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A B S T R A C T

An improved stress-based topology optimization method for laminated composites is proposed by applying the
layerwise theory in this research. The layerwise theory is an analysis technique for laminated composites or
fiber-reinforced composites that has been developed to overcome the disadvantages of the classical laminated
plate theory (CLPT). Because transverse shear deformation is ignored in the CLPT, it cannot be used for thick
plates or multiple-layered composites. Therefore, new methods have been developed for analyzing them, and
one of them is the layerwise theory. Using the layerwise theory, it is possible to accurately analyze a thick plate
and predict the behavior of multiple layers of composites. In the layerwise theory, because a new displacement
field and a modified finite element (FE) model are used, the FE model of the stress-based topology optimization
method (STOM) is reconstructed to apply the layerwise theory. To apply the STOM for composite materials, the
specific failure criterion developed for anisotropic materials must be selected. Therefore, the Tsai–Hill criterion
and Tsai–Wu criterion are adapted to the STOM formula to consider the failure of composite materials. Further,
the orientation of each layer in a composite significantly affects the optimization result as well as stiffness.
Therefore, in this study, we optimize the density and orientation simultaneously by setting the orientation as a
design variable. Finally, several types of p-norm approaches are proposed, and one of them can be chosen
depending on the location of the maximum value of the constraint.

1. Introduction

Composite laminates are widely used throughout the industry be-
cause they exhibit better mechanical performance than their original
counterparts. Many studies on composites have been reported and their
performances have been verified through experiments or computational
simulations. A composite laminate is generally manufactured by
stacking thin composite layers (see Fig. 1). Each layer may have dif-
ferent mechanical properties or strengths. In addition, even with the
same anisotropic material, different mechanical properties can be rea-
lized depending on the rotation angle of each layer. Initially, the clas-
sical plate theory was used to predict the mechanical behaviors of
composite laminates [1–3] (See Fig. 2).

The classical plate and shell theories cannot accurately predict the
behaviors of thick laminated composite structures because the trans-
verse shear deformation is simplified in these theories [1–3].

It is possible to simplify or ignore shear deformation in thinner
composite structures. However, in thicker composite structures, the
simplification or disregard of shear deformation causes large errors in

predicting the mechanical behavior. To resolve this issue, a shear cor-
rection factor is used in the first-order shear deformation theory and a
tangential transverse shear effect is used in the high-order theory [3].
Although these methods are applicable in mechanical problems of a
single layer, other issues must be solved for applying them to composite
laminates composed of several layers. The conventional methods used
to analyze a plate or shell cannot implement the zigzag shape of the in-
plane displacement of the composite laminate and satisfy the inter-
laminar continuity of the transverse stresses of the composite laminate.
Many suggestions have been proposed to overcome these issues, and the
layerwise theory was introduced to solve the zigzag displacement issue
and the interlaminar continuity of the transverse stress issue [3–9].
Unfortunately, this theory is still disadvantageous in that many domi-
nant variables exist depending on the number of layers. Recently, the
improved layerwise theory with a smaller number of unknown vari-
ables was presented to accurately estimate the stresses or strains and
reduce the computational cost [3,5–7].

To design a composite laminate, topology optimization (TO) is used
in this research. TO was introduced in the late 1980 s, and many

https://doi.org/10.1016/j.compstruct.2019.111184
Received 3 October 2018; Received in revised form 3 June 2019; Accepted 26 June 2019

⁎ Corresponding author at: School of Mechanical Engineering, Hanyang University, Seoul, Republic of Korea.
E-mail address: ghy@hanyang.ac.kr (G.H. Yoon).

Composite Structures 226 (2019) 111184

Available online 29 June 2019
0263-8223/ © 2019 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/02638223
https://www.elsevier.com/locate/compstruct
https://doi.org/10.1016/j.compstruct.2019.111184
https://doi.org/10.1016/j.compstruct.2019.111184
mailto:ghy@hanyang.ac.kr
https://doi.org/10.1016/j.compstruct.2019.111184
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruct.2019.111184&domain=pdf


investigations and applications have been reported [10–20]. Static
failure is a challenging subject in TO applications, and it is generally
known as the stress-based topology optimization method (STOM)
[21–31]. The STOM cannot easily set the stresses as a constraint owing
to the singularity issue or local constraint issue
[21,23,25–27,29,32–37]. Recently, the qp-relaxation method and the p-
norm approach have been proposed to solve these issues and the STOM
has been widely applied in many fields [21,23,26,27,29,32,33,37]. This
study is also one of such applications considering stresses of composite
laminates in TO. Some relevant studies about TO for composite lami-
nate have been progressed for a long time [10,19,38–43]. In [38], the
material-orthotropy orientation angles and the nodal volume fractions
are topologically optimized by the MLPG (Meshless Local Petrov-Ga-
lerkin) mixed collocation method. The discrete optimized orientation
design of the composite laminate was proposed in [19,40,43]. There
has been increasing interest in harvesting energy and studies have been
carried out for the application of TO for energy harvesting devices to
maximize power generation or electromechanical coupling coefficient.
In [38], the piezoelectric energy harvesting system of multilayer plates
and shells are topologically optimized [10]. The piezoelectric energy
harvesting system maximizing the energy conversion factor was pro-
posed in [39]. The arbitrary fiber orientation for the laminated piezo-
composite shell transducer is proposed in [41]. The stress constraints
are also included in the design of the laminated piezocomposite energy
harvesting devices in [42]. To our best knowledge, most of the related

researches have used the classical plate or shell theory to analyze
composite laminate. The present study intends to develop a new TO
scheme with composite laminate analyzed by the layerwise theory
[44,45]. The first issue to be addressed in developing a new TO con-
sidering the static failure of composite laminates is that other failure
criteria for anisotropic materials are necessary [1,2]. Because a com-
posite material is anisotropic, criteria such as the maximum shear–s-
tress criteria, the distortion energy criteria, and the Coulomb–Mohr
criteria developed for isometric materials cannot be used to predict the
failures of composite materials [27,46]. As an alternative, the Tsai–Hill
criterion that is an extension of the distortional energy yield criterion of
von Mises is used in this study [1,2]. Another problem of developing a
new TO is the local constraint issue [26,27,29,37]. Because stress is an
element-wise property, the number of stresses increases as the number
of elements increases. Therefore, as the number of elements increases,
the number of constraints also increases. The p-norm approach is used
to solve this problem because if the p value becomes infinitely large, the
p-norm becomes the maximum value [18,26,27,29,37]. A new issue is
that stresses of all layers must be considered in the STOM for composite
laminates. Therefore, if the number of layers increases, the problem of
the number of constraints increasing also arises. To solve this problem,
a modified p-norm approach is proposed in this study. The differences
between the results obtained through the newly proposed modified p-
norm approach and that obtained through the existing p-norm approach
are compared through some numerical examples. Finally, to investigate
the influence of each layer orientation in the STOM for composite la-
minates, the STOM was reformulated by including the orientations of
all layers as design variables. Further, the results can be confirmed
through numerical examples.

The present paper is organized as follows: in Section 2, the layer-
wise theory is described briefly. Further, a new STOM is formulated and
a sensitivity analysis adapting the layerwise theory is discussed in
Section 3. In Section 4, some numerical examples are shown to validate
the developed STOM for composite laminates. In Section 5, the con-
clusions and contributions are presented.

2. Composite laminate structure formulation

2.1. Mathematical theory – Improved layerwise theory

Composite laminate structures consist of thin or thick layers. Three-
dimensional FE analysis requires numerous computational resources for
an accurate response computation of displacement and stress. To
overcome these limitations, some classical plate theories were devel-
oped by simplifying or neglecting the influence of transverse shear
deformation. As discussed in the introduction, the layerwise theory was
developed for overcoming the limitations of classical plate theories
[3,5–9,47]. The improved predictions of the displacement and stress are
possible using the layerwise theory. The displacement fields in the
layerwise theory are approximated as follows [5–7]:

= + + +
= + + +
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whereUx
k andUy

k denote the in-plane displacements of the k-th layer of
the laminate, andUz

k denotes the transverse deflection of the k-th layer
or the ply of the laminate. The quantities ux , uy, and w denote the
displacements of the reference plane. The rotations of the normal to the
reference plane about the x and y axes are x and y, respectively. The
terms x

k, y
k, x

k, and y
k are the layerwise structural unknowns defined

at the k-th ply. The through-laminate-thickness functions, g z( ) and
h z( ), are used to address the characteristics of the in-plane zigzag de-
formations, which are of the following forms:

Fig. 1. General configuration of laminate composite structure.

Fig. 2. Flowchart for developed topology optimization method.
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where t is the total thickness of the laminate structure, and the func-
tions g z( ) and h z( ) render high-order odd and even distributions, re-
spectively.

The assumed layerwise displacement field can be further simplified
by applying the structural constraints [5–7] to reduce the number of
structural variables. In this study, the applied structural conditions are
the traction free boundary conditions on the top and bottom, and
continuity conditions of transverse shear stress and in-plane displace-
ment on each interlaminar. By applying these conditions, the modified
in-plane displacement fields are presented as follows:
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Because the in-plane displacement fields consist of ux, uy, w, x , y,
w x, , and w y, , it is independent from the number of layers. The layerwise
coefficients, ax

k, ay
k , bx

k, by
k, cx

k , cy
k, dx

k, and dy
k, are obtained from the

constraint equations (the more details are presented in [5,6]), and are
expressed in terms of the laminate geometry and material properties
[5,6].

2.2. Finite element implementation

Certain procedures should be introduced to implement the layer-
wise theory into the finite element model. The linear Lagrange inter-
polation function is employed to interpolate the in-plane displacements,
whereas the Hermite cubic interpolation function is used for the out-of-
plane displacement interpolation [5,6].
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where Nm represents the Lagrange interpolation function, and Hm, Hxm,
and Hym represent the Hermite interpolation functions. The number of
nodes in each element is n. The displacements in the x- and y-direction,
and the rotations of the normal to the reference plane about the x and y
axes at the m-th node in each element are denoted by u( )x m, u( )y m,
( )x m, and ( )y m, respectively. The displacement in the z-direction and
the partial derivatives for the x and y directions at the m-th node in each
element are wm, w( )x m, , and w( )y m, , respectively.
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where K and F are denoting the global stiffness matrix and the
global force vector, respectively. The global displacement, the dis-
placement of the e-th element, and the shape function areU , ue, and N,

respectively.
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where the global stiffness, global force, e-th elementary stiffness matrix,
and constitutive matrix are denoted by K and F, ke, and Qe, respectively.
To reflect the influence due to the angle, the constitutive matrix is
defined as follows:

=Q Q̄e e
n

0k (15)

The design variable and the penalty value are denoted by e and nk,
respectively. To consider a rotational angle ( ) of the ply, the trans-
formation matrices, T1 and T2, are multiplied.
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The term Qo represents the three-dimensional constitutive matrix
for an orthotropic material.
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where Ei, Gij, and represent the Young’s modulus in the i-direction, the
shear modulus in the ij-plane, and Poisson’s ratio between the i and j
directions. Further, the stresses at the center of each element are
evaluated by Eq. (21).

= Q̄e
k n

e
k

0s (21)
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The stress and strain of the e-th element of the k-th layer is denoted
by e

k and e
k, respectively. The penalty factor, ns, was set to 0.5 to avoid

the singularity issue mentioned by many researchers. In finite element
model, the layerwise theory is employed [3,5–7]. This approach has an
advantage in terms of computation accuracy and efficiency. All layers
share the same nodes for each element.

3. Topology optimization formulation and sensitivity analysis

3.1. Topology optimization formulation

In this section, a new stress-based TO method for composite lami-
nate using the layerwise theory is formulated. The objective function is
set to minimize the volume, and the constraint is set such that the stress
state within the design domain satisfies the Tsai–Hill criterion. The
Tsai–Hill criterion is used in this study because the composite laminate
is an anisotropic material [1,2]. In most related studies on STOM de-
veloped for isotropic materials, a von Mises yield criterion was gen-
erally used to determine structural failure. (Nevertheless, there are
various criteria according to the characteristics of the material, and the
appropriate methods are used according to the situation.) [27,29]. The
composite laminate is an anisotropic material for which an appropriate
criterion must be used; the Tsai–Hill criterion is used in this study.
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= = =
=

=V v

g
g g e NE k NL

Minimize ( ) ( :filtered density)

Subject to ( , ) 1
( , ) max( ( , )), 1, ..., , 1, ...,

( ) with the density filter

e
NE

e e

e
k

, 1

max

max

(22)

where the total volume, the e-th element volume, the Tsai–Hill value of
the k-th layer of the e-th element, and the design variable are denoted
by V, ve, ge

k , and , respectively. Additionally, the NE and NL represent
the numbers of element and layer. In this study, the Tsai–Hill value is
used in the Tsai–Hill criterion to determine whether the structure is
broken [1,2].
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where k
1 , k

2 , k
3 , k

23, k
31, and k

12 represent the stresses expressed in the
principal material coordinates (or ply coordinates). The nota-
tion X represents the ultimate normal stress magnitudes in the fiber
direction, whereas Y and Z indicate the ultimate normal stress magni-
tudes in the two transverse directions. The notation S indicates the
ultimate shear stress in the plane of the lamina, whereas Q and R in-
dicate the ultimate interlaminar shear stresses in the plane perpendi-
cular to the lamina plane [1,2]. Note that one of the reasons to employ
the Tasi-Hill value is to predict the failure of anisotropic material. The
Tasi-Hill value also can be regarded as one of the extensions of the von-
Mises stress for anisotropic material. In addition to the Tsai–Hill cri-
terion, the following Tsai–Wu criterion formulated in Eq. (25) can be
setup for topology optimization in order to consider the fractures of the
composite material.
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where the notation Xt and Xt represent the ultimate normal tensile and
the compression stress magnitudes in the fiber direction, respectively.
The ultimate normal tensile and the compression stress magnitudes in
the two transverse directions are denoted by Yt, Yc, Zt, and Zc, respec-
tively. The Tsai–Wu criterion is advantageous as it can consider more
accurate fracture than the Tsai–Hill criterion. The coefficients F12, F13,
and F23 of the last three terms of Eq. (25) can be determined with some
experiments. Often the last three terms of Eq. (25) can be simply
modified as follows:

= = =F
X X Y Y

F
Y Y Z Z

F
X X Z Z

1 , 1 , 1
t c t c t c t c t c t c

12 23 13
(26)

We use the p-norm approach in this study to obtain the maximum
Tsai-Hill value in the design domain shown in Eq. (22). However, a
problem arises because the number of stresses to be included is equal to
the product of the total number of layers and the number of elements.
In the previous research on the stress-based TO method, only a single
layer existed because only the stresses of the total number of elements
were considered. However, more stresses should be considered in this
study. Nevertheless, there are situations where stresses in all layers are
not taken considered. For example, it is not necessary to consider the
stress of the entire layer if the distributions of the stresses in all the
layers are constant, or if the stress values of a specific layer are sig-
nificantly larger than the stress values of the other layers. In these cases,
the maximum stress value can be found by considering the stress values
of one specific layer. With in-plane load, the stresses become constant
along the thickness direction and only the consideration of the stress
value of one layer is enough in optimization. With a layered structure
especially with out-of-plane load, the stress values of all layers are
naturally different, and they should be considered to find out the
maximum stress value. Therefore, in this study, we present two types of
p-norm approaches—a p-norm approach considering the stresses of all
layers and another p-norm approach considering the stresses of a cer-
tain layer. The two modified types of p-norm approaches can be re-
written as follows.

Type 1) The location of the maximum Tsai–Hill value is unknown:
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Type 2) The location of the maximum Tsai–Hill value is known:
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where the correction factor at the iter-th optimization iteration is de-
noted as CT

iter or CS
iter depending on whether the stresses of all layers or

those of certain layers are selected. The correction factor (C) in Eqs.
(28) and (30) were proposed in order to adjust the p-norm value of Tsai-
Hill value closed to the maximum Tsai-Hill value. The coefficient p used
in the p-norm approach must be infinite, but a relatively large is used
due to the numerical stability. Some differences exist between the real
maximum value and the p-norm value. To remedy these differences, the
correction factor was proposed in the stress-based topology optimiza-
tion (see [27,29]) and the same procedure can be used for the present
study. In this study, 3 is used for the coefficient p. The correction factor
serves to help the p-norm of the Tsai-Hill value closer to the maximum
Tsai-Hill value. Inevitably, some differences exist between the p-norm
value and the actual maximum value. To reduce this gap, the correction
factor was proposed (see [27,29]). For an example 1, the p-norm value
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of the Tsai-Hill value is 7.1638 whereas the actual maximum Tsai-Hill
value is 0.9932 in Fig. 4. Therefore, the correction factor was set to
0.1452. Further, g iter

max, ge
obj, p, and are the actual maximum value of

the constraint functions in the design domain, the Tsai-Hill value or
Tsai-Wu value of the e-th element in the obj-th layer, the coefficient p
for the p-norm method, and the damping factor, respectively. The
value is set to 0.5 in this study.

3.2. Sensitivity analysis

It is essential to derive the sensitivity of the Tsai–Hill value in order
to apply a gradient-based optimizer. For an optimization algorithm, the
method of moving asymptotes was used [48]. The following sensitivity
analysis can be formulated with the adjoint variable λ. There are two

different sensitivity analysis formulations corresponding to the two
choices—the total stress of the layers or the stress of a selected layer. If
all stresses in the design domain and all layers are considered, the
sensitivity analysis can be expressed as follows.

= + +
= = =

d g
d

g g
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g d
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e
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e
k

e
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e1 1 1

(31)

The adjoint variable for sensitivity is computed through derivative
of static equilibrium as follows.

Fig. 3. Configuration of design domain and boundary conditions: (a) two-dimensional geometry of design domain and (b) three-dimensional geometry of the design
domain (the number of layers is four, and the total thickness is 1mm).

Fig. 4. Optimization result and the Tsai-Hill distribution (the converged volume: 26.92% and the maximum Tsai–Hill value: 0.9932): (a) an optimized layout, (b) the
distribution of Tsai–Hill value and (c) the history of the objective function.
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The final sensitivity values of the p-norm stress can thus be ob-
tained.
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Similarly, the sensitivity for the angles can be derived as follows.

= +
=

d g
d

g
g

g d
d

K UT
PN

k e

NE
S
PN

e
k

e
k

e
k

e
k

k k1

T

(36)

= =d
d

d
d

d
d

d
d

K U F K U F, 0
k k k k (37)

=
= =

g
g

g
U

K
k

NL

e

NE
S
PN

e
k

e
k

e
k

e
kT

1 1

T
- 1

(38)

=
= =

g
g

g
K

Uk

NL

e

NE
S
PN

e
k

e
k

e
k

e
k

T

1 1

T

(39)

The first term of d g
d

T
PN

k
is the derivatives of the p-norm defined in

Eq. (27) with respect to the k-th angle. The third term in Eq. (31) in-
dicates that all layers and all elements affect the derivative of dis-
placement with respect to the design variable with the p-norm approach

Fig. 5. Optimization result and the Tsai–Wu value distribution (the converged volume: 26.57% and the maximum Tsai–Wu value: 0.9964): (a) an optimized layout,
(b) the distribution of the Tsai–Wu value and (c) the deformed shape (Deformation scaling : 5).

Fig. 6. An optimization result without the symmetric angle condition: (a) an optimized layout, (b) the Tsai–Hill value distribution and (c) 3D deformation plot with
the out-of-plane displacement (Deformation scaling: 5).

Fig. 7. An optimization result with symmetric angle condition: (a) an optimized layout, (b) the Tsai–Hill value distribution and (c) 3D deformation plot with the out-
of-plane displacement (Deformation scaling: 5).

J.W. Lee, et al. Composite Structures 226 (2019) 111184

6



considering the stress values of all layers. The optimization procedure
can be found in the flowchart.

4. Numerical examples

Some numerical examples are considered in this section to validate
the developed TO method. We use the method of moving asymptotes
for the gradient-based optimizer [48].

4.1. Example 1: L-bracket problem

For the first numerical example, Fig. 3 shows an L-shaped bracket
structure, which is a benchmark problem for stress-based TO. Relevant
research has shown that structures with rounded corners are preferred
to prevent stress concentration at the corners [27–29]. We discuss the
validity, unique features, and usefulness of our approach by comparing
the optimized layouts of the stress-based TO design for the composite
laminate and our proposed design.

Fig. 3(a) shows the detailed geometry and boundary conditions. The
load applied is 0.05 N and the thickness of the composite laminate is
1mm. All degree of freedom of displacements are set to zeros along the
boundary condition and the load was uniformly applied to all layers.
One of the reasons to consider the in-plan loading conditions is to il-
lustrate some differences in terms of the optimized layout using the
layerwise theory compared with the optimized layout using the plane-
stress problem. The in-plane displacement fields of the layerwise theory
is formulated by combining the displacement field of the classical plate
theory and the two additional terms as shown in Eq. (1) to improve the
accuracy. Furthermore, through this example, it is possible to observe
and compare the optimized layouts by the computation of the present
layerwise theory and the classical plate theory in case of the in-plane
load. The effect of the out-of-plane load will be considered. This ex-
ample comprises four layers. All layers of composite laminate in all
examples have different orientations and all angles can be changed
independently. In this example, to get only material distribution, angles
of all layer are fixed as 0°. In this example the angle of each layer is

Fig. 8. Configuration of design domain and boundary conditions: (a) two-dimensional geometry of design domain and (b) three-dimensional geometry of the design
domain (the number of layers is four, and the total thickness is 1mm).

Fig. 9. Optimized shape and the Tsai–Hill value distribution considering all layers (the converged volume: 11.21% and the maximum Tsai–Hill value is 0.9936): (a)
an optimized shape and (b) the distribution of Tsai–Hill value and (c) the history of the objective function.
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fixed at 0° to avoid effect of angle. Composite laminate can be made by
several stacked layers to get improved mechanical properties, i.e.,
stiffness or strength. To consider a stacked composite layer, topology
optimization with multiple layers with a specific angle orientation or
orientational angles of each layer are considered. The material used in
this example is TM800s/M21, and the material properties are as fol-
lows: E1=135 GPa, E2 = E3 =7.64 GPa, G12 = G13 =5.61 GPa,
G23 =2.75 GPa, v12 = v13=0.35, v23=0.4, andX =165 GPa, Y=
45MPa, Z= 45MPa, Q=50MPa, R =50MPa , S =50MPa. The op-
timized shape can be obtained from Fig. 4 through the developed op-
timization algorithm. It is noteworthy that the p-norm approach used to
obtain the maximum stress value is based on the stress of the entire
layer.

Black and white figure in Fig. 4(a) represents 2-dimensional (in x-y
plane) optimized layout of composite laminate and all subsequent op-
timized layouts are presented in the same way. It is assumed that all

layers have the same planar layout to avoid bonding problems at the
interfaces among layers due to the shape differences of each layer in all
examples. That implies that all layers share the same design variable. As
shown in Fig. 4(a), it is impossible to obtain a shape similar to the
optimized layout obtained with isotropic materials. The fact that stress
concentration can be prevented is shown in Fig. 4(b). From the Tsai–-
Hill value distribution, we confirmed that the stress was not con-
centrated on the corner portion but dispersed to the periphery. Some
gray elements exist which do not have physical meanings from a to-
pology optimization point of view. To overcome this, many approaches
such as the level set method, FCM (Finite Cell Method), or BESO (Bi-
Directional Evolutionary Structural Optimization) have been proposed
[18]. The adaptive topology optimization method can be regarded as
one of such efforts to resolve this issue [49,50]. In connection to the
stress-based topology optimization, the stress distributions should be
redefined with a set of adaptive elements. A recent work in [18] re-
ported that this can causes the discontinuity in stress during optimi-
zation iterations. Next, Tsai-Wu criterion is considered for same ex-
ample. Because it is difficult to determine the coefficients of the last
three terms of Eq. (25), the following result can be obtained by the
modified Tsai–Wu criterion using the modified coefficient, e.g., Eq.
(26).

The shape of Fig. 5 using Tsai–Wu criterion is similar to that of
Fig. 4 using Tsai–Hill criterion. Further, the values of the converged
objective function are almost similar. Thus, it is difficult to determine
the values of the coefficients used in the Tsai–Wu criterion, and there is
no significant difference in the results between the Tsai–Wu and
Tsai–Hill criteria. We will use the Tsai–Hill criterion in the following.

Because fiber orientation affects composite strength, it is important
to consider the angle of the layers in composite design. Further, the
angles of layers are included as design variables such that it changes
with density simultaneously. In Fig. 4, only density is chosen as the
design variable, and the angles of layers are fixed in the optimization
process. In Fig. 6, however, the angles of layer change with density
simultaneously. The other conditions are the same as those in Fig. 3.

Fig. 6 shows the optimization result such as the optimization shape,
distribution of Tsai–Hill value, and deformed shape of an optimized

Fig. 10. Optimized shapes with different constraints: (a) considering maximum
Tsai–Hill value of 1st layer (converged volume: 11.63%), (b) considering
maximum Tsai–Hill value of 2nd layer (converged volume: 11.64%), (c) con-
sidering maximum Tsai–Hill value of 3rd layer (converged volume: 11.67%)
and (d) considering maximum Tsai–Hill value of 4th layer (converged volume:
11.11%).

Fig. 11. Tsai–Hill value distributions for optimized
layouts: (a) considering maximum Tsai–Hill value
of 1st layer (maximum Tsai-Hill value: 0.9651), (b)
considering maximum Tsai–Hill value of 2nd layer
(maximum Tsai–Hill value: 0.9635, (c) considering
maximum Tsai–Hill value of 3rd layer (maximum
Tsai-Hill value: 0.9621) and (d) considering max-
imum Tsai–Hill value of 4th layer (maximum
Tsai–Hill value: 0.9652).
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shape when the density and angle are simultaneously changed. Com-
pared with the result when the angles are not included as design vari-
ables, there is a slight difference in the optimized shape, and the opti-
mized angles are [89.9977/56.8577/1.5877/89.9988]. Further, the
maximum Tsai–hill value is 0.9956, which confirms that the constraint
is well satisfied. However, a twisted shape of the deformed shape is
confirmed in the optimized shape. Generally, it is known that a com-
posite material can be twisted when it is laminated unsymmetrically. In
the optimization result, the optimized angle is not symmetrical, and can
cause twisting. Therefore, an additional symmetry condition is neces-
sary to prevent this twisting. Applying the symmetry condition for this
example yields the following result.

The optimization result is shown in Fig. 7, in which all conditions
are the same as those in Fig. 6, and only the symmetry condition is
additionally applied. There is a slight difference in the shape, and the
maximum Tsai–Hill value is 0.9694, which shows that the constraint
satisfies well. Furthermore, because the symmetry condition is included
in this example, the optimized angles converge to [76.0925/18.5149/
18.5149/76.0925], which satisfies the symmetry condition. In addition,

owing to the symmetrical angle, the warping problem has clearly dis-
appeared in Fig. 7(b). Therefore, a symmetric condition must be in-
volved to avoid the warping of the unsymmetrically laminated com-
posites. Furthermore, the local optima issue exists in topology
optimization. Depending on the interpolation function, the function
space of the objective and the local optima become different
[40,51–53].

4.2. Example 2: Cantilever beam problem

The next numerical example considers a cantilever beam, as shown
in Fig. 8 (see Fig. 8 for the detailed geometry and boundary conditions).
The design domain is 100mm×50mm; the left side is clamped and the
load of−0.4 N acts in the y-direction at the middle of the right side.
The composite laminate is 1-mm thick and consists of four layers. The
angles of all layers are fixed at 0° to not consider effect of angles of
layers. Furthermore, in this example, TM800s / M21 is the target ma-
terial; therefore, the following values are used for the material prop-
erties of this material: E1=135 GPa, E2 = E3 =7.64 GPa, G12 =

Fig. 12. Configuration of design domain and boundary conditions: (a) two-dimensional geometry of design domain and (b) three-dimensional geometry of the design
domain (the number of layers is four, and the total thickness is 1mm).

Fig. 13. Optimized shape and the Tsai–Hill value distribution considering all layers (the converged volume: 32.95% and the maximum Tsai–Hill value: 0.9956): (a)
an optimized shape, (b) the distribution of Tsai–Hill value and (c) the history of the objective function.
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G13 =5.61 GPa, G23 =2.75 GPa, v12 = v13=0.35, v23=0.4, and
X =165 GPa, Y= 45MPa, Z =45MPa, Q=50MPa, R =50MPa ,
S =50MPa. .

We have developed two modified p-norm approaches to calculate
the representative values of these Tsai–Hill values. In this example, we
apply both p-norm approaches. First, the maximum Tsai–Hill value of
the whole layer is found, and when it is used as a constraint, the fol-
lowing optimization result can be obtained.

Fig. 9 shows that the optimized shape satisfying the constraint
condition well is obtained. In contrast, using the maximum Tsai–Hill
value calculated at each layer as a constraint, the following results can
be obtained

The four structures in Fig. 10 show the optimum shapes when the
maximum Tsai–Hill value from the first layer to the fourth layer is set as
a constraint, respectively. Fig. 10 shows that all optimized results are
similar in shape. This is because the distribution of the Tsai–Hill value

of all layers is similar (See Fig. 11).
The distribution of the Tsai–Hill value is the same because the load

applied in this example is the in-plane load. When the in-plane load is
applied, the stress distribution in the thickness direction is not changed.
However, when an out-of-plane load is applied, the stress changes in the
thickness direction. Therefore, to observe the change in shape of each
layer as described above, the out-of-plane load must be considered. In
the following example, we discuss how the shape of each layer differs
when an out-of-plane load is applied.

4.3. \Considering out-of-plane load

In this example, we consider a different type of load from the pre-
vious example. In the previous example, because the in-plane load was
considered, the stress distributions of all layers were the same; there-
fore, the optimization results were the same. However, considering the
out-of-plane load to be discussed in this example, the stress distribution
in each layer changes. The detailed geometry and boundary conditions
of this example are shown in Fig. 12. All the conditions are the same as
those in Fig. 8 except that the load direction is changed from the y
direction to z direction, and the magnitude is 20 N (-z direction). Fur-
ther, the same material properties are used in this example. The angles
of all layers are fixed at 0° not to consider effect of angles of layers (See
Fig. 13).

Two modified p-norm approaches are also used in this example. As
shown in the previous example, the result of using the maximum
Tsai–Hill value of all layers as the constraint is as follows.

We confirmed that the optimized shape satisfying the failure con-
straint can be obtained. Next, the results of using the maximum
Tsai–Hill value of each layer as the constraint are as follows.

From the results in Fig. 14, when the out-of-plane load is applied,
the optimized shapes vary depending on which layer's maximum
Tsai–Hill value is used as a constraint. The Tsai–Hill value distribution
in each layer is also significantly different from that of the previous
example (See Fig. 15).

With an in-plane load, there was almost no difference in the
Tsai–Hill value distribution in each layer as the Tsai-Hill values and the

Fig. 14. Optimized shapes with different constraints: (a) considering maximum
Tsai–Hill value of 1st layer (converged volume: 22.59%), (b) considering
maximum Tsai–Hill value of 2nd layer (converged volume: 11.22%), (c) con-
sidering maximum Tsai–Hill value of 3rd layer (converged volume: 10.96%)
and (d) considering maximum Tsai–Hill value of 4th layer (converged volume:
21.51%).

Fig. 15. Tsai–Hill value distributions for
optimized layouts: (a) considering max-
imum Tsai–Hill value of 1st layer (maximum
Tsai–Hill value: 0. 9993), (b) considering
maximum Tsai–Hill value of 2nd layer
(maximum Tsai–Hill value: 0. 9806, (c)
considering maximum Tsai–Hill value of 3rd
layer (maximum Tsai–Hill value: 0. 9759)
and (d) considering maximum Tsai–Hill
value of 4th layer (maximum Tsai–Hill
value: 0. 9719).
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Fig. 16. Maximum Tsai-Hill values for all layers with result of example 2: (a) the maximum Tsai-Hill values for all layers with Fig. 14(a), (b) the maximum Tsai-Hill
values for all layers with Fig. 14(b), (c) the maximum Tsai-Hill values for all layers with Fig. 14 (c), (d) the maximum Tsai-Hill values for all layers with Fig. 14(d) and
(d) the the maximum Tsai-Hill values for all layers with Fig. 13(a).
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stress values are same along the thickness direction. With an out-of-
plane load, however, the distributions of the Tsai–Hill value are dif-
ferent in all layers because the Tsai-Hill value and the stress values
varies along the thickness direction. From this example, the different
layouts are obtained due to the differences of the stress values and the
Tsai-Hill values along the thickness direction. Considering the Tsai-Hill
values in the first or the fourth layer, the optimized layouts use more
material than the optimized layouts considering the Tsai-Hill values in
the second or the third layer. Considering the stress values in the second
and third layer close to the neutral plane, the optimized layout uses a
less material compared with the optimized layout considering the larger
stress values in the first or fourth layer. It is necessary to consider Tsai-
Hill values of the other layers. Fig. 16 shows the maximum Tsai-Hill
values of all layers.

Through that figure, it is known that the other layers couldn’t satisfy
a constraint condition even if considered layer satisfied inequality of
constraint condition. In contrast, a different result can be gotten when
considering all layers. From the above figure, it is necessary to find the

maximum value in entire layers in order that all layers satisfy the
constraint. This study develops the modified p-norm approach to con-
sider some stresses of only specific layer. However, it has been con-
firmed that a design for preventing failure of a particular layer doesn’t
guarantee prevention of failures of the other layers.

To observe the effects of the angles with an out-of- plane load, the
angles of all the layers are included in this example.

Fig. 17 shows the optimized layout and the optimized angles.
Compared with the results with the fixed angles, a dramatic different
layout can be obtained. The optimized angles are [8.1955 / 60.9872 /
61.1142 / 8.1994] and the maximum Tsai–hill values are 1.0050,
0.4998, 0.4988 and 1.0048 for the layer 1, 2, 3 and 4, respectively.

4.4. Example 3: Bridge problem

The final numerical example is a simple MBB problem, and the
detailed geometry and boundary conditions are presented in Fig. 18.
The design domain is 125mm×25mm, and the force is 0.6 N. The

Fig. 17. An optimization result including angles as the design variable: (a) an optimized layout, (b) 3D deformation plot with the out-of-plane displacement
(Deformation scaling: 1), (c, d, e, and f) the Tsai–Hill value distributions of the layer 1, 2, 3 and 4, respectively.

Fig. 18. Configuration of design domain and boundary conditions: (a) two-dimensional geometry of design domain and (b) three-dimensional geometry of the design
domain (the number of layers is four, and the total thickness is 2.5 mm).
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thickness of the composite laminate is 2.5mm, and this example also
has four layers. In this example, the material used is TM800s / M21 as
in the previous examples. Therefore, material properties used are as
follows: E1=135 GPa, E2 = E3 =7.64 GPa, G12 = G13 =5.61 GPa,
G23= 2.75 GPa, v12 = v13=0.35, v23=0.4, and X =165 GPa,
Y =45MPa, Z =45MPa, Q=50MPa, R =50MPa , S =50MPa. In
the previous study, we confirmed that the material properties of the
composite laminates are changed owing to the rotation of ply of each
layer, which affects the design shape. So, in this example, we will also
examine whether the rotation of each ply affects the design shape, even
when considering the stress constraint problem with different design
domain.

Two optimizations are performed using the example in Fig. 18. As
shown in Fig. 19(a), the optimization result is obtained when the angles
of all the layers are set at 0° without considering the angles in the op-
timization process as in the previous example. Next, optimization is
performed by including the angles of each layer in the design variables.
Fig. 19(b) shows the optimization result when the angle of each layer is
changed during the optimization process. In this example, a symmetric
condition is involved to avoid the warping of the unsymmetrically la-
minated composites.

Fig. 19(a) shows the optimum shape and stress distribution when
the angle of all layers is set at 0°, and Fig. 19(b) shows the optimized
shape and stress distribution when the angle of each layer can vary
during the optimization process. In Fig. 19(a), symmetrical result is
obtained because the angles of all layers are set at 0°. However, in
Fig. 19(b), the angle of each layer obtained through the optimization is

[45.3697/0.0009/0.0009/45.3697], and the optimized shape is asym-
metrical owing to the rotation of several layers. In addition, as shown in
the results of the compliance minimization problem, and confirmed in
the previous research [54–56], the member in the rotated direction is
thin while the member in the opposite direction is thick, as shown in
Fig. 19(b). Finally, the value of the converged objective function varied
depending on whether the angle of each layer is included in the opti-
mization process. When the angle is constant, the amount of material
used is approximately 31.05%, whereas when the angle is included in
the optimization process; the amount of material used is approximately
21.96%, which means that the amount of material used can be reduced
when the angle can be included in the optimization.

5. Conclusions

In this research, a new stress-based topology optimization method
adapting the layerwise theory for composite laminates was developed.
In previous studies regarding the TO method for the design of compo-
site laminates, the classical laminate plate theory was primarily used for
analysis. However, the classical laminate plate theory has been reported
to exhibit limitations when applied in the analysis of composite lami-
nates. Therefore, other theories or methods have been developed to
overcome the limitations of the classical laminate plate theory. Among
them, the layerwise theory, which is a newly developed theory, was
applied in this study to increase the accuracy and efficiency of the
analysis. An important issue in the stress-based TO method is how the
maximum Tsai–Hill value can be calculated for the constraint. In

Fig. 19. Optimization results and Tsai-Hill distributions: (a) an optimization result without the angle optimization, (b) the deformed shaped of Fig. 19(a), (c) an
optimization result with the angle optimization, (d) the deformed shaped of Fig. 19(c), (e) the Tsai-Hill value distribution of Fig. 19(a) and (d) the Tsai-Hill value
distribution of Fig. 19(c).
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particular, in the case of composite laminates with several layers, it is
necessary to choose whether to consider the stresses of all layers or the
Tsai–Hill value of a specific layer; further, the maximum Tsai–Hill value
used as the constraint depends on the selection. If the location of the
maximum Tsai–Hill value is unknown, the maximum Tsai–Hill value
must be found among all layers. In contrast, if a certain layer that has
the maximum Tsai–Hill value is known, it is not necessary to consider
other layers except the layer having the maximum Tsai–Hill value. In
this study, we developed two types of modified p-norm approaches. One
was developed to incorporate all layers whereas the other was created
for only a particular layer. With in-plane load, theoretically all layers
have the same stress distribution. Therefore, the stress value of one
layer can be considered with the p-norm approach (Type 1) to compute
the maximum stress value. With out-of-plane load, the stress values are
different along thickness and all the stress values should be considered
with the p-norm approach (Type 2). To investigate the effect of the
orientations of fibers, the angles of each layer can be included as the
design variable. The distinct different designs can be obtained by op-
timizing the angles.
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