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Abstract
This research develops a new topology optimization scheme for controlling the trajectory of particles considering contacts 
between particles and structure. Existing density-based topology optimization schemes struggle with accounting for particle-
rigid wall contact because of the discontinuous behavior and the non-smooth shape of topological design. To solve these 
challenging issues, this research introduces a new particle-rigid wall contact model and its application method for topology 
optimization. In addition, new constraints to manipulate the trajectories of a particle enabling it to pass through or avoid a 
specific point are developed. The sensitivity of an objective function related to the particle trajectory is derived by the adjoint 
approach. Several optimization examples are considered to demonstrate the ability to control the particle trajectories while 
accounting for the phenomena of the particle-rigid wall contact.

Keywords  Topology optimization · Particle-rigid wall contact · Particle analysis · Particle collision

1  Introduction

The aim of this study is to present a new topology optimi-
zation for controlling particle trajectories, especially con-
sidering particle-rigid wall interactions, as shown in Fig. 1. 
Density-based topology optimization encounters difficulties 
in accounting for contacts between particles and rigid walls. 
These challenges arise due to the discontinuous properties 
of contacts and the non-smooth contours resulting from 
topology optimization. To address these challenges, this 
study presents a model that utilizes the concept of springs 
with high stiffness for particle-rigid wall interaction. To 
incorporate this model into the topology optimization, the 
topological design is converted into a smooth rigid wall by 
mapping design variables to smooth and spatially continuous 
variables. The sensitivities of objective functions related to 
particle motions are analytically derived using an adjoint 
approach. Additionally, to effectively manage particle tra-
jectories, a constraint allowing particles to pass through or 

circumvent a designated point is introduced. Based on the 
above, a method for incorporating particle-rigid wall interac-
tions into topology optimization is studied.

Particle contact has been an area of extensive research. 
Various experimental studies have focused on the phenom-
enon of particle contact (Sommerfeld and Huber 1999; 
Joseph et al. 2001; Ardekani and Rangel 2008; Ardekani 
et al. 2009; Sommerfeld 2003; Wang et al. 2020; O’Regan 
et al. 2023). In Sommerfeld and Huber (1999), collisions 
between particles and various kinds of wall were experimen-
tally investigated. Moreover, particle-wall collisions have 
been studied across various types of fluids, including vis-
cous fluids (Joseph et al. 2001; Ardekani and Rangel 2008), 
viscoelastic fluids (Ardekani et al. 2009), and in turbulent 
flow (Sommerfeld 2003). Recent studies have focused on 
particle-wall collisions involving particles of various shapes 
(Wang et al. 2020; O’Regan et al. 2023). Meanwhile, many 
computational models and simulation methods for the par-
ticle-wall collision are studied and developed (Popp 2018; 
Kildashti et al. 2020; Cheon and Kim 2018; Gui et al. 2016; 
Craveiro et al. 2021; Campbell et al. 2000; Matuttis and 
Chen 2014; Meyer and Deglon 2011; Zhu et al. 2008; Pau-
lick et al. 2015). In Popp (2018), a computational method for 
analyzing contacts between solids and structures utilizing a 
nonlinear finite element approach is pioneered. In Kildashti 
et al. (2020), it is introduced a novel model for accurately 
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computing contact forces for super-quadric particles. In Gui 
et al. (2016), a new model for collision of non-spherical 
particles and rigid wall has been presented. In Craveiro et al. 
(2021), a new methodology to address contacts among rigid 
convex particles is developed, while an efficient numerical 
method to consider particle contact is proposed in Cheon and 
Kim (2018). Research presented in Campbell et al. (2000) 
focused on developing an algorithm for managing contacts 
in smoothed particle hydrodynamics. A popular technique in 
this field is the Discrete Element Method (DEM). In Matuttis 
and Chen (2014), detail methods to analyze particle contacts 
using the DEM are presented. A review of other models for 
particle collision can be found in Meyer and Deglon (2011). 
Moreover, in Zhu et al. (2008) and Paulick et al. (2015), 
review on the use of the DEM for simulating particle contact 
phenomena is provided. These studies highlight the diversity 
of methodologies explored in the study of particle contacts.

While numerous studies have delved into optimizations 
related to simulating the particle contact or using the DEM 
(O’Shaughnessy et al. 2022; Masoero et al. 2022; Balevičius 
et al. 2006; Chen et al. 2020), research focusing on the topol-
ogy optimization that incorporates particle-rigid wall con-
tact remains scarce. For instance, in Balevičius et al. (2006), 
a size optimization was conducted with considering the par-
ticle contact by using the DEM. In Chen et al. (2020), an 
optimization based on a response surface model obtained 
by the DEM analysis results was presented. Because the 
DEM is widely used in various fields including the structural 
analysis (Tavarez and Plesha 2007) and heat transfer (Peng 
et al. 2020), methodologies for the structural topology opti-
mization using the DEM was developed in O’Shaughnessy 
et al. (2022) and Masoero et al. (2022). However, to the best 
of our knowledge, research that integrates the particle-rigid 
wall contact with the topology optimization is not explored.

The topology optimization has experienced significant 
advancements across various fields, initially focusing on 
structural problems as introduced in Bendsøe and Kikuchi 
(1988), and later expanding into more complex fluid 
dynamics. Comprehensive reviews of the field have been 
documented in Sigmund and Maute (2013) and van Dijk 
et al. (2013). Following the introduction of fluid topology 

optimization in Borrvall and Petersson (2003), a various 
range of methodologies have been developed, addressing 
turbulent flow (Papoutsis-Kiachagias et al. 2011; Dilgen 
et al. 2018), fluid–structure interaction (Yoon 2010) and 
two-phase flow (Deng et al. 2017; Yoon and Kim 2023). A 
detailed review of previous studies is available in Alexan-
dersen and Andreasen (2020) and Lundgaard et al. (2018). 
More recently, studies presented in Yoon (2020), Andreasen 
(2020), Yoon (2022) and Choi and Yoon (2023a) have devel-
oped methods for controlling particles suspended in fluid. 
In Yoon (2020), Andreasen (2020), studies have pioneered 
topology optimizations aimed at controlling particles sus-
pended in fluids. Additionally, Yoon (2022) focused on 
optimizing particles suspended in transient fluid. Further-
more, Choi and Yoon (2023a) introduced an educational 
MATLAB code specifically designed for this purpose. This 
demonstrates that the considerable progress has made over 
the years in the field of the topology optimization.

This research focuses on considering the particle-rigid 
wall contact within the topology optimization. Despite of 
these advancements in this field, the topology optimization 
involving particles, especially considering particle-rigid wall 
contact, has been less explored. In this paper, the topological 
density is mapped into smooth shaped rigid wall to account 
for the particle-rigid wall contact in the topology optimiza-
tion. A simple spring model to compute the contact between 
particles and rigid wall which is firstly introduced in the 
author’s previous work (Choi and Yoon 2023b) is utilized 
for topology optimization to manipulate the trajectories of 
particles. Furthermore, a convenient constraint to effectively 
control the trajectory of the particle is developed. Although 
there have been numerous studies on simulating particles 
and optimization related to particles, the topology optimi-
zation for this specific problem remains less developed. 
This study attempts to solve this problem by incorporating 
particle-rigid wall contact into the framework of topology 
optimization.

The remainder of this paper is organized as follows: 
Sect. 2 introduces a model designed to simulate collisions 
between particles and rigid wall. Additionally, it discusses 
the method for transforming topological density into smooth 

Fig. 1   Topology optimization 
of the trajectory of a particle 
considering contact between the 
particle and rigid wall
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shaped rigid wall. Subsequently, the sensitivity analysis of 
arbitrary functions related to particle motion is performed 
using the adjoint equation, and new constraints are proposed 
to effectively control particle trajectories. Section 3 presents 
several numerical examples to demonstrate the possibilities 
of incorporating particle-rigid wall contact into the topology 
optimization. In Sect. 4, the conclusion with a summary of 
the paper and future works are provided.

2 � A new particle‑rigid wall contact 
for topology optimization

In this section, a new computational framework to simulate 
the motion of particle considering the collision between 
particles and rigid wall is developed; the collision phenom-
ena among particles are not considered. In the new com-
putational framework, the effects of the particle collisions 
are approximated using the contact forces of the springs as 
illustrated in Fig. 2 and the force exerted on a particle due 
to its collision to surface is determined using the penetra-
tion distance of the particle. In topology optimization frame-
work, the contact surfaces are determined by a continuous 
scalar function, �(x ) and a specific criterion ( �wall ). A new 
transforming process of the design variables to the contact 
surface is developed too.

2.1 � Governing equation for particle motion 
and a new contact force modeling

Newton’s second law for particle considering the gravity 
force as well as the contact force from wall can be written 
as follows:

where the mass and the velocity of particle are denoted by m 
and v , respectively. In the present research, the contact force 
in the field of the density is expressed as follows:

(1)
d

dt
(mv) = Fgravity + Fcontact, v =

dx

dt

 where the contact stiffness is denoted by k and � is a con-
tinuous scalar function to obtain an interface curve which 
will be covered in the next section. The gap in the normal 
direction between the particle position x(t) and the contact 
surface xc is denoted by � and the normal vector is n . A 
function, s(�) , is newly introduced to ensure that the con-
tact force is only exerted when a particle contacts on rigid 
wall structure. The new function for s(�) is defined with the 
S-shaped sigmoid function and the unit step function. Note 
that all the components of the contact force are related to the 
spatial density of the topology optimization �.

In the present research, the following procedures are 
developed for computing the contact force in Eq. (2). Firstly, 
the unit normal vector is derived from the fact that the gradi-
ent of � is perpendicular to the curve � = C , where C is a 
constant. Mathematically, this can be expressed as follows:

The distance in the normal direction between the contact 
surface position, xc , and the position of the particle, x(t) , is 
defined using the dot product of vectors, i.e., x(t) − xc , and 
−n as follows:

Assuming that x(t) is sufficiently close to xc , the density 
variables, � , near the contact surface, i.e., � ≈ �wall , can be 
approximated using the first-order Taylor expansion. Insert-
ing this equation concerning � into Eq. (4) gives the approxi-
mate value for � as follows:

(2)Fcontact = k �(x, �) s(�)n(�)

(3)n = −∇� ∕ ‖∇�‖

(4)�true = (x(t) − xc) ⋅ (−n) =
(x(t) − xc) ⋅ ∇�

‖∇�‖

(5)

� ≈ �wall +
��

�x
⋅ (x − xc)

� =
��

�x
⋅

x − xc

‖∇�‖ ≈ �approx

�approx =
� − �wall

‖∇�‖

Fig. 2   A particle-rigid wall 
contact model utilizing a spring 
and spatial variable �
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The main reason for this approximation is that using � 
directly requires computing xc which is obtained from the 
implicit equation �(xc) = �wall . In contrast, the approxima-
tion can be calculated directly from � . The approximated 
contact force can be derived by integrating both Eqs. (3) and 
(5) into Eq. (2) as follows:

where the function s(�) can be expressed through either sunit 
or sS-shape as detailed in the following equations.

where a is set to a sufficiently large number, 106 , to do not 
exert the contact force on the particles when they pass 
through the void region. Note that the above formulation in 

(6)Fcontact = k ⋅
�wall − �

‖∇�‖2 ⋅ ∇� ⋅ s(�)

(7)
sunit(𝜌) =

{
1, 𝜌 ≥ 𝜌wall
0, 𝜌 < 𝜌wall

sS-shape(𝜌) =
1

e−a(𝜌−𝜌wall) + 1

Eq. (6) with Eq. (7) is one of the new and important contri-
butions in this paper. The determination of a proper envelope 
of the pseudo rigid wall, �wall , should be addressed and the 
adjoint sensitivity analysis considering Eq. (6) should be 
developed further.

Figure 3 provides a simplified example to validate the 
accuracy of the approximated � in Eq. (5). To achieve that 
the curve, � = �wall , becomes a circle of radius R, a surface 
( � = 1 − 12.5((x − 0.5)2 + (y − 0.5)2) ) is used, as illustrated 
in Fig. 3a. Figure 3b shows the trajectory of the particle along 
the blue curve ( y = 13.44(x − 0.5)2 + 0.66, 0.45 ≤ x ≤ 0.55 ) 
which is the line where � is calculated. The location of a par-
ticle is represented by xparticle = (xparticle, yparticle) . Figure 3c 
compares the approximated � , i.e., �approx , with the true value, 
i.e., �true , where the true � in this example is computed by Eq. 
(8).

(8)�true = R − ‖xparticle − (0.5, 0.5)‖

Fig. 3   A simple example for comparing the approximated � with 
true value. a The spatial density function, � , b rigid wall and trajec-
tory of a particle ( �wall = 0.5 , R = 0.2 , Point1 = (0.45, 0.6936) and 

Point2 = (0.5, 0.66) ), c comparison between the approximation and 
true value of � and d contact force in y-dir ( Fy)



Topology optimization for particle trajectory control considering particle‑rigid wall… Page 5 of 22  217

where �wall and R are set to 0.5 and 0.2, respectively. In 
Fig. 3b, at Point1 (0.45, 0.6936) , the particle penetrates the 
rigid wall, while at Point2 (0.5, 0.66) , the largest discrep-
ancy between �approx and �true is observed. Figure 3d shows 
the difference in the forces with sunit and sS-shape . When sunit 
is used, particles do not experience the contact forces from 
the outside. In contrast, with sS-shape , the contact forces exist 
even if particles are outside the structure and this force is 
an attraction force. The numerical examples presented in 
this paper adopt a high value for k to minimize penetration, 
ensuring a physically reasonable solution.

2.2 � Deriving smooth shaped interface curve 
from the topological density

This section provides a method to derives the smooth shaped 
interface curve that refers to a curve which is smooth enough 
that there are no sharp bends and corners. To calculate the 
motion of particles with the present scheme, obtaining a 
smooth shaped interface curve is necessary. However, in the 
density-based topology optimization, the use of a structured 
mesh results in boundaries that are not smooth. To address 
this problem, an explicit smooth curve is generated by using 
the spatial density function, �(x).

Figure 4 highlights how to obtain the spatial density func-
tion, �(x) , used in the above developed formula where the ele-
ment-wise spatial density values, � , are the design variables. 

Note that it is not necessary to use element-wise design vari-
ables, as node-wise variables can also be used. However, since 
many previous topology optimization studies adopt the ele-
ment-wise approach, this study uses element-wise design vari-
ables for future integration with other fields (such as structural, 
fluid). To derive the smooth shaped interface curve which is 
crucial for the computing the contact force, the nodal variables 
are computed by averaging or interpolating the density values 
of the elements which has the corresponding node of interest. 
To obtain the spatial density function, �(x) , the nodal density 
is calculated by using Eq. (9) through Eq. (16). With the nodal 
density values, ρρρ , the spatial density function, �(x) , is defined 
using the shape function of the nine-node quadrilateral ele-
ment, N(x) , as shown in Fig. 4. With the criterion �wall , the 
smooth curve defining wall can be obtained as shown in Fig. 4.

To obtain the smooth shaped interface curve, the following 
process is presented. First, the design variables are filtered 
using a radius r(1)

min
 to impose a minimum length scale.

where �i represents the design variable, the subscript i ranges 
from 1 to NE , and 𝛾̄ is the density filtered variable. The term 
w
(k)

ij
 is defined as max(0, r

(k)

min
− dist(i, j)) , where dist(i, j) is 

(9)
𝛾̄i =

NE∑
j=1

w
(1)

ij
𝛾j

/ NE∑
j=1

w
(1)

ij
,

w
(1)

ij
= max

(
0, r

(1)

min
− dist(i, j)

)

Fig. 4   Procedure obtaining the smooth shaped interface curve of the rigid wall and the continuous topological density � from the element topo-
logical density � (the number of elements: NE, the number of nodes: nNode)
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the distance between i-th and j-th elements. After the density 
filtering, an S-shape function is applied, which is a common 
procedure in topology optimization to ensure a minimum 

length scale of the structure as discussed in previous studies 
(Zhou et al. 2015; Choi and Yoon 2024). A new variable ̄̄𝛾 
is then defined by Eq. (10).

Fig. 5   An example obtaining 
the continuous topological 
density � and the interface curve 
of the solid. a The detail proce-
dure ( lx = 1 , ly = 1 , �wall = 0.5 , 
�Δ = 0.1 , r(1)

min
= 2.5 pixels and 

r
(2)

min
= 15.5 pixels ), b the trans-

formation of the density from 𝛾𝛾𝛾 
to � and c the smooth rigid wall 
with the different radii of the 
density filtering ( r(2)

min
= 2.5, 5.5, 

10.5 and 15.5 pixels)
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where S(x) denotes the S-shape sigmoid function. The 
S-shape sigmoid function with parameters � for defining 
the slope and � for defining the shift is firstly introduced 
to topology optimization in Yoon and Kim (2003) and as 
follows:

where � and � are set to −4 and 0.5, respectively. As ̄̄𝛾 is 
obtained by using the S-shape sigmoid function, the values 
of ̄̄𝛾 at the boundary of the solid change abruptly. Since the 
gradient is needed for calculating the contact force in Eq. 
(6), the following smoothing is additionally applied and a 
new smoothed variables 𝛾̃ is derived using the following 
filtering with a radius r(2)

min
.

Note that the two steps can be combined by appropriately 
adjusting the parameters. However, in this paper, the param-
eters related to the minimum length scale and smoothness 
are utilized separately, providing more flexibility in control-
ling both aspects independently.

After obtaining the smoothed variables, the densities of the 
elements are mapped to nodal densities which are set to mini-
mize a squared difference between the element densities and 
the nodal densities. This can be formulated as a form of the 
optimization problem as follows:

where Error is the squared difference, ρρρ is the nodal density 
vector, �(x) is the spatial density, 𝛾̃e is the smoothed density 
of e-th element and Ωe is the domain of the e-th element. The 
squared difference, Error, and its derivative with respect to 
the nodal densities are obtained as follows:

where 𝛾𝛾𝛾 is the vector of the smoothed densities of the ele-
ments. M and Q are defined as follows:

(10)̄̄𝛾i = S
(
𝛾̄i
)

(11)S(x) =
1

e�(x−�) + 1

(12)
𝛾̃i =

NE∑
j=1

w
(2)

ij
̄̄𝛾 j

/ NE∑
j=1

w
(2)

ij
,

w
(2)

ij
= max

(
0, r

(2)

min
− dist(i, j)

)

(13)min
ρρρ

Error =

NE∑
e= 1

∫Ωe

(
𝜌(x) − 𝛾̃e

)2
dΩ,

(14)
Error = ρρρTMρρρ − ρρρTQ𝛾𝛾𝛾 +

NE∑
e= 1

∫Ωe

(
𝛾̃2
e

)
dΩ,

𝜕

𝜕ρρρ
Error = Mρρρ −Q𝛾𝛾𝛾 ,

where Ne is the shape function of eth element. In this paper, 
the second order elements consisting of 9 nodes are used. 
The nodal density is set to the value that satisfies the condi-
tion that the derivative should be zero (i.e. ρρρ = M−1Q𝛾𝛾𝛾 ). 
Then, by multiplying the shape function to the nodal densi-
ties ρρρ , the spatial density �(x) can be obtained by follows:

where N(x) represents the global shape function at position 
x . The dimensions of each component on the right-hand 
side are as follows: 1 × nNode , nNode × nNode , nNode × NE and 
NE × 1 where nNode refers to the number of nodes. Subse-
quently, using the above equation, the smooth curve defining 
the wall can be obtained. This curve is defined as the set of 
x such that the spatial density �(x) is equal to the constant 
�wall . The above process is derived from minimizing the error 
between element-wise and nodal design variables. However, 
alternative approaches can also be employed. For instance, a 
method based on PDE filtering can be utilized as discussed 
in Appendix 1.

An example of the above process is expressed in Fig. 5. 
The process of converting the design variable, � , to the spa-
tial density, � , is detailed in Fig. 5a. In this process, the 
design is smoothed and transformed into the final red out-
line. In Fig. 5b, the smoothed density, 𝛾̃ , is converted into 
the continuous spatial density, � , using the minimization 
problem formulated in Eq. (13). The amount of smoothing 
can be controlled by the radius of the density filtering, r(2)

min
 , 

as shown in Fig. 5c.

2.3 � Sensitivity analysis with particle‑rigid wall 
contact

To compute the sensitivity of an arbitrary function c com-
posed of the position, velocity, and acceleration of the par-
ticle, the Lagrangian L is defined as follows:

where the Lagrange multiplier is denoted by � . Differentiat-
ing this equation yields the following.

(15)

M =

NE∑
e= 1

(
∫Ωe

NT
e
Ne dΩ

)
,

Q =
[
Q1 Q2 ⋯ QNE

]
,

Qe = ∫Ωe

NT
e
dΩ,

(16)𝜌(x) = N(x)M−1Q𝛾𝛾𝛾

(17)L = ∫
tf

0

c(x, ẋ, ẍ) dt + ∫
tf

0

𝜆T(mẍ − F) dt,
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where the design variable of the eth element is denoted by 
�e . Note that the function c is only dependent on the position, 
velocity and acceleration of the particle. Using the chain 
rule, the function c is differentiated as the sum of three 
terms: the derivatives of c with respect to the position, veloc-
ity, and acceleration and the product of the derivative of each 
variable with respect to the design variable. The derivative 
of the force from mainly formulated with the contact force 
along the contact surface acting on the particle, F , can be 
computed as:

Substituting the above equation into Eq. (18) and applying 
the integration by parts result in the following equation.

(18)

dL

d𝛾e
= ∫

tf

0

(
d

d𝛾e
c(x, ẋ, ẍ) + 𝜆T

d

d𝛾e
(mẍ − F)

)
dt

= ∫
tf

0

(
𝜕c

𝜕x

dx

d𝛾e
+

𝜕c

𝜕ẋ

dẋ

d𝛾e
+

𝜕c

𝜕ẍ

dẍ

d𝛾e

)
dt,

+ ∫
tf

0

(
m𝜆T

dẍ

d𝛾e
− 𝜆T

dF

d𝛾e

)
dt,

(19)
dF

d�e
=

�F

�x

dx

d�e
+

�F

��e

The partial derivatives of the force F with respect to x and 
�e are as follows:

Since the derivative of a constant force such as �gravity is 
zero, only the derivative of the contact force �contact given in 
Eq. (6) is required. The partial derivatives of this force with 
respect to � and ∇� are as follows:

(20)

dL

d𝛾e
=

[(
𝜕c

𝜕ẋ
−

d

dt

(
𝜕c

𝜕ẍ

)
− m𝜆̇T

)
dx

d𝛾e
+
(
𝜕c

𝜕ẍ
+ m𝜆T

)
dẋ

d𝛾e

]tf
0

+ ∫
tf

0

(
𝜕c

𝜕x
−

d

dt

(
𝜕c

𝜕ẋ

)
+

d2

dt2

(
𝜕c

𝜕ẍ

)
− 𝜆T

𝜕F

𝜕x
+ m𝜆̈T

)
dx

d𝛾e
dt

− ∫
tf

0

(
𝜆T

𝜕F

𝜕𝛾e

)
dt

(21)

�F

�x
=

�F

��

��

�x
+

�F

�∇�

�∇�

�x

�F

��e
=

�F

��

��

��e
+

�F

�∇�

�∇�

��e

(22)

�F

��
= k

∇�

‖∇�‖2
��

�wall − �
�ds(�)

d�
− s(�)

�

≈ −
k s(�)∇�

‖∇�‖2

Fig. 6   The distance between 
the particle trajectory and the 
target point xo . a The distance 
between the position of particle 
at each time and the target point 
xo and b the minimum distances 
for different particle trajectories

Fig. 7   Problem definition for 
comparing the adjoint sensitiv-
ity and the sensitivity obtained 
by the finite difference method 
and the analysis result (particle: 
v0 = (−1, 1) m/s , tf = 0.3 
s , k = 106 N/m and wall: 
�wall = 0.5 , r(1)

min
= 2.5 pixels , 

r(2)min = 11 pixels)
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In the above equation, the term, 
(
�wall − �

)
ds(�)

d�
 , is neglected 

as the term 
(
�wall − �

)
 becomes small when � is near the 

outline of �wall and the term ds(�)
d�

 becomes small when � has 
a distance from �wall.

where ∇�∇� denotes the dyadic product of the vector ∇� 
with itself.

From Eq. (20), the subsequent adjoint equation is derived.

(23)
�F

�∇�
= k

�
�wall − �

�
s(�)

�
I

‖∇�‖2 − 2
∇�∇�

‖∇�‖4
�

Fig. 8   Comparison of the adjoint sensitivity and the sensitivity obtained by the finite difference method (FDM) of the y-position of the particle 
at t = tf
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By solving Eq. (24) with the time reversal scheme and using 
� which satisfies the adjoint equation, the sensitivity can be 
determined as follows:

The Newmark method is employed as the numerical tech-
nique for time integration. The accuracy of the analytical 
sensitivity is validated in the numerical example.

2.4 � New constraints for trajectory control

In this section, a new constraint is developed to effectively 
control the trajectory of the particle. This constraint is based 
on the concept of the minimum distance between a certain 
point and the trajectory of the particle. The distance between 

(24)

𝜆̇T(tf ) =
1

m

(
𝜕c

𝜕ẋ
−

d

dt

(
𝜕c

𝜕ẍ

))

𝜆T(tf ) = −
1

m

𝜕c

𝜕ẍ

𝜆̈ −
1

m

(
𝜕F

𝜕x

)T

𝜆 =
1

m

(
−
𝜕c

𝜕x

T

+
d

dt

(
𝜕c

𝜕ẋ

)T

−
d2

dt2

(
𝜕c

𝜕ẍ

)T
)

(25)
dL

d�e
= −∫

tf

0

(
�T

�F

��e

)
dt

a certain point x0 and the position of the particle x(t) at an 
arbitrary time t is given by:

The minimum of this distance, represented as dmin in Fig. 6a, 
can be approximated using the p-norm as follows:

If this value is sufficiently small, as illustrated in Fig. 6b, it 
implies that the particle passes through the point x0 . Con-
versely, a large value indicates that the particle does not trav-
erse through that point. Using these properties, constraints 
can be imposed to make the particle pass through or avoid a 
specific point. Mathematically, the following function serves 
as the constraint:

where g(x, x0) denotes the approximated minimum distance 
between the point x0 and the particle’s trajectory.

To determine the sensitivity of this function, the formula 
introduced in Sect. 2.3 is employed. To apply the equation 

(26)d(t) = ‖‖x(t) − x0
‖‖, 0 ≤ t ≤ tf

(27)dmin ≈

(
∫

tf

0

d(t)−p dt

)−1∕p

(28)g(x, xo) =

(
∫

tf

0

‖‖x − xo
‖‖−p dt

)−1∕p

Fig. 9   Example 1. Problem definition for controlling a particle to 
pass specified points. a The problem definition (particle analy-
sis: tf = 0.8 s , Δt = 2 × 10−5 s , k = 106 N/m and target points: 
point1 = (1.1, 0.6) and point2 = (1.1, 0.4)) and b the initial topo-

logical density and the wall ( �wall = 0.5 , r
(1)

min
= 2.5 pixels and 

r
(2)

min
= 15.5 pixels)
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from Sect. 2.3, the function g is modified to f (x, x0) and by 
substituting c with the appropriate function, the derivative 
of f can be obtained as follows:

The derivative of f is obtained by solving the adjoint equa-
tion with the time reversal scheme. Using the chain rule, 
the derivative of g with respect to � is then determined as 
follows:

(29)

f (x, xo) = ∫
tf

0

‖‖x − xo
‖‖−p dt

cg(x) =
‖‖x − xo

‖‖−p
�cg

�x
= −p ⋅ cg

1+
2

p

(
x − xo

)

(30)
dg

d�e
= −

1

p

(
f
−

1

p
−1
) df

d�e

Several examples using such constraints for the particle to 
pass through or to bypass a particular point are provided in 
Sect. 3.

3 � Numerical examples

In this section, numerical examples of the topology opti-
mization considering particle collisions using the method 
introduced in this paper are provided. The Newmark scheme 
( � = 1∕6, � = 1∕3 ) is utilized for the simulation of the tran-
sient particle motion. Firstly, to validate the accuracy of the 
sensitivity analysis presented in this study, it is compared 
with the numerically computed sensitivity. Subsequently, 
three optimization problems are addressed using the MMA 
(Method of Moving Asymptotes) as the optimization algo-
rithm (Svanberg 1987).

Fig. 10   Optimization results of Example 1. a An optimization result with the constraint of passing through point 1 rendered by green color only 
and b an optimization result with the constraint of passing through both points 1 and 2
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3.1 � Sensitivity analysis

Before proceeding with numerical examples considering 
particle-rigid wall contact, the present sensitivity analysis 
is validated by comparing it with the numerical sensitivity 
obtained by the finite difference method (FDM). Figures 7 
and 8 consider the sensitivity of the final position of the 
particle when the particle contacts twice. The position of the 
particle at the final time is obtained as follows:

The final position in y-direction, yf  , is used for the objective 
function to compare the sensitivities in this example. The 
entire mesh is constructed as 100 by 100 and the time steps 

(31)
(
xf , yf

)
= ∫

tf

0

ẋ dt

are set as intervals of 5 × 10−6 s, 1 × 10−6 s and 5 × 10−7 s, 
respectively. The initial velocity of the particle is (−1, 1) 
m/s and the final time tf  is set to 0.3 s. With the lowest time 
step (i.e., 5 × 10−7 s), the two functions for interpolating the 
force exerted on the particle by the rigid wall (the S-shape 
function, sS-shape , and the unit step function, sunit , in Eq. (7)) 
are compared. Consistent with previous particle topology 
optimization studies, the sensitivity results with smaller 
time step are more accurate. However, when the time step 
becomes excessively small, there are problems of the accu-
mulation of numerical errors and long computational time. 
As summarized in Fig. 8, even if the time step Δt is not suf-
ficiently small, the trend of the adjoint sensitivity is gener-
ally consistent to the sensitivity results by FDM. To obtain 
the accurate sensitivity and save the computational costs, 

Fig. 11   The optimization 
histories of Example 1. The 
optimization histories of the 
problems with the constraint of 
passing through a point 1 only 
and b both points 1 and 2

Fig. 12   An optimization result of Example 1 with the contact force interpolated by sS-shape function. a An optimized layout and b optimization 
history
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the selection of an appropriate time step size is necessary. 
When calculating the force, there is no significant differ-
ence between using the S-shape function ( sS-shape ) and the 
unit step function ( sunit ) for computing the force. However, 
using the S-shape function with high parameter can cause 
the numerical problems. Therefore, the unit step function is 
utilized in the interpolation of the contact force in the rest 
of the examples, unless otherwise noted.

3.2 � Example 1: Controlling particle to pass specified 
points

For the first example, topology optimization involving the 
particle collision is performed using the present sensitivity 
analysis. The analysis domain is set as Fig. 9a. The objec-
tive function is to set as the x or y position of particle and 
the constraint presented in Sect. 2.4 is employed to ensure 
that particle of interest passes through designated points or 
locations. This example solves two optimization problems. 
The first optimization problem is to find out an optimized 

wall making particle pass through the point 1 only while 
minimizing the x location at the final time. The second 
problem is similar to the first example except that the opti-
mization formulation imposes the condition that a parti-
cle should pass the two points or locations marked by the 
green circles in Fig. 9b. The point and the locations of the 
point are designated to find out an optimized and smoothed 
reflecting wall. The particle starts at the position (0.5, 0.3) 
and the area near the initial particle position is excluded 
from the design domain to avoid for the particle to locate 
in the inner region of the solid initially. The initial design 
variables are set to 0 and 1 in Fig. 9(b: left). These initial 
variables result in the smooth rigid wall shown in Fig. 9(b: 
right). Creating a reasonable initial structure is crucial to 
perform the optimization because the sensitivity values 
of the parts away from where the particle contact occurs 
approach zero.

The optimization formulation of this example is set as 
follows:

Fig. 13   Initial design and optimization result for Example 1 with a different initial design. a An initial design, b optimized result and c optimiza-
tion history
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where x(1)target
 and x(2)target

 denote the points 1 at (1.1, 0.4) and 
2 at (1.1, 0.6), respectively. The objective function xf  is the 
x-direction position of the particle at time tf  and the � is set 
as 0.01. The time tf  is 0.8 s and is discretized into 40,000 
steps. The design domain in Fig. 9a is discretized into 200 
by 100 elements. This example solves the problem for the 
two cases: one with one constraint (i = 1) and another with 
the two constraints (i = 1, 2) . The range for the design vari-
able �e is from 0 to 1. In each iteration in the optimization 
process, the changes in the design variables is restricted 
lower than 0.05. The force exerted on the particle by the 
wall is interpolated using Eq. (6), where the unit step func-
tion is utilized for the function s(�) . The initial position x0 
and velocity v0 of the particle are set as (0.5, 0.3) m and (1.5, 
0) m/s, respectively. The gravity force is not considered in 
this example.

By solving these optimization problems, the designs in 
Fig. 10 for the particle to pass through the desired points 
are obtained while xf  is minimizing as Fig. 10. In Fig. 10a, 
the design is obtained to pass through one point, while in 
Fig. 10b, the particle passes through two points. The objec-
tive values of each of the designs are 0.6009 and 0.7097, 

(32)

Minimize
𝛾

xf ,

subject to mẍ = Fcontact(x, 𝛾),

g(x, x
(i)
target

) ≤ 𝜀,

0 ≤ 𝛾e ≤ 1 (e = 1, 2, ⋯ , NE),

respectively. The higher optimization value is caused by the 
smaller feasible region when two constraints are imposed. In 
the optimized results, changes in design occur exclusively in 
the areas adjacent to the contact points because the sensitivi-
ties have non-zero values only near the contact points. Fur-
thermore, the results indicate that the target points become 
the contact points. This makes sense because, to minimize 
xf  , the particle should turn to the left as quickly as possible 
after passing through the contact points. The optimization 
history is illustrated in Fig. 11, where both the objective 
and constraint functions are depicted. For the constraints, 
the plot shows the left-hand side (LHS) value minus the 
right-hand side (RHS) value of the constraint. When mul-
tiple constraints are employed, the maximum value of LHS 
minus RHS (which should be less than zero) is plotted. In all 
remaining examples, constraints are plotted in this manner.

Furthermore, the optimization problem in Fig. 10a is 
additionally solved by using two different methods. In 
the first method, the contact force is interpolated using 
the S-shape function. The optimization result, shown in 
Fig. 12, is nearly identical to the previous result obtained 
using the unit step function, as shown in Fig. 10a. In the 
second method, optimization is performed with a differ-
ent initial design, as shown in Fig. 13a. Since present 
methodology can be influenced by the initial design, it is 
important to evaluate the performance with various initial 
design. The optimization results and history are provided 
in Fig. 13b, c, respectively. Although the overall geometry 

Fig. 14   Example 2. A trajectory optimization to avoid target points. a 
The problem definition (particle analysis: tf = 0.8 s , Δt = 5 × 10−6 s , 
k = 106 N/m , g = (0,−9.81)m/s2 , the points to avoid: (0.3, 0.3), 

(0.5, 0.3), (0.7, 0.3), the point to pass through: (1, 0.5), rigid wall: 
�wall = 0.5 , r(1)

min
= 2.5 pixels and r(2)

min
= 15.5 pixels ) and b the initial 

topological density and the initial rigid wall
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differs from Fig. 10a, the collision location and the angle 
of the collision surface are similar. These examples con-
firm that the present methodology can control the trajec-
tory of the particle to pass the specific points.

3.3 � Example 2: Trajectory optimization to avoid 
target points under gravity

This example focuses on designing rigid wall that ensures 
a particle avoids specific points while considering both 
collisions and gravitational effects. By setting constraints 
to be larger than a specific value based on Eq. (28) from 
Sect. 2.4, particle trajectory can be optimized to avoid 
designated points. Additionally, the constraint that ena-
bles the particle to pass through a desired point is also 
employed. The desired points to pass through and to avoid 

are represented by a green circle and red crosses, respec-
tively, in Fig. 14a. The point to pass through is located 
at (1, 0.5) and the points to avoid are set at (0.3, 0.3), 
(0.5, 0.3) and (0.7, 0.3). These points were chosen to dem-
onstrate the feasibility of constraints designed to prevent 
particles from passing through regions that were acces-
sible in the unoptimized rigid wall. The design domain 
is illustrated in Fig. 14a and discretized into 300 by 100 
elements. As shown in Fig. 14(b: left), the initial design 
variables of the upper and lower domain are set to 0 and 1, 
respectively. This results in initial rigid wall at a distance 
of 0.1 m from the bottom of the domain as illustrated in 
Fig. 14(b: right).

To obtain a trajectory of the particle that satisfies 
these conditions, the following optimization problem is 
formulated.

Fig. 15   Example 2. a An optimized result, b the particle trajectory and optimized wall and c the optimization history



	 Y. H. Choi, G. H. Yoon 217  Page 16 of 22

where the desired point to pass is denoted by xpass , while the 
points to avoid are labeled as x(i)

avoid
 (i = 1, 2, 3) . The gravity 

force is denoted by Fgravity . In the constraints, the value of 
� is set to 0.01 m to ensure passing through xpass , and R is 
set to 0.1 m due to the placement of avoidance points at 0.2 
m intervals. The range of the design variables and the limit 
for changing the design variables are same as in Example 
1. The objective is the maximization of the final position of 
the particle. The analysis time, tf  , for the particle is set to 0.8 
s and the time step is set to 5 × 10−6 s, resulting in 160,000 
discretized time steps. The initial position of the particle, 
x0 , and the velocity, v0 , are defined to (0, 0.5) m and (0.8, 0) 
m/s, respectively.

An optimized design ensuring the particle passes 
through the desired point and avoids the other points is 
obtained as shown in Fig. 15. The optimized layout con-
tacts with the particle at the two regions. In the optimized 
rigid wall, the regions apart from the collision regions 
can be arbitrary shapes as long as it doesn’t affect the par-
ticle path. This means there are multiple possible solu-
tions except for the collision regions. The design of these 
other regions depends on the initial design. For instance, 
the result in Fig. 15 represents one of the optimal designs 
which is close to the initial layout in Fig. 14b. The opti-
mization history can be found in Fig. 15c. In the optimiza-
tion history, there are several peaks where the objective 
appears to be maximized, but the constraints are not satis-
fied. Since the main focus of this problem is to find a solu-
tion that satisfies the constraints, the optimization process 
is stopped after a certain number of iterations (100) if the 
constraints are all satisfied. This example verifies that par-
ticles can be controlled to avoid certain areas by utilizing 
the present constraints.

3.4 � Example 3: Manipulating multiple particles

In this example, the purpose is to optimize the trajectories 
of multiple particles so that they converge to a single point 
when they collide with the wall. The two cases are consid-
ered: one where gravity is taken into account and another 
where it is neglected. The influence of the number of par-
ticles is also observed by solving the optimization problem 
for the cases with 9, 19 and 29 particles. Moreover, the opti-
mization will be carried out for two distinct times ( tf = 1.2 s 
and 0.6 s ) to understand the effect of the analysis time.

(33)

Maximize
𝛾

xf ,

subject to g(x, xpass) ≤ 𝜀,

g(x, x
(i)

avoid
) ≥ R (i = 1, 2, 3),

mẍ = Fcontact(x, 𝛾) + Fgravity,

0 ≤ 𝛾e ≤ 1 (e = 1, 2, ⋯ , NE),

The analysis of the particles being dropped from a height 
of 0.9 m in the square domain as shown in Fig. 16 is con-
ducted. The particles are uniformly distributed with a dis-
tance of Δl . The design domain is defined as follows:

where the entire square domain is discretized into 101 by 
100 elements. The number of elements in x-direction is 
set to the odd number, 101, to avoid asymmetry problems 
that can be caused by numerical errors in computing for 
the particle falling from the center. The initial design vari-
ables are set to 0 for the upper region ( y ≥ 0.1 ) and 1 for 
the lower region ( y < 0.1 ), generating the initial wall 0.1 m 
above from the bottom. The objective function aims to mini-
mize the distance between the final position of the central 
particle in Fig. 16 and its analytically calculated position 
in the initial design. This ensures that the optimized layout 
passes through the bottom center point (0.5, 0.1). Similar 
to Example 2, the optimization process terminates when all 
constraints are satisfied and the specific number of iterations, 
i.e., 100 iterations, have been proceeded. The optimization 
formulation is given as follows:

(34){(x, y) |0 ≤ x ≤ 1, 0.1 ≤ y ≤ 0.8},

(35)

Minimize
𝛾

‖‖‖x
(c)

f
− xobj

‖‖‖
2

,

subject to mẍ = Fcontact(x, 𝛾) + Fgravity,

g(x(i), xtarget) ≤ 𝜀 (i = 1, 2, ⋯ , NP),

0 ≤ 𝛾e ≤ 1 (e = 1, 2, ⋯ , NE),

Fig. 16   Example 3. Problem definition for manipulating multiple par-
ticles (particle analysis: Δt = 5 × 10−5 s , k = 106 N/m and rigid wall: 
�wall = 0.5 , r(1)

min
= 2.5 pixels and r(2)

min
= 15.5 pixels)
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where the number of particles being dropped is denoted by 
NP, the position of the central particle at time t = tf  is 
denoted by x(c)

f
 and xobj is the analytically calculated position 

of the c-th particle at time t = tf  . The desired point to pass, 
xtarget , is set to (0.5, 0.2) and the position of the i-th particle, 
xi
0
 , is equal to ( iΔl , 0.9), where Δl is 1∕(NP + 1) m. The 

gravitational force, Fgravity , is set to mg when gravity is 

considered and is set to 0 otherwise. The design constraints 
and the other parameters are consistent with the previous 
examples.

The first problem is optimization without considering 
gravity and sets the initial velocity to (0, vy0 ), where vy0 is 
−1 m/s and tf  is 1.2 s. In this case, xobj is computed as (0.5, 
0.5). By setting NP to 9, 19 and 29, the results in Fig. 17 
are obtained, respectively. Note that the latter case obtains 

Fig. 17   Example 3. Optimized 
results without considering the 
gravity force and their opti-
mization histories (the initial 
y-direction velocity = −1 m/s, 
tf = 1.2 s and the number of a 
9 particles, b 19 particles and c 
29 particles)
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the smoother rigid wall because the increase in the num-
ber of particles results in approaching the parabolic shaped 
rigid wall which is the theoretical optimized solution for 
converging to a point when particles are incident in parallel 
(See Appendix 2 for the theoretical solution). The second 
problem incorporates gravity and sets the initial veloc-
ity to 0 . For tf  values of 1.2 s and 0.6 s, xobj is computed 
as (0.5, 0.1452) and (0.5, 0.6884), respectively, and both 
cases utilize 19 particles. As shown in Fig. 18, the parabolic 
trajectories pass through the desired point at each of the 
times. Fig. 19 presents comparisons between the optimized 
results and the theoretical solutions for the particles to pass 
through the target point. Figure 19a demonstrates that with 
the larger number of particles, the shape of optimized wall 
approaches the theoretical solution. When gravity is applied 
to the particles, there are two theoretical solutions as shown 
in Fig. 19b and the optimized results are close to these solu-
tions. These theoretical solutions are derived in Appendix 2. 

These results validate that the current method can control the 
particles effectively even with multiple particles.

4 � Conclusions

In this study, we have developed a new topology optimiza-
tion methodology that controls the trajectory of particles while 
considering their contact with rigid wall layouts. The conven-
tional topology optimization faces the two primary challenges 
in accounting for particle-rigid wall contact: the discontinuous 
behavior of the particle contact and the non-smooth geometry 
of the topological design. These challenges were successfully 
addressed by using the present spring contact model and trans-
forming the design variables. By applying density filtering and 
the S-shape function, the design variables were mapped into a 
smoothly shaped structural design. Subsequently, the present 
contact model calculates the force exerted on particles during 

Fig. 18   Example 3. Optimized 
results with the gravity force 
and their optimization histories 
(the number of particles: 19, 
the initial y-direction velocity: 
0 m/s, the gravity acceleration: 
( 0,−9.81 ) m∕s2 , a tf = 1.2 s and 
b tf = 0.6 s)
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contact with the rigid wall. Following the force calculation, the 
sensitivity of the force was computed analytically and several 
numerical examples of the topology optimization of the parti-
cle path were conducted. The trajectories of the particles were 

controlled using the constraint for the particles to pass through 
or to avoid a designated point. In future work, by integrating 
this model with solid or fluid domains, these domains could 
be optimized simultaneously while considering the particle 
contact phenomena. In summary, this study has introduced 
a novel methodology for topology optimization that incorpo-
rates particle-rigid wall contact, utilizing an innovative contact 
model and a constraint to control the particle trajectories.

Appendix 1: Mapping from element‑wise 
to nodal design variables using PDE filter

In this study, element-wise design variables are mapped to 
nodal design variables through Eq. (13). In Sect. 2.2, the equa-
tion for mapping from 𝛾𝛾𝛾 to ρρρ in Eq. (16) is derived from Eq. 
(13). This section aims to show that a similar expression can 
also be derived from the PDE filter introduced in Andreassen 
et al. (2011) and discusses the differences between the two 
approaches. The partial differential equation employed in the 
PDE filter is given as follows.

Fig. 19   Comparison between the analytic solutions and the optimized results in a Fig. 17 and b Fig. 18

Fig. 20   Schematic drawing for obtaining the analytic interface curve 
for particles to pass the target point
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where Rmin represents the radius of filtering. The above PDE 
can be rewritten in weak form as follows.

The discretization using the finite element method yields the 
following matrix form.

where M and Q are defined in Sect. 2.2 and K is defined as 
follows:

It is noteworthy that, when Rmin is set to zero, the resulting 
equation corresponds to Eq. (16) which computes the nodal 
density ρρρ used in the present study.

Appendix 2: Theoretical solution 
for particles to pass a specified point

This section explains the theoretical derivation of a curve 
which enables that the particles falling parallel to the 
y-axis pass through a specific point, xtarget = (0, p) , after 
one perfectly elastic collision with the curve. The contact 
point is denoted by xc = (xc, yc) and the initial position 
and velocity are denoted by x0 = (xc, L) and v0 = (0, vy0) , 
respectively. As shown in Fig. 20, the angle between the 
tangent line at the contact point and the x-axis is defined 
as �A and its slope is described as follows:

The angles between the tangent line and the two lines, the 
incident and reflected lines, are identical and denoted by 
�B . �C represents the angle between the reflected line and 
the x-axis. These angles satisfy the following relationships.

(36)
−R2

min
∇2𝜌 + 𝜌 = 𝛾̃ on Ω

∇𝜌 ⋅ n = 0 on 𝜕Ω

(37)
∫Ω

𝜙𝛾̃ dΩ = ∫Ω

𝜙
(
−R2

min
∇2𝜌 + 𝜌

)
dΩ

= ∫Ω

(
R2
min

∇𝜙∇𝜌 + 𝜙𝜌
)
dΩ

(38)
Q𝛾𝛾𝛾 = (R2

min
K +M)ρρρ

ρρρ =
(
R2
min

K +M
)−1

Q𝛾𝛾𝛾

(39)K =

NE∑
e=1

∫Ωe

�NT
e

�x

(
�NT

e

�x

)T

dΩ

(40)
dy

dx

||||x=xc
= tan �A

(41)
�A + �B =

�

2
,

�C = �A − �B

Utilizing the tangent addition formula with the relationship 
in Eq. (41), tan(�C) is derived and subsequently tan(�A) is 
obtained as follows:

The tan �C is obtained by the procedure from Eq. (43) to Eq. 
(45). With the initial velocity of v0 , the velocity of a particle 
at the contact point is determined as follows:

After the contact, the velocity of the particle in the x-direc-
tion becomes ‖‖vc‖‖ cos �C and a time to reach from the con-

tact to the target point is given by t = xc

/(‖‖vc‖‖ cos �C
)
 . To 

reach the target point, the vertical displacement of the par-
ticle for this time should be the y-directional distance 
between the contact and target points (i.e., yc − p ) and the 
following equations are obtained.

By using Eqs. (40) and (42), the following differential equa-
tion is derived.

where tan �C is substituted by Eq. (45) depending on the 
gravitational acceleration, g. Equation (46) yields a single 
solution in the absence of gravitational forces and has two 
distinct solutions when the gravity force is applied. The 
solutions for the two cases (case 1: g = 0 m/s2 , vy0 = 1 m/s, 
L = 0.8 m and p = 0.1 m and case 2: g = 9.81 m/s2 , vy0 = 0 
m/s, L = 0.8 m and p = 0.1 m) are illustrated in Fig. 19a, b, 
respectively.
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(42)
tan �C =

tan �A − 1∕ tan �A

2
,

tan �A = tan �C +

√
1 + tan2�C

(43)‖‖vc‖‖ =

√
‖‖v0‖‖2 + 2g(L − yc)

(44)

yc − p = ‖‖vc‖‖ sin �Ct + 1

2
gt2

= xc tan �C +
g x2

c

4g(L − yc) + 2v2
y0

(
tan2�C + 1

)

(45)tan �C =

⎧
⎪⎪⎨⎪⎪⎩

−1±

������
1−

⎛⎜⎜⎝
x2c

2(L−yc)+v
2
y0

∕g
−yc+p

⎞⎟⎟⎠
2(L−yc)+v

2
y0

∕g

xc∕
�
2(L−yc)+v

2
y0
∕g

� , g ≠ 0,

yc−p

xc
, g = 0

(46)
dy

dx
= tan �C +

√
1 + tan2�C, y(0) = 0
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