syntheses of mechanisms with a triangular body are shown in
Figs. 23 and 24. Unlike the previous two examples, the optimiza-
tion algorithm must discover the upper triangular geometries as
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Fig. 27. Five-bar mechanism. (a) A reference five-bar mechanism, (b) a distribution of 16 masses, relative displacement inputs, and prescribed target displacements of the

five-bar mechanism and (c) an optimized layout.

well as the four-bar mechanisms. As in the first example, the
drivers marked by A are rotated and the trajectories marked by B
are established as the target trajectories (Figs. 23(a) and 24(a)). Af-
ter several hundred evolutions, the designs in Figs. 23(c) and 24(c)
are obtained.

Example 3 (Synthesis of Four-bar Link System with Prismatic and
Revolute Joints). To show the versatility of the developed algorithm,
a slider-crank mechanism with prismatic and revolute joints is
considered for the third numerical example (Fig. 25). To solve this
optimization problem, eight masses are distributed in total. With
the developed optimization procedure, the three designs shown
in Fig. 26 are obtained. As noted in the first numerical example,
multiple optimization results can be found as global optima.

Example 4 (Synthesis of Five-bar Mechanisms (Two Degrees Mech-
anism)). By applying the present optimization algorithm, it is also
possible to synthesize complex mechanisms. To show this feature,
the five-bar mechanism with two degrees of freedom in Fig. 27 is
considered. Depending on the locations of the drivers, different tra-
jectories can be obtained. To find this mechanism, the configura-
tion of Fig. 27(a) is chosen as a reference mechanism. By applying

the developed approach, the optimum solution in Fig. 27(c) gener-
ating the trajectory of Fig. 27(b) is found. This example shows that
the present optimization algorithm can solve mechanism synthe-
sis problems with multiple degrees of freedom.

Example 5 (Synthesis of a Sine Curve Generation Mechanism). As
another four-bar example, this example considers the synthesis of
a sine curve generation mechanism as shown in Fig. 28(a). As in
the previous example, one left link is chosen as the crank and an
optimal layout generating the subsection of the sine curve shown
in Fig. 28(b) is the pursuit. As shown, using the present approach,
it is possible to find a design generating the sine curve in Fig. 28(b)
and (c).

Example 6 (Synthesis of a Peaucellier-Lipkin Linkage Mechanism).
To show the validity of the present algorithm, the Peaucellier
mechanism shown in Fig. 29(a) is set as a reference design.
This mechanism is known as one of the popular mechanisms
transforming rotational motion into perfect straight line motion.
As shown in Fig. 29, the present algorithm can find this
Peaucellier-Lipkin linkage successfully without any difficulty.
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Example 7 (Synthesis of a Complex Linkage Mechanism). To show complex linkage mechanism in Fig. 30 is considered. The objective
the local optima characteristic of the present algorithm, the of the linkage mechanism is to transform the rotational motion into
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(c) an optimized layout and (d) the movement of the design.

up and down straight motion. To solve this optimization problem,
the movements of the reference linkage mechanism in Fig. 30(a)
are analyzed and are set as the input trajectory and the target
trajectory in the optimization process. Fig. 30(b) and (c) show the
used distribution of the unit masses and the obtained mechanism
which is different to (a) but follows the exact trajectory. As
explained in Example 1, the present algorithm can find another
local optimum mechanism easily.

Furthermore, it is recognized that many local optima can exist
by allowing the design of the boundary condition.? To test this
feature, the same trajectory problem is solved by allowing the
boundary design. Here, the design variables are extended as

Y=1[vi ¥ YN41- o YN4MD, (25)
—— ——

Link Boundary condition

where the number of design variables for the existences of the
artificial forces is N(=120) and the number of design variables

3 This was recommended by an anonymous reviewer.

parameterizing the type of the boundary condition is M(=32).
Fig. 31 shows the optimized layout. Here, it is noticed that the
location of the sliding boundary condition at the working point is
designed and that different clamp conditions are found.

Example 8 (Design Boundary Condition and Rigid Link). As men-
tioned already, the developed optimization algorithm can be easily
extended to design supports of rigid-body mechanisms by con-
sidering additional design variables in (22). To demonstrate this
feature specifically, a target mechanism with five used links is
considered in Fig. 32(a). The bottom left and bottom right joints
are clamped. The motion of the top right joint is recorded as the
target trajectory. To discover this mechanism, 20 masses in to-
tal are distributed in Fig. 32(b). Here, we set up the optimiza-
tion problem with only the bottom left mass clamped, as shown
in Fig. 32(b). Therefore, the optimization algorithm must find the
other clamp condition as well as the distribution of rigid links. In
this numerical example, the total number of links defined among
the 20 masses and the number of additional design variables for the
clamp condition are 190 and 19, respectively; hence, the number
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Fig. 31. A new linkage mechanism by additionally optimizing the boundary condition. (a) A reference linkage mechanism, (b) a distribution of 16 masses, the relative
displacement inputs, and the prescribed target displacements, and (c) a new optimized layout.

of design variables is 209. Using the developed algorithm with the
additional design variables, we can successfully discover the three
global optima in Fig. 32(c), whose trajectories precisely match the
prescribed target trajectory. As shown in the figure, the total num-
ber of links is 5 for both of the two designs whereas the number
of the links of the last design is 4. Not surprisingly, the first de-
sign is same as the design in Fig. 32(a). However, the second and
third may be difficult to discover through the intuition of an en-
gineer. It seems that the considered mechanism synthesis prob-
lem lacks convexity. This numerical example in particular reveals
that the additional parameterizations of the locations of the unit
masses and the boundary condition make the convexity issue seri-
ous. From a mathematical point of view the present optimization
problem has a lot of local optima and the present constraint force
deign method with a GA finds one of them.

5. Conclusions

In this paper, we present a new design method, called the force
constraint design method, as an alternative to existing mechanism
synthesis methods in generating rigid-body mechanisms for
output path generation. Although the size optimization of joint
positions and lengths of links of a fixed topology mechanism
synthesis is well studied, the black box approach finding an
optimal connection for rigid-body mechanism has seldom been
studied. To contribute to this research field, some new research

is proposed and presented in this paper. We perform kinetic
rather than kinematic analyses of the positions of revolute joints
or work points of rigid-body mechanisms to allow topology
optimization of rigid-body mechanism; strictly speaking, the
employed simulation approach indirectly calculates the motions
of rigid-body mechanism through kinetic analysis. This is one of
the key ideas presented in this paper. With this present procedure,
it is possible to find the optimal configurations of the rigid links
as well as the optimal support conditions. A limitations is that
the initial mass distribution limits the design space of the rigid
links; this is one of our future research topics. Unit masses are
used to represent joints or work points. The Lagrangian multiplier
method, which has already been developed for robot simulation,
DNA simulation, molecular dynamics, etc., is employed to present
rigid links and constraints among joints and work points. For
topology optimization, binary design variables with values of
zero or one are assigned to auxiliary pair forces between two
masses. By determining the binary design variables that minimize
the gap between the target trajectory and a current trajectory
of a given design, and minimizing the usage of links using a
simple genetic algorithm, optimal rigid-body mechanisms are
synthesized. To our knowledge, this kind of approach using the
Lagrangian multiplier method and genetic algorithms has never
been attempted previously. Given that simulations take little
time and genetic algorithms do not require sensitivity analysis
for the objective function, we can discover most optimal rigid-
body mechanisms very quickly and robustly, at least for the
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synthesis problems considered here. In a normal computational
environment, it takes one or two hours for the four-bar mechanism
problems and at most one day for the remaining problems.
However, the newly developed method has several limitations
that require further study. Because this is our first attempt
toward size, shape and topology optimizations of rigid-body
mechanisms with the present constraint force design method,
optimization examples that at least have optimal solutions have
been considered. If there is no rigid-body mechanism with given
target and input trajectories, the present approach has difficulties
in finding the optimal rigid-body mechanism. In order to solve
general optimization problems with arbitrary trajectories, other
complex and real mechanism conditions such as the positions of
linear or rotational actuators, the operation condition of actuators,
and the types of link should be considered in the future. In addition,
the existence of an optimum design for a general optimization
problem with arbitrary trajectory should be studied in the future.
Furthermore, it may be possible to develop mutation and crossover
schemes suitable for the output path generation problem.
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