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This study presents a new topology optimization method for transient two-phase fluid-structure interaction 
(FSI) problem. From a topology optimization point of view, it is formidable challenging to consider the mutual 
coupling with structure and two-phase flow and the evolution of sharp interface between two-phase flow (tracking 
interface). To tackle these formidable issues, the monolithic design approach incorporating with the deformation 
tensor is applied and the simulation of the two-phase flow is carried out with the volume of fluid (VOF). 
The spatially varying design variables in topology optimization determines whether the corresponding domains 
or elements are solid or fluid (two-phase flow) to maximize or minimize objective function. To simplify the 
coupling procedure and maintain the numerical convergence, the one-way coupling between two-phase fluid 
and structure is assumed rather than the two-way coupling. To carry out the topology optimization, the Darcy’s 
force determined by the design variable is added to the Navier-Stokes equation and the Young’s modulus and the 
structural density are also interpolated with respect to the design variables. In addition, the phase-field equation 
in the VOF method is also modified to take into account the evolution of the design variable and the front of 
the phase field value. To investigate the effect of the two-phase fluid-structure interaction, several transient two-

dimensional problems are considered.
1. Introduction

This study introduces a novel topology optimization approach to 
address the challenging problem of transient two-phase(biphasic) fluid-

structure interaction (FSI) as shown in Fig. 1 [1]. The inherent complex-

ity of the present study lies in the intricate coupling between structure 
and two-phase flow as well as the dynamic evolution of the sharp in-

terface between fluids (tracking interface). To tackle these formidable 
challenges, this study adopts the monolithic design approach, incorpo-

rating the deformation tensor, and simulating the two-phase fluid using 
the volume of fluid (VOF) method without considering the mixture of 
flow. To evaluate the impact of two-phase fluid-structure interaction, 
we consider transient simulation and optimization problem inside con-

tainer.

Multiphase flow is a complex flow phenomenon involving the simul-

taneous movement of multiple distinct substances with different phases 
or aggregative states. A discrete phase can be solid, liquid and gaseous 
state and two phase flow is a special case of multiphase flow. From a 
simulation perspective, a phase can be characterized as a distinct por-

tion of a substance in a system that possesses unique physical properties, 

enabling its differentiation from other phases within multiphase system. 
Several innovative analysis studies can be found in [2–5]. One of the rep-

resentative approaches is the volume of fluid (VOF) method with which 
the portion of material properties are computed with a continuous scalar 
function in analysis domain (See [2] and references therein). From an 
optimization of multiple phase flow point of view, several researches can 
be found [3–5]. In addition to the difficulties in the topology optimiza-

tion for multiphase flow, the topology optimization for fluid-structure 
interaction system is also challenging.

Many researches are prevail for fluid topology optimization. The 
work by Borrvall and Petersson may be the first work which introduces 
the spatially varying porous domain for fluid topology optimization [6]. 
With the relatively large Darcy’s force, the fluid velocity becomes zero 
that feature can be utilized for fluid topology optimization. Inspired 
by this concept, many innovative works have been presented [7–19]

with a variety of flow conditions and numerical methods. However, it is 
still challenging to consider complex fluid-structure interaction phenom-

ena in topology optimization. It is also possible to use the body fitted 
mesh with the explicit boundary with the level-set or the phase-field 
method [20]. For the fluid-structure interaction problem, the simulation 
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Fig. 1. (a) Topology optimization of two-phase fluid-structure interaction and (b) the one-way coupling theory (left) and the two-way coupling theory (right).
and optimization conditions become more perplex as the two govern-

ing equations should be considered. The two different strategies exist 
for topology optimization for fluid-structure interaction problem. The 
first strategy may be the approach with the distinct interface between 
FSI [21–24]. In [21,23,24], two and three dimensional FSI problems 
are considered with the level-set approach. In [22], the modified im-

mersed finite element method and the meshfree reproducing kernel par-

ticle method are employed with the level-set approach for the topology 
optimization fluid-structure interaction. In [25], the topology optimiza-

tion approach with the explicit levelset method and the extended FEM 
approach (XFEM-LSM) are presented and the concept of “wet” with non-

determined FSI boundary and “dry” with the fixed explicit FSI boundary 
is discussed. In [26], the thermal fluid-structure system using body-fitted 
meshes is considered. In [27,28], the monolithic design approaches for 
compliance minimization and stress problem are presented. In [29], 
continuous two-phase fluid system is considered in topology optimiza-

tion. As an extension, the present study expands toward the two-phase 
fluid-structure interaction system. In [30–32], the topology optimiza-

tion for FSI with binary design variable and TOBS is developed. While 
reviewing the relevant researches, it is found that the topology optimiza-

tion for biphasic FSI has not been researched before this. The biphasic 
FSI indicates a system with structure submerged inside two-phase flu-

ids (gas-fluid or fluid-fluid). Inevitably, the computational procedure of 
the multiphysics system becomes complicated and its application for 
gradient based optimization is inherently challenging too. To our best 
knowledge, the study of this multiphysics system is rare and has not 
been researched.

This study introduces a novel topology optimization approach to 
address the challenging problem of transient two-phase fluid-structure 
interaction (FSI) as shown in Fig. 1 [1]. The transient two-phase fluid 
simulation is carried out first and the computational results of fluid 
velocities and pressure are utilized to formulate the fluid-structure in-

teraction system as shown in Fig. 1. The inherent complexity of the 
present study lies in the intricate coupling between the structure and 
two-phase fluid and the dynamic evolution of the sharp interface be-

tween fluids (tracking interface). To tackle these formidable challenges, 
2

this study adopts the monolithic design approach, incorporating the de-
formation tensor, and simulate the two-phase fluid using the volume of 
fluid (VOF) method. Spatial design variables in topology optimization 
dictate whether corresponding domains or elements are solid or fluid 
(two-phase flow), thereby optimizing objective function. To ensure the 
numerical convergence, this study employs one-way coupling between 
the two-phase flow and structure instead of the two-way coupling ap-

proach. The topology optimization process involves augmenting Darcy’s 
force, determined by the design variable, into the Navier-Stokes equa-

tion, while also interpolating Young’s modulus and structural density 
with respect to the design variable. Furthermore, we modify the phase-

field equation in the VOF method to account for the evolution of the 
design variable and the front of the phase field value. A transient ad-

joint approach for evaluating the sensitivity information is derived with 
a gradient-based optimizer.

The remainder of this paper is organized as follows. Section 2 pro-

vides the mathematical formula pertaining to the coupled analysis of 
the transient structure and two-phase transient flow motions and the de-

velopment of the sensitivity analysis of the integration of the transient 
compliance. Section 3 describes several topology optimization examples 
that test the effect of a transient flow and demonstrate its importance. 
Section 4 presents the conclusions of the study and provides suggestions 
for future research.

2. One way coupling of two-phase(biphasic) fluid-structure 
interaction with the monolithic design approach

In this section, the theory of one way coupling of two-phase (bipha-

sic) fluid-structure interaction with the monolithic design approach is 
developed and presented. In nature, the strong interplay and inter-

dependency between structure and two-phase flows are observed. The 
theory explicated in [1] and [28] delves into the notion of the fully-

strong coupling phenomenon for topology optimization for fully coupled 
fluid-structure interaction. In this research, we consider the one-way 
coupling due to the difficulties in the consideration of the structural 
displacements in the transient simulation of two-phase flow; this consid-

eration stands distinct from the assumption of the small displacement in 

the monolithic design approach. To meticulously consider the two-phase 
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fluid simulation, the VOF (Volume-Of-Fluid) approach in connection to 
the phase field or the levelset approach is seamlessly incorporated. After 
simulating the transient two-phase flow, the rigorous structural analysis 
ensues.

2.1. Development of a new weakly fluid-structure interaction with 
two-phase flow

Two-phase flow equation

Transient fluid flow, governed by the momentum conservation equa-

tion, complies with the continuum condition and is influenced by the 
gravitational force, symbolized as 𝜌𝐠, and the force of surface tension, 
denoted as 𝐅st.

𝜌
𝜕𝐯
𝜕𝑡

+ 𝜌(𝐯 ⋅∇)𝐯 = −∇𝑝+ 𝜇∇ ⋅
(
∇𝐯+∇𝐯T

)
⋅ 𝐯+ 𝜌𝐠+ 𝐅st,𝐯 = 𝐯(𝐱, 𝑡) (1)

𝜕𝜌

𝜕𝑥
+▿ ⋅ (𝜌𝐯) = 0 (2)

where the fluid velocities and pressure are denoted by 𝐯 and 𝑝, re-

spectively. In the absence of accounting for structural deformation, the 
spatial coordinate before structural deformation (𝐗) and the spatial 
coordinate after structural deformation (𝐱) remain indistinguishable, 
denoted as 𝐱 =𝐗. The viscosity and the density are denoted by 𝜇 and 
𝜌, respectively. There are the gravity force (𝐠) and the surface tension 
force (𝐅st) along the interface boundary. The Neumann and Dirichlet 
boundary conditions are assigned with the initial condition.

To emulate the metamorphosis of bi-phase fluid, the following phase 
field approach complemented with the re-initialization factor is imple-

mented.

𝜕𝜙

𝜕𝑡
+ 𝐯 ⋅∇𝜙− 𝛾𝐿∇ ⋅ (𝜀∇𝜙+ 𝜙(1 −𝜙) ∇𝜙

|∇𝜙| ) = 0 (3)

The parameter for the interface thickness and the re-initialization pa-

rameter are denoted by 𝜀 and 𝛾𝐿. Having successfully resolved the afore-

mentioned advection equation, the fluid within the domain of analysis 
is subsequently categorized as such:

𝜙(𝐱, 𝑡) =
⎧⎪⎨⎪⎩

0 if 𝐱 ∈ Fluid 1

Otherwise if 𝐱 ∈ Interface boundary Γ
1 if 𝐱 ∈ Fluid 2

(4)

where the interface boundary condition is defined by Γ defined inside 
the analysis domain. The Neumann boundary condition is applied for 
the phase field equation at the boundary. By employing the Continuum 
Surface Force model [5,33], it is possible to define the surface tension 
force, 𝐅st, as follows:

𝐅st =∇ ⋅ [𝜎(𝐈− 𝐧int𝐧Tint )𝛿Int ] (5)

where the normal direction vector of the interface boundary is set to 
𝐧int =

∇𝜙

|∇𝜙| and 𝛿Int is defined as 6 |𝜙(1 −𝜙)| |∇𝜙|. The surface tension 
coefficient is denoted by 𝜎. Subsequently, the density and the viscosity 
are interpolated with respect to the normalized 𝜙 value, 𝜙n.

𝜙n = min(max(𝜙,0),1) (6)

𝜌 = 𝜌1 + (𝜌2 − 𝜌1)𝜙n (7)

𝜇 = 𝜇1 + (𝜇2 − 𝜇1)𝜙n (8)

where the density values of the first fluid and the second fluid are 𝜌1 and 
𝜌2, respectively and the viscosity values of the first fluid and the second 
fluid are 𝜇1 and 𝜇2, respectively. The above equations are related and 
necessary for the simulation of two-phase fluid in the framework of the 
volume of fluid (VOF). The interpolation of the fluid properties is set by 
the value of the phase field value, 𝜙. As it is related to the two-phase 
fluid simulation, the linear interpolation is carried out. Note that the 
above equations are related and necessary for the simulation of two-
3

phase fluid in the framework of the volume of fluid (VOF). Note that 
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in the above equations, the structural displacements are not taken into 
account to consider the one-way coupling simulation. In reality, con-

sidering this mutual coupling is essential. However, due to simulation 
difficulties and the imposition of the small displacement condition, this 
research is limited to considering only one-way coupling.

Linear elasticity equation

With the one-way coupled fluid-structure interaction, the continuity 
in the traction force is imposed. To consider this continuity in FSI sys-

tem, the monolithic design approach employs the transformation of the 
traction force into one formulated in the analysis domain. To achieve 
this, the deformed domain, 𝑡Ω, and the undeformed domain, 0Ω, are 
distinguished and the deformation tensor, 𝐅 is employed.

𝐅 = 𝜕𝐱
𝜕𝐗

(9)

The positions of the undeformed domain,0Ω, and the deformed domain,𝑡Ω
are denoted as 𝐗 and 𝐱, respectively. The essential idea of the mono-

lithic design approach is to apply the above deformation tensor to the 
differential and the integral operators.

∇𝐗 = 𝐅T∇𝐱, ∇𝐱 = 𝐅-𝑇∇𝐗 (10)

The governing equation of linear dynamic structure is defined as follows:

∇𝐱 ⋅𝐓𝑠 + 𝐅 = 𝜌𝑠𝐮̈ in 𝑡Ω (11)

where the structural stress tensor is represented as 𝐓𝑠, while the dis-

placements are denoted as 𝐮. The force and inertial forces are repre-

sented as 𝐅 and 𝜌𝑠𝐮̈, respectively. The structural density is denoted by 
𝜌𝑠.

2.2. Parameterization of the present governing equations with the density 
design variables

For the topology optimization with the spatially varying density de-

sign variables, the modifications of the above governing equations are 
necessary to reflect the evolution of the design variables considering the 
stability of the nonlinear equations in (1), (2), (3), and (11).

Navier-Stokes equation

To model the pseudo rigid domain in the fluid domain, the equation 
in (1) is modified as follows:

𝜌
𝜕𝐯
𝜕𝑡

+ 𝜌(𝐯 ⋅∇𝐱)𝐯

=−∇𝑝+ 𝜇∇ ⋅
(
∇𝐱𝐯+∇𝐱𝐯T

)
⋅ 𝐯+ 𝜌𝐠+ 𝐅st − 𝛼𝐯

(12)

The fluid analysis domain is denoted as Ω𝑡, which simultaneously 
contains the two-phase flow equations and the elastodynamic equation. 
As the one-way weakly coupling is considered, the two domains of Ω0
and Ω𝑡 are not distinguished in the fluid domain. In the end of the 
transient two-phase Navier-Stokes equation, the Darcy force is added 
[6,13,15,34].

𝛼(𝛾𝑒) = 𝛼max𝛾𝑒
𝑛𝑝𝑒𝑛 (13)

where the maximum coefficient and the penalization factor are denoted 
by 𝛼max and 𝑛𝑝𝑒𝑛, respectively. The 𝑒-th design variable is denoted by 𝛾𝑒. 
The mass conservation equation in (2) does not requires a modification.

Phase-field equation

To improve the convergence and impose the pseudo rigid domain 
condition, the present paper modifies the phase-field equation in (3). 
From an equation point of view, as the fluid velocity becomes small 
enough, the value of the phase field equation is subjected to be fixed 
or the pseudo-rigid domain can be modeled. Note that regardless of the 
value of the phase-field equation, the phase field values of the pseudo-

rigid domain become fixed. However, to improve the numerical con-

vergence in this advection equation assuming the incompressibility, we 
propose the following modification by adding the penalization to the 

advection term.
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𝜕𝜙

𝜕𝑡
+ (1 − 𝛾)

⏟⏟⏟
Added

Penalization

𝐯 ⋅∇𝜙− 𝛾𝐿∇ ⋅ (𝜀∇𝜙+ 𝜙(1 − 𝜙) ∇𝜙

|∇𝜙| ) = 0 (14)

Note that the term 𝐯 is modified by multiplying (1 − 𝛾); the penal-

ization of the design variable is not attempted but it is conceived for the 
incorporation of the penalization. When the design variable 𝛾 becomes 
one or the corresponding domain is modeled with the pseudo-rigid do-

main not allowing the penetration of fluid, the velocity term 𝐯 becomes 
small enough to regard the corresponding region as the rigid domain. 
Therefore, in principle, this modification is not actually necessary. How-

ever, in connection to the structural equation, we observed that it helps 
the convergence of the nonlinear solver. It is also interesting to see that 
the domain with one for 𝛾 is regarded as the solid domain regardless of 
the value of the 𝜙.

Linear elasticity equation

In the monolithic design approach for FSI, the coupling is carried 
out in a different method. The fluid equation and structural equation 
exist for an entire analysis domain (0Ω or 𝑡Ω). In the monolithic design 
approach, the weak form of the structural equation can be expressed as 
follows:

−∫
0Ω

𝜌𝑠𝛿𝐮T𝐮̈− ∫
0Ω

𝛿𝐒T ⋅𝐓𝑠𝑑Ω+

∫
0Ω

Ψ ⋅ 𝐅−T𝛿𝐒(𝐮, 𝛿𝐮)T ⋅ 𝑝‖𝐅‖𝑑Ω+

∫
0Ω

Ψ ⋅ 𝐅−T𝛿𝐮 ⋅∇𝐗𝑝‖𝐅‖𝑑Ω= 𝟎

(15)

𝛿𝐒 = 1
2
(∇𝐗𝛿𝐮+∇𝐗𝛿𝐮T), 𝐒̃(𝐮, 𝛿𝐮) = 1

2
(∇𝐱𝛿𝐮+∇𝐱𝛿𝐮T) (16)

The virtual displacements are denoted by 𝛿𝐮, and the virtual and aux-

iliary virtual strains are denoted by 𝐒̃ and 𝐒̃(𝐮, 𝛿𝐮), respectively. The 
mutual coupling condition from the point of view of the linear elasto-

dynamic equation is imposed by divergence theory.

In the proposed monolithic design approach, the phase-field equa-

tion determining the kind of fluid and the fluid equation are formulated 
in an entire analysis domain (0Ω or 𝑡Ω). In the linear elasticity equation, 
the three parameters including the density and the Young’s modulus and 
the window function, Ψ, are interpolated with respect to the design vari-

ables as follows:

𝐶(𝛾𝑒) = 𝐶𝑆𝛾𝑛
𝑒
+𝐶𝑓 (1 − 𝛾𝑛

𝑒
)

𝜌(𝛾𝑒) = 𝜌𝑆𝛾
𝑛𝑠
𝑒 + 𝜌𝑣𝑜𝑖𝑑 (1 − 𝛾

𝑛𝑠
𝑒 ), 𝜌𝑣𝑜𝑖𝑑 ≪ 𝜌𝑆

Ψ= 𝛾
𝑛𝑓𝑖𝑙𝑡𝑒𝑟
𝑒

(17)

where the Young’s moduli of the structure and fluid are denoted as 𝐶𝑆

and 𝐶𝑓 , respectively. The density values of the structure and void are 
denoted as 𝜌𝑠 and 𝜌𝑣𝑜𝑖𝑑 , respectively. The penalization factors are de-

noted by 𝑛 and 𝑛𝑠. To remove local oscillations, the value of 𝑛𝑠 is set to 
be higher than that of 𝑛. Depending on the penalization factor, various 
local optima can be obtained. The window function Ψ is defined to con-

vert the boundary integration (fluid force exerted on the structure) to 
domain integration. The penalization factor for the window is 𝑛𝑓𝑖𝑙𝑡𝑒𝑟 . In 
the present modeling, the void region inside structure is modeled with 
fluid. The one-way coupling from fluid to structure is assumed. The ma-

terial interpolation of fluid and solid is not sufficient for the topology 
optimization for two phase fluid as the surface tension exists. The fact 
that the surface tension among fluids should be tracked and simulated 
by the evolution of the phase field smoothly is difficult and challenging. 
Some careful studies in choosing a proper combination of the parame-

ters of the numerical methods are required as the time reversal scheme 
for the sensitivity analysis for the time integration objective function 
4

suffers from the non-convergence.
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2.3. Optimization formulation for a new weakly fluid-structure interaction 
with two-phase flow

For the optimization formulation, the obvious choice may be the 
transient structural compliance. For dynamic system, the dynamic com-

pliance which can be defined as the product of force and displacement 
can be considered. Therefore, in the present study, we propose to con-

sider the time integration of the structural compliance as the objective 
function with the mass constraint as follows:

Min
𝛾

𝐽 = ∫ 𝑡𝑓

0 ∫0Ω 𝐒T ⋅𝐓sdΩdt

Subject to
𝑁𝑒∑
𝑒=1

𝛾𝑒v𝑒 ≤mass0

𝛾 = [𝛾1, 𝛾2, ..., 𝛾𝑁𝑒
], 𝛾min ⩽ 𝛾 ⩽ 1, 𝛾min = 0.001

(18)

where the simulation time is denoted by 𝑡𝑓 and the element volume is 
denoted by v𝑒. The upper mass limit is denoted by mass0. The above 
integration over time and domain can be considered as the objective 
function. With the above objective function, the adjoint sensitivity anal-

ysis procedure is applied for the transient multiphysics system.

(𝐮,𝐯, 𝑝, 𝛾) = 𝐽 (𝐮,∇𝐮; 𝛾)

+

𝑡𝑓

∫
0

∫
0Ω

(𝐮𝑎,𝐯𝑎, 𝑝𝑎,𝜙𝑎)𝐅𝐒(𝐮,∇𝐮,𝐯,∇𝐯, 𝑝,∇𝑝,𝜙,∇𝜙, 𝛾)𝑑Ω𝑑𝑡
(19)

where the column set of monolithic equations for the fluid and solid 
is denoted by 𝐅𝐒. The objective function is denoted as 𝐽 (𝐮, ∇𝐮; 𝛾). For 
example, the domain integration of the time-varying compliance can be 
defined as follows:

𝐽 (𝐮,∇𝐮; 𝛾) =

𝑡𝑓

∫
0

∫
0Ω

𝐒T ⋅𝐓𝑠𝑑Ω𝑑𝑡 (20)

The adjoint structural displacements and adjoint fluid velocities and 
pressures are denoted as 𝐮𝑎, 𝐯𝑎, and 𝐩𝑎, respectively. The adjoint phase-

field variable is denoted by 𝜙𝑎. The adjoint sensitivity analysis is per-

formed using the calculus of variation.

𝛿 = 𝟎 (21)

The adjoint equations can be derived by setting the terms associ-

ated with the primal variables to zeros and with the proper boundary 
conditions (see [13] and references therein) as follows:

𝜕
𝜕𝐮

⋅ 𝛿𝐮+ 𝜕
𝜕∇𝐮

∶ ∇𝛿𝐮 = 𝟎 (22)

𝜕
𝜕𝐯

⋅ 𝛿𝐯+ 𝜕
𝜕∇𝐯

∶ ∇𝛿𝐯 = 𝟎 (23)

𝜕
𝜕𝑝

⋅ 𝛿𝑝+ 𝜕
𝜕∇𝑝

∶ ∇𝛿𝑝 = 𝟎 (24)

𝜕
𝜕𝜙

⋅ 𝛿𝜙+ 𝜕
𝜕∇𝜙

∶ ∇𝛿𝜙 = 𝟎 (25)

Note that the objective function is dependent only on the structural 
displacements, structural strains, and design variables, explicitly and 
implicitly. See [13] and references therein for the variational approach 
for sensitivity analysis of transient fluid problems. Indeed, the following 
sensitivity can be obtained by solving the above equations for the adjoint 
variables:

𝑑𝐽 = 𝜕𝐽 +

𝑡𝑓

(𝐮𝑎,𝐯𝑎, 𝑝𝑎,𝜙𝑎) 𝜕𝐅𝐒𝑑Ω𝑑𝑡 (26)

𝑑𝛾 𝜕𝛾 ∫

0
∫
0Ω

𝜕𝛾
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Fig. 2. Problem definition of Example 1 (Gravity: 9.81 m∕s2 in downward 
direction, Fluid: 𝜌1 = 1000 kg∕m3, 𝜇1 = 10 Pa s, 𝜌2 = 0.001 kg∕m3, 𝜇2 = 0.1
Pa s, Simulation time = 0:0.002:0.3, Structure: Plane strain assumption, Young’s 
modulus = 106 N∕m2, Poisson’s ratio = 0.3, Density = 100 kg∕m3, 𝛾𝐿 = 0.1, 
𝜀 = 0.0005, mesh in the design domain: 100 by (10+10+10), CFL ≤ 0.01, 𝑛 = 3, 
𝑛𝑠 = 5, 𝑛𝑓𝑖𝑙𝑡𝑒𝑟 = 3, 𝑛𝑝𝑒𝑛 = 5.)

3. Optimization examples

To show the validity of the present monolithic topology optimization 
for transient two-phase fluid-structure interaction, this section presents 
some examples with the dynamics of buoyant drop rising or falling 
through a fluid at low Reynolds numbers. The method of moving asymp-

totes (MMA) algorithm is employed as an optimization algorithm [35]. 
From an theoretical perspective, the aforementioned theory can be ap-

plied to a variety of flow problems. From an optimization perspective, 
several considerations arise, including the local optima issue, the con-

vergence challenge, and the non-differentiable condition of the objective 
or the constraint functions due to the intricate interplay and behaviors 
of flow. Mitigating the non-differentiability and the convergence issues 
in the Navier-Stokes equation and the Phase-field equation requires the 
adoption of an appropriate combination of the analysis parameters and 
the simulation conditions, such as a stable time integration scheme, the 
stable wettability condition, the low CFL number condition, and mesh 
refinement. To tackle these challenges, the current study simplifies the 
simulation conditions. The analyses assume the simple falling or rising 
of drop with low Reynolds numbers. Structural displacements along the 
boundary increase the complexity and ambiguity in the finite element 
simulation as they should be interpreted as alterations of the analysis 
domain. Consequently, the external boundaries are assumed to be fixed 
to address these complexities. The Backward differentiation scheme is 
applied for the time integration.

3.1. Example 1: compliance minimization with dropping bubble

For the first example, the topology optimization problem consider-

ing the transient fluid-structure interaction effect is considered in Fig. 2. 
There is a droplet with 𝜌1 = 1000 kg∕m3 in the above rectangular slen-

der solid non-design structural domain and whose density is larger than 
that of the ambient fluid, i.e., 𝜌2 = 0.001 kg∕m3. Due to the buoyancy 
and the gravity acting in this liquid, the droplet freely falls down and is 
deformed. It eventually contacts to the surface of the design domain and 
causes the time-varying structural compliance. For the sake of the sim-

plification of the optimization problem, a flatten solid box is assumed 
at the vicinity of the contact domain, preventing the penetration of the 
droplet into the beneath design domain. We want to emphasize that the 
outside of the droplet is also another kind of fluid causing the movement 
of the design domain from a structural point of view and its movement 
contributes the objective function or the transient structural compliance 
but not as significantly as the heavier fluid. Due to the movements and 
influences of the two-phase flows and mainly due to the droplet, the 
structural domain transiently deforms down and then vibrates. There-
5

fore, the objective of the optimization problem is set to distribute the 
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Fig. 3. Example 1. The initial response with an initial design 𝛾 = 0.3. (a) Top: 
the motions of the droplet and bottom: the norm of the structural displacements 
(maximum displacement: 5.57 ×10−5 m) and (b) the time history of the compli-

ance.

allowable mass inside the design domain to minimize the objective func-

tion which is set to the integration of the time varying compliance.

Before the optimization, the time varying compliance is measured for 
the simulation time and plotted in Fig. 3. Near 0.05 s (approximately 
(2 × distance∕𝑔)0.5), the droplet starts to contact the flat solid surface 
and naturally the structural compliance is increased and maximized. 
The design domain slightly vibrating after the contact, the oscillation of 
the time varying compliance is observed. The snap shots of the evolu-

tion of the droplets and the normalized structural vibrations at several 
times are shown in Fig. 3(a) and (b). With the present topology opti-

mization scheme, it is possible to obtain the structure in Fig. 4. Upon 
first inspection, the overall layout is similar to an optimized layout of 
the compliance minimization for the structure with a force at the flat top 
of the solid box. Near at the upper part design domain of the horizon-

tal bar, the supporting structure connecting the flatten solid box and the 
horizontal bar appears. At the bottom design domain and the sides of the 
horizontal bar, the topologically optimized supporting structures appear 
to effectively resist the fluid force due to the droplet. It is interesting to 
observe the comb-like structure at the bottom of the flatten solid box. 
To investigate this optimized structure further, the time-varying com-

pliance values are computed in Fig. 4(b). As the time for the droplet 
contacting the surface is not changed, the peak is also observed near at 
0.05 s. However, as a result of the optimized structure, the magnitude of 
the response is greatly diminished, decreasing by a factor of 10 as shown 
in Fig. 4. In addition, the oscillations of the values are also not observed 
that significantly minimizes the objective value which is the time in-

tegration of the time-varying compliance. This example shows that the 
present approach can be applied to find out an optimized layout consid-

ering the effect of the two-phase fluid-structure interaction phenomenon 

but the physical behavior of the flatten solid box should be investigated. 
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Fig. 4. Example 1. (a) Optimized design, (b) the responses, and (c) the time 
history of the compliance (maximum displacement: 6.1951 × 10−6 m).

To investigate the effect of the surface tension, the topology optimiza-

tion problems with different surface tension values are solved in Fig. 5. 
The evolution of flow is dependent on the surface tension value and it 
is possible to obtain the different designs. Due to the local optima issue 
and the gray element issue, the objective values are almost same to each 
other.

For the next example, the flatten solid box fixing the time and the 
contact phenomenon between the droplet and the solid box is removed 
and not considered in the optimization formulation in Fig. 6. The chal-

lenge lies in the fact that the present optimization framework should 
determine not only the supporting structure but also the contact phe-

nomenon, i.e., the contact time and the contact mechanism. Considering 
the balance between the kinetic energy and the potential energy, it is 
noticed that to minimize the objective function it is better to minimize 
the potential energy of the droplet that is the mass of the droplet time 
the gravity constant time the height. Therefore, a porous domain which 
partially minimizes the potential energy due to the gravity and partially 
minimizes the potential energy inside the design domain can be ob-

served in Fig. 6(a). Interestingly, the fiber-like design can be obtained. 
Due to the intermediate variables and fiber-like designs, it is observed 
6

that the fluid can penetrate the porous domain but the fluid velocity is 
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slowly decreased that is crucial to minimize the reaction force. Fig. 6(b) 
and (c) show the fluid evolution and the structural motion. We tried to 
remove the intermediate design but it is our observation that the domain 
with the intermediate design variable works as a sponge to minimize the 
impact and the reaction force. However, in our present monolithic ap-

proach, we do not take into account the porous-like structure [36,37].

3.2. Example 2: compliance minimization with rising bubble

For the second example, the optimization problem in Fig. 7 is con-

sidered. By setting the similar domain of the first example but with the 
bottom droplet with a lighter density, the bubble is rising towards the 
design domain as shown in Fig. 8. As the bubble contacts at the bot-

tom surface of the design domain, a slender box fixed as solid is moved 
and placed at the bottom of the design domain. With these conditions, 
the optimized layout in Fig. 9 can be obtained. Due to the gravity and 
the contact force, the structure whose stiffness is maximized can be ob-

tained. The time varying compliance before and after the optimization 
are compared in Fig. 7 and Fig. 9. As observed in the first example, the 
responses are significantly minimized by the optimization. This exam-

ple also shows that the present optimization algorithm can consider the 
effect of the two-phase flows. Then, the non-design solid box is removed 
and set as the design domain. To minimize the objective function, the 
porous design in Fig. 10 appears to minimize the total force exerting 
the design domain. The detailed responses are shown in Fig. 10. As ob-

served, the porous domain appears in the contact region. This example 
also shows a typical situation of the two-phase flow coupled with the 
structure. One of the difficulties of this multiphysics system is to de-

termine the optimized structure and the boundary between fluid and 
structure. The structural force is dependent on the design variable in 
addition to the fluid motion. Therefore, the penalization of the SIMP 
method may not be sufficient and some gray elements can exist.

3.3. Example 3: compliance minimization problem with two bubbles rising 
and sinking

For the last example, the influences of the density and size of bub-

bles are investigated by solving the four optimization problems. The first 
two problems are set with the two rising bubbles placed underneath the 
design domain and the fixed solid box located at the center of the de-

sign domain. Due to the buoyancy force, the two bubbles whose sizes 
are same at the first example and are heterogeneous at the second exam-

ple rise toward the design domain. As the density of the rising bubble is 
set lighter than the density of the fluid embedding the two bubbles, the 
effect of the contacting of the two bubbles is not significant as shown 
in Fig. 11(b:right) and Fig. 12(b:right). Rather the initial movements 
of the two bubbles creasing the motion of the containing fluid increase 
the structural compliance and determine the optimal designs. This as-

pect can be proven by the investigation of the symmetry of the designs 
in Fig. 11(a) and Fig. 12(a). Although the size of the right bubble in 
Fig. 12(a) is two time larger than that of the left bubble, the optimized 
design is almost symmetric that proves the effect of the bubbles is neg-

ligible compared with the effect of the heavier container fluid. On the 
other hand, the structural optimization problems considering the effect 
of the dropping fluid is considered in Fig. 13 and Fig. 14. As the bub-

bles whose diameters are same in Fig. 13 and are different in Fig. 14 and 
whose densities are set heavier than that of the containing fluid, the sym-

metric design is obtained in Fig. 13 where the antisymmetric design is 
obtained in Fig. 14. In Fig. 14, it can be observed that the force exerting 
on the surface of the right bubble is higher, some supporting structures 
stiffer than the supporting structures in the left design domain emerge 
in the right design domain. In addition, the porous structure observed in 
the previous example is not observed in this case. These designs show 
the importance of the consideration of the transient force due to the 

two-phase flow.
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Fig. 5. Example 1. Optimized layouts with the different surface tension coefficient. (a) Zero surface tension, (b) five times surface tension, (c) ten times surface 
tension and (d) the compliance values.
4. Conclusions

This study has developed an analytical theory for a novel two-phase 
fluid-structure interaction system and a topology optimization scheme. 
Ascertaining and finding the optimized topologies for two-phase flow 
and structure interaction entails grappling with various interaction con-

ditions including the surface tension effects in the fluid simulation, thus 
rendering the simultaneous optimization of fluid-structure domain and 
the coupling interaction condition a formidable challenge. Tradition-

ally, there are two approaches to simulation or mathematical modeling 
of this interaction: the one-way coupling approach, which focuses on 
the influence of fluid on structure, and the two-way coupling approach, 
which additionally considers the influence of structural deformation on 
fluid. This multiphysics simulation presents considerable difficulties, 
especially when applying and implementing a topology optimization 
scheme without a predefined topology in prior. It is persistent to note 
that conventional simulation schemes typically require explicit bound-

ary definitions between fluid (whether it’s a single phase or two-phase 
flows) and structure, which can introduce theoretical and computational 
challenges when applying topology optimization to fluid-structure sys-

tem. Moreover, as explicit boundaries are also necessary in two-phase 
flow simulation, the theoretical difficulty exists.

To address these difficulties, the present study introduces the follow-

ing developments. Firstly, the monolithic design approach, which lever-

ages the deformation tensor for fluid-structure interaction, is extended 
to accommodate one-way coupling. It is important to note that while the 
monolithic design approach can handle the two-way coupling, conver-

gence issues may arise, particularly in two-phase flow simulation, even 
with the use of state-of-the-art simulation techniques. Thus, for the sake 
of simplifying the coupling simulation, one-way coupling is assumed 
that is one of the limitations of the present study. Due to several numer-

ical difficulties such as the local optimum issue, the non-convergence 
and the dramatic change of flows the current study simplifies and lim-
7

its the simulation conditions with the falling or rising of a drop with 
low Reynolds numbers. To our best knowledge, this topic has not been 
considered in topology optimization. Secondly, two-phase flow simula-

tion is conducted using the established phase-field method with the VOF 
method. In order to enhance numerical convergence in optimization and 
analysis, some adjustments and modifications are made to the phase-

field equation that determines the type of fluid, taking into account the 
distribution of the design variables. The analysis of complex flow split-

ting and merging condition is possible. However, from an optimization 
point of view, these complex phenomena increase the computational 
time and the computation of the derivative considering complex flow 
behavior may not be possible. In addition, the present study only con-

siders flow inside closed box as the structural displacement along the 
boundary means the alternation of the flow boundary condition.

With these advancements, it becomes possible to perform numerical 
simulations and topology optimization of two-phase flows. Based on the 
optimization results, several observations are made. When integrating 
structural compliance as the objective function with a mass constraint, 
the optimized layouts bear a resemblance to those obtained from com-

pliance minimization problems. This is a logical outcome, as the motion 
of the two-phase flow exerts mechanical force on the structure, with the 
fluid stress serving as the origin. Consequently, the structural domain 
should possess greater stiffness to minimize structural compliance. Fur-

thermore, it is observed that the motion of heavier fluid significantly 
influences the optimized layout. When lighter fluid moves upward due 
to buoyancy within heavier fluid, the predominant fluid-induced force 
stems from the heavier fluid. However, when the heavier fluid moves 
downward due to gravity, the fluid-induced force from the heavier fluid 
becomes a crucial factor in designing the optimized structure. Further 
scrutiny of the optimized layouts reveals the effectiveness of porous 
structures in minimizing the impact force at the interaction surface be-

tween the fluid and solid. One limitation of the present approach is its 
reliance on one-way coupling instead of two-way coupling. Therefore, 
in future research, it would be beneficial to develop a new numerical 

approach capable of incorporating the two-way coupling of two-phase 
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Fig. 6. Example 1. (a) Optimized design without the solid contact box, (b) the 
responses, and (c) the time history of the compliance (maximum displacement: 
4.0659 × 10−6 m).

Fig. 7. Problem definition of Example 2 (Gravity: 9.81 m∕s2 in downward di-

rection, Fluid: 𝜌1 = 1000 kg∕m3, 𝜇1 = 10 Pa s, 𝜌2 = 0.001 kg∕m3, 𝜇2 = 0.1 Pa s, 
𝑔 = 9.81 m∕s2, Simulation time = 0:0.01:1, 𝛼max = 107, Structure: Plane strain 
assumption, Young’s modulus = 106 N/m2, Poisson’s ratio = 0.3, Density = 100 
kg∕m3, 𝛾𝐿 = 0.1, 𝜀 = 0.0005, mesh in the design domain 200 by (10+10+20), 

Fig. 8. The initial responses with an initial design 𝛾 = 0.3. (a) Top: the motions 
of the droplet and bottom: the norm of the structural displacements (maximum 
displacement: 0.0183 m) and (b) the time history of the compliance.

Fig. 9. Example 2. (a) Optimized design with solid box, (b) the responses, and 
8

CFL ≤ 0.01, 𝑛 = 3, 𝑛𝑠 = 5, 𝑛𝑓𝑖𝑙𝑡𝑒𝑟 = 3, 𝑛𝑝𝑒𝑛 = 5.)
 (c) the time history of the compliance (maximum displacement: 0.0030 m).
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Fig. 10. Example 2. (a) Optimized design without solid box, (b) the responses, 
and (c) the time history of the compliance (maximum displacement: 0.0031 m).

Fig. 11. Rising bubble example with the same radius (𝛾𝐿 = 0.02, 𝜀 = 0.001, time 

Fig. 12. Rising bubble example with the different radii.

Fig. 13. Sinking bubble example with the same radius.
9

step: 0.01 s, CFL ≤ 0.01 s).
 Fig. 14. Sinking bubble example with the different radii.
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fluid-structure interaction systems. In addition, it is possible to include 
the mathematical formula to include the effect of the porous-like struc-

ture.
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