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Reliable fracture diagnosis monitoring and analyzing low-frequency transverse vibration data can be achieved
through an in-depth understanding of the physical interactions between wave propagation and boundary
conditions. The present study aims to investigate the effects of the boundary conditions on the low-frequency
structural vibrations of bones. Time-frequency domain analysis of transverse vibration signals depending on the
boundary conditions of bones is analyzed and investigated. These studies reveal that the responses of fractured
or non-fractured bones are different and influenced by the displacement and force boundary conditions. These

relationships can be considered in the development of a smart fracture diagnosis system considering the posture
and boundary condition. To validate the present observations, the experiments with artificial specimens and

cadaver are carried.

1. Introduction

The present study presents the investigations of fracture diagnos-
tics by low-frequency based health monitoring considering material
properties, geometry, force and boundary condition. Some orthope-
dic doctors including the authors faced difficulties in reliably and
frequently identifying the damage and modal parameters of peoples
and assessing fracture healing rigorously as they are time-varying
data due to the time varying material properties and posture. Vari-
ous medical gold standard techniques such as X-ray, CT (Computed
tomography), positron emission tomography (PET) and low-frequency
vibration technique exist to diagnose various pathological and trauma-
induced conditions (Toney et al., 2016; Ali, 2019; Dimililer, 2017) and
references therein (Yoon et al., 2021). The present study employs the
analysis of the low-frequency vibration data as an alternative to these
gold standard medical techniques (Casaccia, 2015). An application
of high-speed synchrotron X-ray phase contrast imaging in real-time
damage characterization is studied with glass fiber reinforced compos-
ites subjected to dynamic loading (Gao et al., 2021). Femur bone is
diagnosed with non-contact vibration-based approach using position
detection approach (Gautam and Rao, 2021). Synthetic tibial cortical
bone is investigated to diagnose bones for fractures, osteoporosis and
healing with interaction between high-amplitude low frequency vibra-
tion and low-amplitude high frequency guided waves (Guha et al.,,
2020). Acoustic-based approach is employed to distinguish between
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fractured and whole bones using digital signal processing and machine
learning (Boger et al., 2020). To assess bone healing in fractures, the
feasibility of the mechanical vibration method is proposed (Mattei
et al,, 2019). Time-frequency domain analysis of the vibration sig-
nals depending on the boundary conditions of bones is investigated.
Comparing the vibrations with the ideal straight posture and boundary
condition, it reveals that the responses of fractured or non-fractured
bones are influenced. In real medical situation, however, patients ex-
perience the difficulties in making their bodies to the measurement
positions for various different reasons such as pain, fracture position
or different characteristics in medical devices. From a mechanical
engineering point of view, the differences in the responses due to the
different boundary condition are naturally accepted but from a medical
engineering point of view, it also becomes an issue how to analyze
the effect of the boundary condition or the posture to vibration data.
The effects and relationships of the boundary conditions can potentially
be explored for the development of a smart fracture diagnosis system
considering the posture and boundary conditions of bones. Thus, this
research conducts some experiments in order to observe the effects of
the boundary conditions. To validate the present observations, some
experiments with artificial specimens, animal legs, and a cadaver are
carried out.

Some relevant researches about the application of low-frequency
transverse vibrations to diagnose bone fracture and degenerative char-
acteristics in non-medical environments can be found (Nokes, 1999).
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Fig. 1. (a) Diagnosis system with low-frequency vibration and (b) the three boundary conditions considered in the present study (Boundary condition 1: lying down in contact
with ground, Boundary condition 2: standing condition on shoe and Boundary condition 3: bent leg condition).
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Fig. 3. Experiments with plastic bar and silicon. (a) Plastic bars and silicon specimens, (b) the responses with the sensor and the actuator attached to the vertical direction load
and (c) the responses with the sensor and the actuator attached to the horizontal direction load.

Accurate and expensive medical techniques can accurately monitor
various pathological and trauma-induced conditions with the side effect
of the exposing the radiation. To diagnose the mechanical conditions
of bone without exposure of the radiation, the mechanical responses,
i.e., displacements and low-frequency vibration, can be used. For ex-
ample, medical doctors already push gently and pull back to feel the
static and dynamic stiffness of healing bone. To precisely analyze these
responses, the displacement and vibration sensors can be incorporated
at additional cost (Christensen et al., 1986; Mattei et al., 2017, 2018;
Pastrav et al., 2008; Heny$ and Capek, 2019, 2018; Bediz et al.,
2010; Di Puccio et al., 2017; Leuridan et al., 2017; Collier and Ntui,
1994; Ryder et al., 1993; Van der Perre and Lowet, 1996). In these
procedures, the posture and the boundary conditions naturally affect

the responses of human body. For example, patients may move their
legs down or up during diagnosis to relieve pain or for no reason.
However, doctors should use their empirical experiences of the di-
agnosis of patients by hand. From the point of view of mechanical
engineering, the static and dynamic response varies depending on the
boundary conditions and body posture. Therefore, it may be necessary
to quantitatively investigate the effect of the boundary conditions on
the dynamic responses.

This paper studies the experimental diagnosis methods considering
some boundary conditions in order to diagnose fractures and osteogen-
esis imperfection using low-frequency transverse vibration in Table 1.
As the pose of human varies, the boundary conditions affecting the
transverse vibration become different from a mechanical engineering
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Fig. 4. Vibration tests for the effect of the size of bone with plastic bar and silicon. (a) Thicker plastic bars and silicon specimens (38 mm and 31 mm for the outer and inner
radii), (b) the responses to the vertical direction load and (c) the responses to the horizontal direction load.

Table 1
The three boundary conditions considered in the present study.

Boundary condition 1: the direction of the impact force
Boundary condition 2: the varying thickness under foot
Boundary condition 3: the variation of knee angle

point of view. The differences in the responses in the frequency do-
main considering the boundary conditions contain valuable information
regarding the stiffness and strength of specimens. Indeed, the diagno-
sis using transverse vibration data should consider the effect of the
boundary condition. In order to distinguish these differences according
to person’s posture, the transverse vibration experiments with several
cases of boundary conditions, i.e., lay-down, standing up and sitting,

are carried out. After measuring the vibration data with the different
boundary conditions, the numerical decision algorithm using the virtual
spectrogram is applied to identify the existence of crack. To validate
the present approach, several experiments are carried out with plastic
bars with silicon, animal legs and a cadaver. After integrating all
key technologies, a smart diagnosis system, as shown in Fig. 1, was
extended.

The remainder of this paper is arranged as follows: Section 2 pro-
vides an overview of the phenomena of bone fracture. Experimental
results obtained using artificial specimens, animal legs, and a cadaver
are presented. Experimental results including a cadaver test are pre-
sented to investigate the effect of the boundary conditions in Section 3.
The conclusions and findings are summarized in the conclusion.
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Fig. 5. Vibration tests for the effect of the different locations of fracture with plastic bar and silicon. (a) Plastic bars and silicon specimens, (b) the responses to the vertical

direction load and (c) the responses to the horizontal direction load.

2. Transverse vibration considering boundary condition

2.1. Bilateral symmetry and smart diagnosis system with the Modal Assur-
ance Criterion (MAC)

The bilateral symmetry plays an important role in the present study.
To have a reliable reference, the use of the bilateral symmetry was
proposed (Yoon et al., 2021; Jacob and Wyawahare, 2013). Indeed,
this research also adopts the application of the bilateral symmetry.
This study presents the application of the bilateral symmetry and the
effects of the boundary conditions are considered. In addition, it is also
proposed that the MAC value can be utilized to diagnose the existence
of fracture with several boundary conditions.

The classification is carried out based on the modal assurance

criterion (MAC) in (1). To investigate the robustness of the system,
the present approach investigates the characteristics of the signals in
the frequency domain. To achieve this purpose, the frequency range of
the curve for the evaluation of ¢ in (1) should be determined in prior.
This research sets the maximum frequency value in the range of 60 to
100 Hz. With this choice, the criterion algorithm shown in Fig. 2(b)
can be developed. The maximum reference value of the MAC can be
determined by experiments considering the three boundary conditions.

¢

2

|XNo fracture * XSignal

@

|XN0 fracture | Xsignal
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Fig. 6. Vibration tests for the effect of the different sizes of fracture and crack with plastic bar and silicon. (a) The responses to the vertical direction load and (b) the responses

to the horizontal direction load.

The reference signal, Xy fractures 1S the signal without fracture, and
the measured low-frequency vibration signal is denoted by Xgisnal-
The frequency response functions through the vibration based impact
experiment with normal or fractured bone are denoted by Xgisn,1-
Considering the effects of the boundary conditions, the criterion values,
¢*, are determined.

{

where the critical value separating signals is denoted by ¢*. The
criterion value is determined heuristically. The concept of the MAC
value in (2) means that in case of one or near one for the MAC value,
it indicates that two signals are similar. A lower value for the MAC
indicates that the two signals are different.

¢ > ¢* No problem (No fracture or no degenerative bone)
¢ < ¢* Problem (Fracture or degenerative bone)

@

2.2. Experimental methodology (single input and single output) and mate-
rials

To investigate the effects of the boundary conditions, this study
conducts experimental studies on plastic bars and silicon, artificial
bone and cadaver with the three boundary conditions mainly affecting
the transverse vibration of the specimen. To investigate the effects of
the boundary conditions on the transverse vibration responses, several
experimental studies are carried out with plastic bar and silicon, arti-
ficial specimen and the cadaver specimen. In this study, the material
properties of the plastic pipe and silicon are set as follows: (Silicon:
p = 1500 kg/m3, E = | MPa, v = 0.47; plastic pipe: p = 1330 kg/m3,
E 2 GPa, v = 0.4) and artificial bone is made with almost the
similar material properties as real human bone (artificial bone: p

2000 kg/m3, E 2.13 GPa, v = 0.3). For gelatin, ballistic gelatin
coagulated by mixing gelatin powder with water is used and it is known
that ballistic gelatin has the material properties very similar to those of
human or animal muscles.

In this study, two specimens with and without fracture were pre-
pared and tested at least 3 to 10 times to calculate the average re-
sponses of these data. Not to mention, the transverse vibration data
analyzed in the smart diagnosis system are dependent on the boundary
conditions as well as the applied force. An impact hammer is employed
in order to apply the force with an accelerometer sensor measuring
the acceleration. Low-frequency vibration signals were recorded using
a DAQ device. It is important to maintain the locations of sensor
and impact hammer for consistent measurement in vibration-based
approach. From our experiment, it is observed that reliable vibration
data from 10 Hz to 100 Hz range can be obtained but influenced by the
boundary condition. The signal processing with fast Fourier transform
(FFT) is performed to analyze the data. The vibration-based mechan-
ical approach has the advantages of being inexpensive, lightweight,
non-invasive, portable, non-radiative, and capable of being used in
underdeveloped environment. For the experiments, the accelerometer
(PCB 352C33) and the hammer (PCB 086C03) are used with a NI-9234
DAQ device for the data acquisition.

3. Experiment results and discussions
3.1. Effect of the direction of impact force (horizontal or vertical load)

First of all, this subsection considers the effect of the direction of
the impact impulse force (Leonard, 1986). The magnitude of the impact
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direction load.

force is between 1 N and 8 N which does not cause discomfort to the
patient. Not to mention, the transverse vibration data vary depending
on the direction of the impact force. The amplitudes and frequencies
of vibration data depend on the direction of the applied impact force,
which affects the accuracy of smart diagnostic systems. The present
study suggests to utilize the bilateral symmetry to determine the thresh-
old value. For example, it is possible to diagnose the condition of
right leg with the information of left leg in a normal condition. With
the signal of the normal condition in advance, it is also possible to
diagnose the status of bones. For example, Fig. 3 shows the transverse
vibration data depending on the location and direction of the impact

force. In Fig. 3(a), the condition at which patience is positioned in
long-sitting on bed and legs is assumed and the substitutes are put
on the ground and the vertical and the horizontal impact forces are
applied in Fig. 3(b) and (c), respectively. Interestingly the frequency
response functions are very different for the same specimens with
respect to the different force directions. In Fig. 3(b), the amplitude
of the responses of the fracture specimen is higher than that of the
unfractured specimen. Below 10 Hz, the response of the unfractured
specimen is higher due to the boundary condition and until 90 Hz, the
amplitudes of the responses of the fracture specimen are higher. With
the utilizing these features, it is possible to diagnose whether a specific
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the sensor and the actuator attached to the horizontal direction load.

specimen is fractured or not fractured. Note that this research considers
the amplitudes over the frequency domain in addition to the resonance
frequencies. The MAC values are calculated with the data sampled by
the three tests for each case in Fig. 3(b:right). The similarities among
the data are determined. For example, the MAC values computed with
the transverse vibration data without fractures are over 0.95 and the
MAC values computed with those of fractured and unfractured speci-
mens become lower than 0.5. These differences are escalated further by
adjusting the frequency range and this research adopts the frequency
range between 20 Hz and 80 Hz. Fig. 3(c) shows the vibration data with
the horizontal direction force and the acceleration in the same direction
is also measured. The overall amplitudes become higher than those in
Fig. 3(b) as the direction of the force are physically perpendicular to the

boundary condition. As opposite to the vibration case of Fig. 3(b), the
average amplitudes of the fractured specimen are lower in Fig. 3(c).
The changes of the magnitudes are observed below 40 Hz. The MAC
values of these vibration signals are also applicable in separating the
signals and the features in Fig. 3(b) and (c) can be implemented in a
smart diagnosis system. One thing what we want to emphasize is that
the transverse vibration data without fracture should be presented as
a reference signal and can be obtained by the usage of the bilateral
symmetry. It is also an issue about the applicability of the present
approach with the vibration on the diagnoses of various fractures. Thus,
several experiments with different size of bones, different locations of
fracture and different size of fractures are carried out. The experimental
results show that it is possible to apply the frequency response function
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for the different situations. With the different size of bones, the MAC
values with and without fracture show sufficiently different values in
Fig. 4. In Fig. 5, the effect of the fracture location is tested. This shows
that the MAC values are sufficiently different. Fig. 6 investigates the
effect of the size of fracture. Unlike the other cases, there are small
differences in the responses.

In order to improve the similarity toward human bone and muscle,
the artificial bone whose materials are known to be similar to those
of human is experimented with the same conditions in Fig. 7. The
transverse vibrations before and after fracture are measured by varying
the direction of the impact force too. Fig. 7(b) and (c) show the
frequency responses of the vibration data of these experiments. These
curves illustrate that the responses of the artificial bone with silicon

in Fig. 7 are similar to those of the plastic bar with silicon in Fig. 3
and can be used as substitutes in order to investigate the vibration
features of human. Due to the degeneration of stiffness with fracture,
the resonance peaks observed between 20 Hz to 100 Hz appear in lower
frequency domains compared with the resonance peaks of healthy
specimens for both vertical and horizontal impacts. This aspect offers
practical importance as the use of human specimens is limited in terms
of quantity and quality. In other words, it is possible to stack the
relevant data regarding various fractures with the artificial plastic bars.

In order to distinguish the above signals, it is possible to apply the
MAC in (1). Considering the observations in the precedent researches
and the above responses, this research suggests to use the transverse
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vibration signals below 100 Hz. Depending on the experimental condi-
tions, the critical value of the MAC should be chosen. The above figures
illustrate the curves of the MAC values for several specimens with
and without fractures. The responses of the bone without fracture are
set to the reference signals. Base on there results, this study proposes
to adopt a real value between 0.4 and 0.5 for the MAC value. The
values larger than the critical value indicate consistent correspondence
whereas small values may indicate poor resemblance of two signals and
imply potential fractures. In short, the observed MAC value can be used
to identify whether a bone has fractures or not.

For a final verification, the above experiments are repeated with a
cadaver (male, 84 years old, 168 cm tall) in the anatomy laboratory
in Hanyang University, Seoul, Korea, on July 2020. The tibia on one
side of the body was fractured and the body was laid on a table. The
bone fracture was made on the midpoint between the tibial tuberosity
and the medial malleolus using a bone saw. The vertical or horizontal
impact forces are applied and the accelerations are measured and
analyzed with the same approaches above. Fig. 8 shows the experi-
ment setup in (a), the analysis with the vertical force in (b) and the
analysis with the horizontal force in (c). The responses are similar to
those observed in the plastic pipes and the tailored bone substitute.
Again the frequency domain is set from 20 Hz to 80 Hz due to the
uncertainty of the boundary condition. It is important to consider the
material properties of bone such as Young’s modulus, porosity and
density. From a mechanical engineering point of view, with a bone
with a lower density, the resonance frequencies become different with
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lower amplitudes; the ratio of the stiffness to the mass determines the
resonance frequencies. Therefore, the concept of the bilateral symmetry
can be employed.

3.2. Experiments with gelatin foundation

For a next experiment, plastic pipes with elastic foundation are
considered in Fig. 9. The objective of this experiment is to investigate
the effect of the elastic boundary condition. The transverse vibration
data for the impact force applied perpendicularly to the pipes are
measured to identify the existence of fracture as shown in Fig. 9(a).
Fig. 9(b) shows the detailed vibration data in our experiment. The
responses with red color are the responses with fracture where the
responses with black color are the responses without fracture. It is
observed that the amplitudes between 10 Hz to 80 Hz with the gelatin
substrate become larger. In order to separately investigate these data,
Fig. 9(c:left) shows the transverse vibration data with and without
fracture for the grounded artificial pipe. Here it turns out that the
amplitude of response without fracture becomes larger. For the ro-
bustness, the three experiments are carried out for each case and
Fig. 9(c:right) shows the MAC values from 20 Hz to 80 Hz of these
experiments. The frequency domain is chosen to remove the oscillating
signals below 20 Hz and over 80 Hz. As illustrated, the criteria with
the MAC can be used to distinguish the cases. In Fig. 9(c and d), the
MAC values above 0.9 are obtained with the data with fracture and the
MAC values below 0.7 are obtained with the fracture and non-fracture
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Fig. 11. Modal assurance criterion with and without elastic foundations. (a) MAC
without elastic foundation, and (b-e) MAC values with various elastic foundations (b:
5 mm, ¢: 10 mm, d: 15 mm and e: 20 mm).

signals. Fig. 9(d:left) shows the experimental data with the 15 mm
thickness gelatin foundation. Due to the stiffness of the gelatin layer,
the resonance peak around 30 Hz appears. The resonance frequency
around 30 Hz after fracture illustrates that the interpretation of the
simple spring—mass vibration can be possible. Fig. 9(d:right) shows the
MAC values. Similar to Fig. 9(c:right), it turns out that the MAC based
identification method can be an efficient measure in these cases. With
the elastic foundation, the frequency domain between 10 Hz to 70 Hz
is chosen. Comparing with Fig. 9(c) and (d), it is recognized that the
elastic boundary condition is important in the vibration data. Being
impossible to make the cadaver upright position, we failed to carry
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out and verify the experiment with several elastic foundations with the
cadaver.

Fig. 10 shows the frequency response functions with the various
elastic foundation, i.e., 5 mm to 20 mm in 5 mm increments, with the
11.76 N force. By changing the thickness value of the gelatin elastic
foundation, the variations of the frequency responses function are ob-
served with or without fracture. The stiffness and resonance frequency
become lower by increasing the height of the gelatin foundation. Note
that the stiffness of the elastic foundation is inversely proportional to
the height and the increase of the thickness higher the resonance peak.
These response changes can be quantified as the representative MAC
values and can be used to determine the presence or absence of cracks
with the elastic foundation in Fig. 11.

3.3. Experiment concerning knee angle

For a final experiment, the effect of knee angle on signals is con-
sidered. The objective of this experimental study is to find out an
optimal knee angle to classify the status of bone. Two plastic bars
coated silicon layers are linked as shown in Fig. 12(a). By varying the
angle between the plastic bars with the clamped side, the accelerations
with and without fracture are measured in Fig. 12(b: without fracture)
and (c: with fracture). The responses show the complex dependency
with respect to the specified knee angle. Thus it’s challenging to say
quantitatively what angle is best to differentiate these data. Having
investigated and studied these data in Fig. 12(b) and (c), it is found
that 90 degrees of the knee angle is the best angle to distinguish
these vibration data with or without fracture. See Fig. 12(d) showing
the vibration data with 90 degrees for the knee angle. The distinct
differences are observed around 30 Hz. The transverse vibration data
without fracture is lower than that with fracture at these frequencies.
This implies that the transverse vibration data with this O degrees
angle can be utilized in a smart diagnosis system. The right column of
Fig. 12(d) shows the MAC values with these data; the three experiments
are carried out with and without fracture and these data are analyzed
to compute the MAC value. The upper value around 0.9 can be used
to separate these data with and without the fracture using the modal
assurance criterion. In addition to these experiments, a cushion is
placed underneath the specimens as often patient’s legs are placed over
the cushion during medical diagnosis in Fig. 13. From a mechanical
point of view, this cushion can be regarded as the visco-elastic support
which increases the complexity of the signals. With a normal cushion,
fortunately its effect is not significant investigated in our research and
the responses and the MAC values between 20 Hz and 100 Hz are
similar to those without cushion. Note that in Fig. 13(b), the sensor
and the impact hammer are located vertically where in Fig. 13(c),
they are located horizontally. The responses are varied depending on
the direction of the force as observed in the previous experiments.
The resonance peak and responses around 30 Hz in the cushion with
the fracture-free specimen are equal to the resonance and responses
near 50 Hz without the cushion specimen. The resonant peak about
50 Hz without cushion is equivalent to the resonance peak about 90 Hz
with no crack and cushion. In our experiment, it is also observed that
the noises are smaller in the experimental setup with the horizontal
force and sensor in Fig. 13(c). This can be explained by the contact
condition between the specimen and the cushion. In other words,
compared with the vertical configuration in Fig. 13(b), the effect of the
cushion is minimized with the configuration in Fig. 13(c). This aspect
is also observed in Fig. 3. In short, depending on the directions of the
sensor and the force, some differences are observed. When the reference
signals are adequate, the MAC can be used to distinguish the signals. It
was tried to use a cadaver to check this feature. However, the varying
the knee angle in a cadaver is impossible as the treatment of a corpse
makes joint stiffness in our experiment. It is our limitation that this
study should be verified with living peoples in future.
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Fig. 12. Experiment for knee angle. (a) The experiment status, (b) the transverse vibration data without fracture for various knee angles, (c) the transverse vibration data with

fracture for various knee angles and (d) the vibration data with 90 degrees.

4. Conclusions

This experimental study provides a new insight into the effect of
the boundary conditions on fractured human vibration. Medical doctors
faced difficulties in reliably and frequently identifying the damage
and modal parameters of patients as they are time varying vibration
data due to the time varying material properties and their postures
(boundary conditions). In order to investigate the effect of the boundary
conditions, this study conducts experimental studies on plastic bars
with silicon, artificial bones and cadaver with the three boundary
conditions mainly affecting the transverse vibration of the specimen.
To investigate the effects of boundary conditions on the transverse
vibration, several experimental studies are carried out here with plastic
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bars with silicon, artificial specimens and the cadaver specimen. In
order to investigate the existence of fracture, it is ideal to conduct the
experiments in the plane ground condition with horizontal load. Being
often difficult to carry out the experiment with the ideal boundary and
loading condition, the boundary conditions and the loading condition
should be considered. In order to categorize the transverse vibration
data, the criterion based on the modal assurance criterion (MAC) is
applied and it turns out that the MAC values at the low frequency
domain provide information to answer the foregoing fracture question
considering the boundary conditions. In summary, the present research
conducts an experimental study in order to enhance the accuracy of the
smart diagnostic system based on the transverse vibration data at a low
cost.
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