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The present study develops a novel size optimization method to control the buckling mode shape and associ-
ated buckling temperatures of plates. From a structural stability point of view, predicting the buckling temper-
ature and mode shape of structures is one of the most important research topics in engineering. However,
coming up with optimized engineering structures through engineering intuition for controlling these aspects
is challenging. To address this limitation, the present study proposes the combination of finite element simu-
lation and a size optimization scheme. Based on the idea that the structural buckling temperature and mode
shape of a plate are mainly influenced by the thickness of the plate, in the optimization process, the thickness
values of the divided sections of the target plate are set as the design variables. The buckling mode shape and
buckling temperature are set as the objective functions, subjected to the total volume of the target plate. By
applying the size optimization scheme, it is possible to determine the optimal thickness distributions for induc-
ing the desired buckling mode shapes and buckling temperature values. The validity of the proposed size opti-

mization method has been verified using several numerical examples.

1. Introduction

This study presents a novel structural optimization method by com-
bining finite element simulation and a size optimization scheme to esti-
mate, control and optimize the buckling mode shapes and buckling
temperatures of plates in buckling cases caused by thermal expansion.
From a structural stability perspective, predicting the buckling temper-
ature and mode shapes of structures is vital in engineering. Parameters
such as shape, thickness and geometric features can be optimized
through mathematical programming to control the critical temperature
and buckling mode shapes of structures. Before the optimization pro-
cess, the influencing or dominant parameters should be pre-selected.
Considering the simple thermal buckling theory, the present study sets
the thickness values of homogeneous and composite plates as the design
variables among several critical parameters in the size optimization pro-
cess [1]. To demonstrate the effectiveness of the present optimization
framework, several size optimization problems are solved considering
the thermal buckling mode and buckling temperature.

The buckling of structures owing to thermal expansion has been a
significant issue in various engineering problems [2,3]. Analyses on
the buckling of composite materials to prevent such engineering prob-
lems and improve structural stability, can be found in [4,5]. Studies on

the effect of temperatures on buckling [6-8], sudden changes of struc-
ture shapes under certain conditions [9-11], and differences between
buckling due to thermal expansion and mechanical forces [12] have
been conducted. Reviewing the relevant studies on the buckling phe-
nomenon, various numerical and experimental methods have been
developed and applied to solve buckling problems [13-15]. Despite
the precedent research studies and increasing importance of structural
optimization to control the buckling phenomenon, buckling related
problems continue to be issues that are mainly solved by experience,
intuition and empirical methods. Despite the limitations in solving
the uncertainty of the buckling phenomenon, applications of the ther-
mal buckling mode are emerging in structural optimization, to allow
larger actuation for soft robots and develop 4D printing of flexible
structures that are triggered by thermal loads [16,17]. Because the
uncertainties in the buckling phenomenon still exist even with the
increasing application demand, it is necessary to predict and control
buckling problems. Therefore this study develops a size optimization
scheme to control the buckling temperature and mode shape caused
by thermal expansion.

The structural optimization scheme in the present study sets the
thickness values of the structures as the design variables that mainly
influence the buckling phenomena. To precisely control the tempera-
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tures and buckling modes of the structures, the present study optimizes
the thickness values of the divided sections of the target structures.
The buckling temperature and buckling modes are considered as the
objective functions. To effectively control the buckling temperature,
the objective function minimizing the differences between the buck-
ling and reference temperatures is considered. To control the buckling
mode, the objective function minimizing the buckling and target dis-
placements is considered. The total volumes of the structures are set
as the constraints using the dimensions as the design variables. To val-
idate and illustrate the concept of the present study, homogeneous and
composite structures mainly discretized by the shell element are con-
sidered [18-21]. The Eigen buckling simulation is carried out to com-
pute the buckling temperature and buckling modes. For the
optimization, the finite difference method (FDM) is used to compute
sensitivity. With the developed optimization scheme, it is possible to
optimize the buckling temperatures and buckling modes of homoge-
neous and composite structures. Several optimization problems are
solved to verify the validity of the proposed scheme.

The present study is organized as follows: Section 2 presents the
basic principle and equations for the thermal buckling analysis. Sec-
tion 3 presents several size optimization formulations for controlling
the buckling temperatures and buckling modes of homogeneous and
composite structures which demonstrate the effectiveness and validity
of the present study. The conclusions and future research topics are
discussed in Section 4.

2. Optimization formulation
2.1. Linear eigen buckling analysis

Linear Eigen buckling is first formulated by defining the following
stress—strain and strain—displacement relations [22],
c=De &=Bd (1)
wheres, D, &, B and d represent the stress vector, constitutive matrix,
strain vector, strain-displacement matrix and displacement vector,
respectively. The shell element composed of two-dimensional 4-node

squared elements with six degrees of freedom per node is used for
the Eigen buckling simulation.s, € and d can be expressed as follows:

6" = {00 0y 02 Ty T 7} €= (6 £y £ 1y 10 1)

2
d"={uvwbo o, 6} @

The first three elements in each matrix represent the stress, strain
and translational displacement in the x, y, and z coordinates, respec-
tively. The next three elements represent the moment, plate curvature
and rotational displacement in the x, y, z coordinates, respectively.
Therefore, the system must consider both in-plane and bending condi-
tions. The constitutive matrix is as follows:

_ 1 v O
D 0 .

D = Et | p=|v 10 3)
0 nP 00 L

where E, V and t represent Young’s Modulus, Poisson’s ratio and the
thickness of the shell element, respectively. Because 4-node mesh ele-
ments are used, their shape functions are as follows:
1 1 1
Ny =2(1-8(1-n) Na=7(1+(1—n) Ns=7(1+&(1+n)
4 4 4 (4)
1
No=7(1-8)(1+)

The natural £-7 coordinates in (4) are attached to the element with
the origin at the center. The derivatives of these shape functions are
used to formulate the strain-displacement matrix B.
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The strain—displacement matrix B is used to calculate the element
physical stiffness matrix of single shell layer K,based on the Kirchhoff
plate formulation [23]. The constitutive matrix is denoted by D. The
element physical stiffness matrix of composite shell K, . is calculated
as the sum of layer stiffnesses over the total number of layers, L [24].

K, = / B'DBdV (6)
14

K.=3 [ BIDBaAv (7)
=1 \4

The displacement U is computed as follows:
U=(K,) 'F (8)

The static deformation vector, U is used to calculate the stresses.
The stress values are evaluated at a discrete set of Gauss points. The
G and S matrices are computed as follows:

Ni; 0 N 0 N3z 0O Ny O
Nl.q 0 Nz.,, 0 N3,,, 0 N4',7 0
G= )
0 N O Nz 0 N3z 0 Ny
0 N, O Ny, 0 N3, 0 Ny
Gx 6y 0 O
6y, © 0O O
s=1. o (10)
0 0 oxn 6y
0 0 o4 oy

The element geometric stiffness matrix of single shell layer K, is
calculated using the G and S matrices. Similar to the element physical
stiffness matrix of the single shell, the element geometric stiffness
matrix of composite shell K, is also calculated as the sum of layer
stiffnesses over the total number of layers, L.

K,,:/ G'SGdV (11)

\4

K, = f / G[S/Gdv (12)
=1 v

Using the calculated figures, it is possible to establish the Eigen
buckling formulation of the shell elements.

[Ka,c + j-crI(a.c] v=20 (13)

Eigen buckling occurs because of the load F applied to the structure
at (8). From the formulation, Eigenvalues 1., are the load multipliers
that scale the load vector to critical values that cause buckling. Eigen-
vectors v are the buckling shapes associated with the corresponding
loads.

2.2. Optimization formulation

As stated in the introduction, the present study divides the shell
structure into N sections and sets the thicknesses of the sections as
the design variables. To control the buckling temperature, the follow-
ing optimization formulation is considered.

n
- 2
OPL : NItln fobj = Z (Tcn'rical‘k - Tobjective‘k)
k=1
S 14
Subject, to Y ait; < V* (14)
i=1
tmin < t; < tmax, 1 = 1... N sections
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where the buckling temperature of the k-th buckling mode, and the ref-
erence temperature are denoted by Trscax and Topjecive » respectively.
The upper and lower bounds of the design variable are denoted by
tmax and tyin, respectively. The number of the considered temperatures
is n. The area of the section and thickness (the design variable) are
denoted by a; and t;, respectively. The upper bound of the allowable
volume is V*. The buckling mode shapes are optimized as the second
optimization problem, using the following optimization formulation.

n
. 2
OP2 : Nthn fobj = Z (@:n’tical.k - 50bjective.k)

N 15
Subject, to Y a;t; < V* (13)
i-1

tmin < ti < tmax , L = 1... N sections

where the displacements of the target points and target displacements
of the k-th Eigenmode are Scitcaik and Sopjecive > respectively.

The buckling and associated sensitivity analyses based on the FDM are
carried out after formulating the above optimization formulations. The
forward buckling analysis is performed using the thermal load on the
structures. The corresponding Eigenvalue is multiplied with the thermal
load results in the buckling temperature in the objective function. The
developed optimization process is shown in Fig. 1. To verify the validity
of the proposed optimization formulation, several structures with both
homogeneous and composite material properties are considered.

3. Optimization results

This section presents several optimization examples to verify the
validity of the proposed formulations. The MATLAB optimizer, fmin-
con, is used to solve the optimization problems; the structural analysis
is carried out using ANSYS APDL (Shell 63 for the homogenous struc-
ture and Shell 181 for the composite structure).

3.1. Example 1: Controlling buckling temperature of homogeneous plate

Fig. 2 shows the first optimization example with a homogenous
material. The analysis domain is a 100 mm by 10 mm steel plate fixed

Optimization formulation
Computation of design variables and constraints

l

Modeling of plate using 2D Rectangular shell mesh

|

Eigen buckling analysis by applying thermal loading

Update the l
design variables

Compute the gradients of
the objective function and the constraints
using Finite Difference Method

Converge ?

Fig. 1. Flow chart of the optimization procedure to control buckling
temperature and buckling mode shape.
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_ g Material properties of steel

\ Young’s Modulus = 200 GPa
A Poisson’s Ratio = 0.30
10 mm Thermal expansion coefficient =11.7x10°°C"'

Fig. 2. Material properties of homogeneous plate.

at both ends. Young’s modulus, Poisson’s ratio and the thermal expan-
sion coefficient are set to 200 GPa, 0.3 and 11.7 x 107°°C 1,
respectively.

For the optimization, the plate in Fig. 2 is divided into 25 even areas
with lengths and widths of 20 mm and 2 mm, respectively. The initial
thickness values of the sections are set as 1 mm. The first three buckling
temperature values are initially 28.3176°C, 58.0481°C and
114.2040°C, with uniform thicknesses of 1 mm, respectively. For the
first example, the target buckling temperatures in the optimization
problem, OP1, are set as 55°C, 85°C and 165°C, respectively. The
thickness values of each of the divided areas are set as the design vari-
ables and vary from 0.1 mm to 2.0 mm. Because the structural optimiza-
tion problem has a few design variables, the sensitivity computation of
the objective functions using the FDM is straight forward and efficient,
not requiring the derivation of the adjoint sensitivity analysis. To
demonstrate this, Fig. 3 shows the results of the sensitivity analysis
depending on the perturbation size. The seven arbitrarily chosen design
variables are perturbated with At = 0.01, At = 0.001, and At = 0.0001
to demonstrate the accuracy. This shows that the sensitivity of the pre-
sent FDM scheme is accurate from a computation point of view. In our
numerical implementation, the perturbation step is set to 0.001 based
on the accuracy of the computation. The optimized results of this exam-
ple for controlling the buckling temperature values are shown in Fig. 4.

The optimization results in Fig. 4 show that the first three opti-
mized buckling temperatures are converged to the target buckling
temperatures of 55°C, 85°C and 165°C, respectively. The discrepancies
of the buckling temperatures of the optimized structure in Fig. 4(c) to
the target temperatures are less than 0.1%. This example shows that
the proposed optimization formulation can be used to obtain the opti-
mized thickness of a homogeneous plate.

3.2. Example 2: Controlling buckling temperature of composite plate

For the second example, an optimization problem controlling the
buckling temperature of a structure with composite material as shown

100 mm
tl) t6 tl 1 tlb tZI
t2 t7 tlZ <tl 1 ) t22
10 mm 4 2 ts g by
t4 z 9 t 14 Lo 174
Zs ho bs Iy bs
(a)
Design Variable Sensitivity with | Sensitivity with | Sensitivity with
At =0.01 Ar=0.001 Ar=0.0001
4 3.1112 3.0802 3.0771
4 0.1801 0.1745 0.1740
ls 4.8346 4.7997 4.7961
lis 4.9079 4.8767 4.8735
i 0.1801 0.1745 0.1740
7, 31112 3.0802 3.0771
[ 31112 3.0802 3.0771

Fig. 3. (a) Illustration of the design variables and (b) FDM tests with the
perturbations.
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100 mm
[ 0.1500mm | 0.8991 mm | 1:2582mm | 0.6065mm | 0.1108 mm
1.3559 mm 0.1071 mm 0.8471 mm 0.5811 mm
10 mm 0.1205mm | 1.0716mm | 04611 mm | 1.3324 mm
0.2802mm | 0.9204mm | 0.1025 mm
09453 mm | 1.2943mm | 02367 mm

(a)

Before Optimization After Optimization

15t Mode
Buckling temperature: 28.3176°C

27 Mode
Buckling temperature: 58.0481°C

34 Mode

Buckling temperature: 114.2040°C Buckling temperature: 164.9215°C

(b)

First mode buckling Second mode buckling | Third mode buckling
temperature (°C) temperature (°C) temperature (°C)
Target 55.0000 85.0000 165.0000
Result 55.0491 85.0130 164.9215
Error 0.0893% 0.0153% 0.0476%

()

Fig. 4. (a) Optimized layout, (b) first three mode shapes before and after
optimization, and (c) analysis of the optimization results.

in Fig. 5 is considered. The analysis domain is 100 mm by 10 mm with
fixed ends. The material properties assigned to the first and second
materials are those of steel and copper, respectively.

In this example, the plate is also divided into 25 even sections with
the same initial thickness of 1 mm with a range between 0.1 mm and
2 mm. The initial buckling temperature values of the initial designs are
28.2600°C, 57.9040°C and 113.8100°C, respectively, for the first
three buckling modes. For illustration purposes, it is assumed that
the thickness values of steel and copper at each section are identical
(ticopper = tisteer = ti/2,i=1,...,N). For example, if the design variable
which can be interpreted as the sum of the thickness values of copper
and steel, is 1 mm, the thicknesses of steel and copper are each
0.5 mm; the ratio of the thicknesses is fixed. With this pre-
assumption, OP1 is solved using an optimization algorithm with target
temperatures of 55°C, 85°C and 165°C. The optimized thickness distri-
bution, its buckling temperature and buckling mode are shown in
Fig. 6. As in the first example, the optimizer can be used to obtain
the optimized thickness distribution, successfully minimizing the gap
between the target and buckling temperatures for engineering pur-
poses .

100 mm Material properties of steel

Young’s Modulus = 200 GPa
Poisson’s Ratio = 0.30
Thermal expansion coefficient = 11.7x10*°C"'

Material properties of copper

Young’s Modulus = 128 GPa

Poisson’s Ratio = 0.36

Thermal expansion coefficient =17.0x10°°C"'

10 mm

Fig. 5. Material properties of composite plate.
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The differences in the homogeneous and composite plates are
expected owing to the differences in the stiffness, thermal buckling
temperature and thermal buckling mode. To comply with the target
buckling temperatures, the thickness values of the plates are modified
to find the optimum thickness distributions. It should be noted that the
target buckling temperatures in Figs. 4 and 6 are identical and the
material models are different. By comparing the optimization results,
it can be referred that the thicker sections in the optimized design of
the homogeneous material are positioned on the bottom left and right
side of the plate, where t3, t4, ts, ti0, t2n, and ty4 have greater values
compared to the rest of the design variables. The thicker sections in
the optimized design of the composite material are positioned rela-
tively at the center of the plate, where t3, ts, ts, t11, ti2, t14, t15, tiss
tao, and tp1, have greater values compared to the rest of the design
variables.

The differences in the thickness distribution cause a difference in
the mode shapes of both plates. Unsymmetrical designs can be
obtained for the both homogeneous and composite plates, to satisfy
the target buckling temperatures. Both plates show unsymmetrical
mode shapes, whose asymmetricity becomes more deteriorated with
increasing mode numbers. However, there is a difference in the points
where the plates show the greatest out-of-plane displacement. In terms
of the second and third mode, the greatest displacement of the homo-
geneous plate is at the section with design variable t;, whereas that of
the composite plate is at the section with design variable t5o. The dif-
ference in thickness distribution causes a difference in sensitivities to
thermal loads for each section, resulting in different mode shapes for
the homogeneous and composite plates despite the similar buckling
temperature values. By evaluating the mode shapes of the designs in

100 mm

0.5954 mm

0.8888 mm

0.6523 mm
0.3144 mm
0.4005 mm

0.1882 mm
0.3579 mm

10 mm

(a)

Before Optimization

15t Mode
Buckling temperature: 28.2600°C

2"d Mode
Buckling temperature: 57.9040°C

31 Mode

Buckling temperature: 113.8100°C Buckling temperature: 164.9959°C

(b)

First mode buckling Second mode buckling | Third mode buckling
temperature (°C) temperature (°C) temperature (°C)
Target 55.0000 85.0000 165.0000
Result 55.2646 84.9690 164.9959
Error 0.4811% 0.0365% 0.0025%

()]

Fig. 6. (a) Optimized layout, (b) first three mode shapes before and after
optimization, and (c) analysis of the optimization results.
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Plate bulges up at the objective point during buckling Wy
— "W

z -

T = 50 mm
* Ly 10 e 0

Fig. 7. Optimization problem maximizing the z-displacement of the target
point.

Figs. 4 and 6, the optimization algorithm identifies the designs that are
difficult to find by engineered intuition. It should be noted that it is not
possible to obtain optimized results using some arbitrarily chosen
buckling temperatures or non-physical temperature values.

3.3. Example 3: Controlling buckling mode shape of composite plate

For the next example, the buckling mode shape of a composite plate
is considered. The composite material model is similar to that in the
second example in Fig. 5. As in the previous examples, the initial thick-
ness values are set as 1 mm and range between 0.1 mm and 2 mm. In
this example, a single point at the side of the center of the design
domain is chosen as the target point, as shown in Fig. 7. The aim is
to identify an optimized layout that makes the plate bulge up during
buckling by maximizing the z-displacement of the target point.

The optimization, OP2, is carried out on the composite material.
Fig. 8 shows the optimized layout and its first buckling mode. As illus-
trated, the optimized design and buckling mode are symmetrical. It is
interesting that the mode of the section containing the target point and
the three adjacent sections is 0.1000 mm, whereas the last section is
relatively stiffer with 1.7193 mm. It should be noted that it is also dif-
ficult for engineers to imagine this design; the present study can iden-
tify a locally optimized layout.

The above example illustrates that the present optimization algo-
rithm can be used to determine an optimized layout controlling the
buckling mode as well. To further test the validity of the proposed size
optimization scheme, the displacements of the additional points at the
center line are included in Fig. 9. This is done to identify an optimized
layout that would force the simultaneous movement of the center line
during buckling.

With the present optimization formulation, the optimized thickness
distribution in Fig. 10(a) can be obtained. As illustrated in Fig. 10(b),
the symmetric mode shape is obtained to satisfy the objective function.

100 mm

11328 mm
11043 mm
11328 mm
11301 mm

1.1301 mm

1.1328 mm
1.1043 mm
1.1328 mm
1.1301 mm

0.1000 mm
0.1000 mm
0.1000 mm
0.1000 mm

10 mm

(a)
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Plate bulges up at the objective points during buckling —u
"W

z e e —

QT
x\l/y 10 mn']\\\\\,

Fig. 9. Optimization problem maximizing the z-displacement of the target
points.

50 mm

It should be noted that the Eigenmodes are normalized by the mass
matrix.

To further investigate the present optimization, the analysis
domain is divided into smaller sections with lengths and widths of
10 mm and 1 mm, respectively; to consider the displacements of the
points marked in Fig. 11(a), the design variables are set to range
between 0.1 mm and 5.0 mm. The aim of this optimization problem
is to determine an optimized layout minimizing the gap between the
target mode in Fig. 11(b) and the buckling mode. Fig. 12(a) and 12
(b) show the corresponding design and optimized modes. This exam-
ple also illustrates that the proposed optimization scheme can be used
to identify an optimized layout to manipulate the buckling mode.

3.4. Example 4: Controlling buckling mode shape of composite structure

For the final example, Figs. 13 and 14 show the definition of the
optimization problem on the composite material (steel and copper),
and the optimized layout, respectively. The objective of this optimiza-
tion problem is to make the buckling mode of the structure resemble a
gripper. To achieve this, the objective displacements for the displace-
ments of the points marked in Fig. 13(a), are set as shown in Fig. 13
(b). The size of each finger is 45 mm by 10 mm and the center rectan-
gular domain is 10 mm by 10 mm. The design domain is divided into
101 sections. The number of divisions in each finger is 25 and each
divided section has a length and width of 9 mm and 2 mm, respec-
tively. The initial thickness of each fingers is set to 1 mm, and that
of the center domain is set to 3 mm. The design variables are set to
range between 0.1 mm and 2 mm. Fig. 14(a) shows the optimized lay-
out, Fig. 14(b) shows the mode shape and Fig. 14(c) shows the opti-
mized displacement values of the optimized structure. This example
illustrates the potential application of the present optimization algo-
rithm in soft robots.

100 mm

1.0898 mm 0.2129 mm 1.0898 mm

1.0684mm 0.1243 mm 1.0684 mm
10 mm 1.0274mm 0.1204 mm 1.0274 mm
1.0684 mm 0.1243 mm 1.0684 mm

1.0898 mm 0.2129 mm 1.0898 mm

(a)

(b)

Fig. 8. (a) Optimized layout and (b) first mode before and after optimization.

(b)

Fig. 10. (a) Optimized layout and (b) first mode before and after
optimization.
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Displacement takes place in the z- direction at the objective points during buckling

Objective point numbers

4 7 10 13 16 19
5 8 11 14 17 20
6 9 12 15 18 21

Objective displacement values (mm)

0.3000 | 0.6000 | 0.9000 | 0.0000 | -0.9000 | -0.6000 | -0.3000

(b)

Fig. 11. (a) Objective points of the plate for the control of displacement values and (b) assigned displacement values for each objective point.

10 mm

100 mm

0.2418mm

3.7078mm

4.7001mm

3.7529mm

0.2418mm

0.2418mm | 3.7529mm | 4.7001mm | 3.7078mm | 0.2418mm

0.1957mm

3.7583mm

4.7731mm

3.7875mm

0.1957mm

0.1957mm | 3.7875mm | 4.7731mm | 3.7583mm | 0.1957mm

0.1452mm

3.7779mm

4.7766mm

3. 7837mm

0.1452mm

0.1452mm | 37837mm | 49966mm | 3 7779mm | 0.1452mm

0.1000mm

3.7786mm

4.7523mm

3.7834mm

0.1000mm

0.1000mm | 3.7834mm | 4.7523mm | 3.7786mm | 0.1000mm

0.1000mm

3.7832mm

4.7109mm

3.7833mm

0.1000mm

0.1000mm | 3.7833mm | 4.7109mm | 3.7832mm | 0.1000mm

0.1000mm

3.7832mm

4.7109mm

3.7833mm

0.1000mm

0.1000mm | 3.7833mm | 4.7109mm | 3.7832mm | 0.1000mm

0.1000mm

3.7786mm

4.7523mm

3.7834mm

0.1000mm

0.1000mm | 3.7834mm | 4.7523mm | 3.7786mm | 0.1000mm

0.1452mm

3.7779mm

4.7766mm

3.7837mm

0.1452mm

0.1452mm | 3.7837mm | 4.7766mm | 3.7779mm | 0.1452mm

0.1957mm

3.7583mm

4.7731mm

3.7875mm

0.1957mm

0.1957mm | 3.7875mm | 4.7731mm | 3.7583mm | 0.1957mm

0.2418mm

3.7078mm

4.7001mm

3.7529mm

0.2418mm

0.2418mm | 3.7529mm | 4.7001mm | 3.7078mm | 0.2418mm

(a)

1 4 7 10 13 16 19
Objective point numbers 2 5 8 11 14 17 20
3 6 9 12 15 18 21
Resultant displacement values (mm) 0.2440 | 0.5790 | 0.9140 | 0.0000 | -0.9140 | -0.5790 | -0.2440

(c)

Fig. 12. (a) Optimized layout, (b) first mode shape after optimization, and (c) resultant displacement values of the objective points.

4. Conclusion

buckling phenomenon because it can cause unanticipated issues such
as fatigue failure, noise and delamination. These issues can be avoided

This study presents several size optimization formulations for con- by preventing or controlling the temperature distribution in structures.
trolling the buckling mode and buckling temperature of homogenous The thermal buckling temperature and thermal buckling mode can be
and composite plates. It is important to control the thermal induced numerically and accurately analyzed with the help of computational
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Displacement takes place in the z-direction at the objective points during buckling

1 4 25 28 31 34 55 58
Objective point numbers 2 5 26 29 32 35 56 59
3 6 27 30 33 36 57 60
Objective displacement values (mm) 1.0000 | 0.4000 | 0.4000 [ 1.0000 | 1.0000 | 0.4000 | 0.4000 | 1.0000
(b)

Fig. 13. (a) Optimization problem definition and (b) target displacements.

45 mm
0.2031 mm 0.5194 mm 0.7906 mm
0.2031 mm 0.5006 mm 0.7012 mm
10 mm 0.2044 mm 0.5006 mm 0.7012 mm
0.2031 mm 0.5006 mm 0.7012 mm
0.2031 mm 0.5194 mm 0.7906 mm

‘ =
Thickness distribution is equal for the four fingers /
(@)
\\%/

(b)

1 4 25 28 31 34 55 58

Objective point numbers 2 5 26 29 32 35 56 59

3 6 27 30 33 36 57 60

Resultant displacement values (mm) | 0.9180 | 0.4220 | 0.4220 | 0.9180 | 0.9180 | 0.4220 | 0.4220 | 0.9180

(©

Fig. 14. (a) Optimized layout, (b) first mode shape after optimization and (c) resultant displacement values of the objective points.

theories. Additionally, it is possible to apply the optimization frame-
work using mathematical programming to maximize, minimize or pre-
scribe the buckling temperature or buckling mode. To validate and
illustrate these approaches, the present study considered homoge-

neous and composite structures and formulated several structural opti-
mization problems whose design variables were the thickness values of
the plates. Using these optimization formulations, it was possible to
determine optimal thickness distributions which comply with the tar-
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get thermal buckling mode as well as the target buckling temperature.
It was also observed that the present optimization framework could be
applied to optimize the performance of soft robots or 4D printing of
flexible structures. In conclusion, the present study presented and val-
idated several optimization frameworks for controlling the thermal
buckling mode and thermal buckling temperature.
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