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Abstract
A partially debonded piezoelectric actuator in smart composite laminates was modeled using an
improved layerwise displacement field and Heaviside unit step functions. The finite element method
with four node plate element and the extended Hamilton principle were used to derive the governing
equation. The effects of actuator debonding on the smart composite laminate were investigated in both
the frequency and time domains. The frequency and transient responses were obtained using the mode
superposition method and the Newmark time integration algorithm, respectively. Two partial actuator
debonding cases were studied to investigate the debonding effects on the actuation capability of the
piezoelectric actuator. The effect of actuator debonding on the natural frequencies was subtler, but
severe reductions of the actuation ability were observed in both the frequency and time responses,
especially in the edge debonded actuator case. The results provided confirmation that the proposed
modeling could be used in virtual experiments of actuator failure in smart composite laminates.

Keywords: actuator debonding, failure, actuation ability, improved layerwise theory, finite
element method, dynamic characteristics

(Some figures may appear in colour only in the online journal)

1. Introduction

Composite laminates with active piezoelectric layers or dis-
tributed piezoelectric actuators and sensors have been compre-
hensively studied in the past few decades. With their active
piezoelectric elements, these structures are considered as smart
[1] or adaptive composite ones [2] which have the capability of
actuation and sensing. They can be used in the active vibration
control [3] and energy harvesting [4, 5] industries. The piezo-
electric materials are usually bonded on the surface or embedded
in the host structures. In most previous studies, many theories
[6, 7] were developed based on the mathematical modeling of
smart composite structures with the assumption that the piezo-
electric layers are perfectly bonded. However, actuator failures,
such as cracks or debonding, may occur during the service life of
the structures. For example, interlaminar peeling stresses [8] exist

at the piezoelectric layer interface that could lead to the
debonding of the piezoelectric layers. As a result of such
debonding, not only the strength of the structure is weakened, but
also the actuation and sensing ability of the piezoelectric elements
are decreased. Additionally, the dynamic behaviors [9, 10] are
also changed due to the effect of debonding.

Until now, a large number of studies [11, 12] have
introduced the modeling of smart composite laminates with or
without damage, such as delamination, debonding and cracks.
In these modeling methods, one of the ways of dealing with
the damage is by applying specific continuity conditions or
constraints at the debonded regions. Seeley and Chatto-
padhyay [13, 14] developed a refined higher order theory
based formulation for composite laminates with debonded
piezoelectric actuators and sensors. The continuity conditions
at the interface of the non-debonded and debonded regions
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were formulated and implemented using a penalty approach
in the finite element model. Their results were subsequently
verified by experiment [15]. Nanda and Sahu [16] developed
a model of delamination using a first order shear deformation
theory based finite element method by forcing the multipoint
constraint algorithm for the delamination. They investigated
the effect of the delamination size on the free vibration.
Another way of modeling the delamination in composite
laminates is by using the Heaviside unit step function. Kim
et al [17–20] developed theories using the Heaviside func-
tions to address the discontinuity of the displacement field in
smart composite laminates. They investigated the delamina-
tion effect on the dynamic characteristics of smart composite
structures. Oh et al [21] and Kim [22] developed a higher-
order zigzag theory based delamination modeling using the
Heaviside unit step function. The smooth transition of the
displacement in the thickness direction with a Fermi–Dirac
distribution function was developed for the delamination
modeling by Kim et al [23–25].

Sun et al [26] investigated the effect of actuator and
sensor debonding on the vibration control of beam structures.
They found that the debonding decreases the control effi-
ciency of vibration suppression. Kumar et al [27] also
investigated the vibration control of plates with partially
debonded piezoelectric actuators. The reduced stiffness was
taken as an input in their controller design. The presence of
debonding in active structures reduces not only their load
carrying ability, but also their control ability. Moreover, it
may lead to instability in the closed loop control system.
Given all of these potential problems, the detection of actuator
debonding is quite important in active structures.

In this work, we present a new mathematical modeling to
evaluate the dynamic behaviors of smart composite laminates
with partially debonded piezoelectric actuators. We use the
improved layerwise theory for the displacement assumption
and the Heaviside unit step function for the modeling of the
partially debonded piezoelectric actuator. For the numerical
solutions, the finite element procedure is implemented taking
into consideration of the electro-mechanical coupling effect.
Using the obtained governing equation, the dynamic
responses of the partially debonded piezoelectric actuators in
smart composite laminates are solved. To better understand
the debonding effect on the dynamic behaviors, both the
frequency response and transient response are investigated.

2. Modeling of debonded smart composite laminates

2.1. Modeling descriptions

In this subsection, the mathematical modeling of a smart
composite laminate with partially debonded piezoelectric
actuator is introduced. For the geometric configuration given
in figure 1, one piezoelectric actuator and one piezoelectric
sensor are attached to the surface of the clamped laminated
composite plate. The rectangular actuator is bonded 1 cm
away from the clamped root with dimensions of
5 × 4 × 0.2 cm. The sensor is bonded 7 cm away from the

clamped root with dimensions of 2 × 2 × 0.2 cm. The clamped
plate has dimensions of 30 × 6 × 0.2 cm and consists of a
sequence of orthotropic composite layers with various fiber
orientations. The actuator is assumed to be partially debon-
ded, which can be seen from the lateral view in figure 1. Thus,
to build the mathematical model of these kinds of laminated
composite structures with debonding, finite element method
based formulations can be derived based on the improved
layerwise theory [13, 24].

The constitutive relations of piezoelectric materials con-
sidering the electromechanical coupling effect are linear if
they are under small electric fields and small structural dis-
placements. These relations can be expressed as follows

D d b E
Q d E

{ } [ ] { } [ ]{ } (converse effect),
{ } [ ]{ } [ ]{ }(direct effect), (1)

T ε
σ ε

= +
= −

where D{ } is the electric displacement vector and { },ε { }σ and
Q[ ] are the strain vector, stress vector and elastic stiffness
matrix, respectively. The piezoelectric constant matrix and
permittivity matrix are denoted by d[ ] and b[ ], respectively.
The electric field vector is denoted by E{ }.

The extended Hamilton principle is used to derive the gov-
erning equations for an elastic system with piezoelectric elements

T U W t( )d 0, (2)
t

t

1
∫δ − + =

where t1 and t are the initial and final times, respectively, T is
the kinetic energy, U is the potential energy (strain energy and
electrical potential energy) and W is the external work done
by the traction force f and the applied surface charge qe. These
energy terms are defined as
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where the subscript V denotes the volume domain, S denotes
the surface domain, u is the displacement, ρ is the mass
density and ϕ is the electric potential. The traction force and

Figure 1. Geometric configuration of smart composite laminate with
partially debonded piezoelectric actuator.
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applied electric charge on the surface are denoted by fi and qe,
respectively.

The kinematics of the smart composite laminate is
modeled by using the improved layerwise theory [17]. The
assumed displacement functions are shown in the following
equations

U x y z t u A z B z

C z w D z w E z w

F z w u H z z

U x y z t w x y t w x y t H z z

( , , , ) ( ) ( )

( ) ( ) ( )

( ) ( ),

( , , , ) ( , , ) ( , , ) ( ),

(4)
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i i
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,

1

1
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1

1

∑

∑
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=
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where subscript i denotes the coordinates with respect to x or
y and k denotes the kth layer of the laminate. The quantities
Ui

k denote the in-plane displacements and U k
3 denotes the

transverse deflection. The quantities ui and w denote the
displacements of each reference plane, and 1ϕ and 2ϕ are the
rotations of the normal to the reference plane. The multipliers
ui

j and w j are the coefficients of the Heaviside step function
H that accounts for the sliding of the in-plane displacements
and possible jump of the out-of-plane displacement, respec-
tively. The delaminated interface is denoted by z .j The

layerwise coefficients A ,i
k B ,i

k C ,i
k D ,i

k Ei
j and Fi

j are
expressed in terms of the geometric and material properties
[28]. To simulate the debonding effect, the coefficients of the
Heaviside unit step function are nonzero, while, for the
perfectly bonded interface, the coefficients are set to zero.

For the assumed displacement field, it satisfies the in-
plane displacement continuity condition at the layer interfaces
for both the perfectly bonded and debonded interfaces

U z U z

k N i

( ) ( ),

( 1, , 1, 1, 2). (5)
i
k

k i
k

k1
1

1=
= … − =

+
+

+

The kinematic relation for the elastic strain is further
obtained using the strain–displacement relation. It is to be
noted that the normal strain k

33ε is zero, due to the assumption
that the out-of-plane displacement is independent of the z axis

( )U U i j
1

2
, ( , 1, 2, 3). (6)ij

k
i j
k

j i
k

, ,ε = + =

The transverse shear stresses also satisfy the continuity
condition at the layer interfaces, while, at the debonded
interface, they are still continuous by setting the transverse
shear stresses to zero

z z

i k N

( ) ( ),

( 1, 2, 1, , 1). (7)
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k3 1 3
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1σ σ=
= = … −

+
+

+

The electric potential function jϕ for the jth layer is
assumed to vary according to a cubic function in the piezo-
electric layer in the thickness direction, while it is zero for the
other layers. A cubic distribution of the electric potential field
can satisfy the surface boundary conditions of applied

voltages and charge conservation law
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where j
0ϕ and Ez

j are the mid-plane electric potential and the
electric field of the jth piezoelectric layer, respectively. The
term z z E( )j

z
j

0− − is used to address the linear electric
potential distribution in the thickness direction. The higher
order term is used to address the nonuniform electric potential
distribution in the thickness direction, while satisfying the
equipotential electrical boundary conditions prescribed on the
electrodes. The quantity jϕ denotes the potential difference
on the top and bottom electrodes in the jth piezoelectric
transducer. The mid-plane position and thickness of the jth
piezoelectric layer are denoted by z j

0 and h ,j respectively.
The electric field E{ } is correlated with the electric

potential ϕ by differentiating the scalar potential function, as
shown in equation (9)

E
x y z

{ } . (9)
T⎧⎨⎩

⎫⎬⎭
ϕ ϕ ϕ

= −
∂
∂

∂
∂

∂
∂

2.2. Finite element formulation

The finite element method can deal with the structures of
complicated geometries as well as various boundary condi-
tions. For such kind of laminated plate structures with pie-
zoelectric patches, we prefer using a four-node plate element
for the vibration analysis. It should be noted that from
the displacement field and electric potential field, it has
eight structural unknowns ( )u u u u w w, , , , , , , ¯j j j

1 2 1 2 1 2ϕ ϕ
and two electrical unknowns E( , ).j

z
j

0ϕ To implement
the finite element method, the linear Lagrange function is
adopted to interpolate the in-plane structural unknowns

( )u u u u, , , , ,j j
1 2 1 2 1 2ϕ ϕ and electrical unknowns ( )E, ,j

z
j

0ϕ

while for the out-of-plane structural unknowns ( )w w, ,j the

Hermite cubic interpolation function is preferred. These
structural and electrical unknowns can be expressed in terms
of nodal values and interpolation functions, as follows:
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( )( )
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=

where Nm is the Lagrange interpolation function, H ,m Hxm and
Hym are Hermite interpolation functions, and n is the number
of nodes in one element.

Equation (10) can be rewritten in the matrix form and
expressed by the following equation. For the four-node plate
element, the DOFs for healthy nodes and debonded nodes are
shown in figure 2
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The displacement components, strain components and
electric potential can be written in the matrix form in terms of
the structural and electrical unknowns. They can be further
represented by the interpolation functions and nodal values.
Thus, by these processes, the following matrix relations are
obtained
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Figure 2. Four-node plate element with DOFs, node 1, 2: healthy
nodes; node 3, 4: debonded nodes.
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The governing equations are obtained by using the
extended Hamilton principle defined in equation (2). The
energy conservation law is applied for a system with piezo-
electric materials. Integration by parts and using the

variational principle result in the following governing
equations

( )u u V f u S t

D V q S t

d d d 0,

d d d 0,

(15)
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where uδπ and δπϕ denote the energy functionals of the
mechanical and electrical fields, respectively.

Substituting the strain, stress and electric displacement
components into the above equation, the elemental equations
of motion are obtained and written in matrix form as follows

M d

d
C d

d

K K
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where Muu, Cuu and K uu are the element mass, damping and
stiffness matrices, respectively, Kϕϕ is the dielectric stiffness
matrix, and Kuϕ and K uϕ are the stiffness matrices due to the
electro-mechanical coupling effect. The electro-mechanical
coupling effect causes piezoelectric materials to produce
mechanical actuation under input voltages or electrical signals
under mechanical deformations. The nodal displacement and
nodal electrical variables of the element are denoted by du and
d ,ϕ respectively. The vectors Fu and Fϕ are the force vectors
corresponding to the applied mechanical and electrical forces,
respectively. The detail formulations of these matrices are
shown below.
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For the damping matrix, we prefer using the proportional
viscous damping which is the simplest damping case and can
be easily implemented in linear vibration analysis

C M K . (18)uu uu uuα β= +

The governing equation in matrix form is modified by
applying the matrix condensation, so that it takes on the
following form

M d C d Kd F, (19)uu u uu u ü + ̇ + =
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where the general forms of the stiffness matrix and force
vector have the following expressions

K K K K K F F K K F, . (20)uu u u u u
1 1= − = −ϕ ϕϕ ϕ ϕ ϕϕ ϕ

− −

3. Numerical results and discussion

In this subsection, the numerical results are investigated using
a 16 layer cross-ply ([0/90]4s) laminate with surface bonded
piezoelectric actuator and sensor. The material properties of a
single lamina and piezoelectric material (PZT-5H) are given
in table 1. The finite element mesh consists of 60 by 12
elements in the length and width directions, respectively,
which is fine enough to obtain an accurate system response.
The actuator is preset to be partially debonded, considering
two debonding cases, viz. edge and inner debonding, as
shown in figure 3. The debonding area varies from 10 to 50%
in the edge debonding case and 20 to 60% in the inner
debonding case. Subsequently, the dynamic behaviors of the
smart composite laminate with partially debonded piezo-
electric actuator are investigated and the effects of debonding
on the dynamic characteristics are presented in the following
subsections.

3.1. Frequency response

The debonding failure of a piezoelectric actuator obviously
affects the stiffness of the structure as well as its natural
frequencies [29]. This is discussed in many existing works on
structural health monitoring [15, 26, 27]. Thus, it is necessary
to investigate the effect of the debonding of the actuator on its
dynamic characteristics by frequency response analysis. To
efficiently obtain the frequency response of a plate excited by
an electric harmonic load with a magnitude of 1 V, the general
mode superposition method can be adopted. The proportional
damping ratios α and β are both chosen to be 0.000 01.
Firstly, the eigenvalues and eigenvectors are calculated from
the free vibration analysis and, then, the normalized

eigenvectors are used to conduct the modal transformation
from global coordinates to modal coordinates by the follow-
ing relation

{ }d [ ]{ }, (21)u Φ η=

where [ ]Φ is the ordered and normalized eigenvector matrix
and { }η is the modal coordinate vector.

Substituting equation (21) into (19) and left multiplying
[ ] ,TΦ the governing equation is diagonalized and each mode
is decoupled. The ith modal equation is as follows:

f t2 ¯ cos( ). (22)i i i i i i i
2η ξ ω η ω η ω̈ + ̇ + =

Thus, the frequency response of each mode can be cal-
culated by solving the second order differential equation,
separately. Using the mode superposition method, the fre-
quency responses of the global displacements are obtained.
The sensor output is obtained by the coupling effect, the
second row of equation (16).

The frequency response curves of the tip center dis-
placement and sensor output are shown in figures 4 and 5,
respectively, in the case of the edge debonded actuator. The
magnitudes of the frequency responses are all expressed in
decibels (dB), that is ( )A A20 log .10 1 2× The quantity A1

is the amplitude of the frequency response, and A2 represents
the reference amplitude of a displacement or sensor output
such as 1 m or 1 V, respectively. It is found that the effect of
actuator debonding on the natural frequencies is difficult to
observe from the frequency analysis. For this kind of struc-
ture, even with 50% debonding, the shift of the natural fre-
quencies is still not significant. Figure 6 shows the effect of
actuator debonding on the first five natural bending fre-
quencies. It is apparent that with increasing debonding area,
the five natural bending frequencies decrease. However, the
amount of frequency reduction is within 1% for all five natural
frequencies. On the other hand, it is found that the actuator
debonding affects the magnitude of the frequency response.
From the frequency response graphs, it is found that as the
debonding area increases, the magnitude of the frequency
response greatly decreases. This is due to the fact that the
debonding of the actuator causes a reduction of the bonding
area between the actuator and the host plate. Since the actua-
tion force is transferred through the contacted interface,
decreasing the bonding area causes a reduction of the force
transfer capability. Thus, if the transferred actuation force is
decreased, the system response is attenuated in consequence.

The frequency response in the inner debonding case is
investigated as well, and the results are presented in figures 7
and 8. The results lead to similar conclusions to the edge
debonding case in that the natural frequency shift is not easy
to identify. Figure 9 compares the natural frequency change
due to the inner debonding effect. The change is also within
1% for all five natural bending frequencies. However, it
should be noted that the reduction in magnitude of the fre-
quency response is not as much as that in the edge debonding
case. This demonstrates that the force transfer capability from
the actuator to the host plate in the inner debonding case is
better than that in the edge debonding case. Unlike the edge

Table 1.Material properties of host composite laminae and PZT-5H.

Material properties Host laminae PZT-5H

Young’s mod-
ulus (GPa)

E1 = 372 E= 62

E2 =E3 = 4.12
Shear modulus (GPa) G12 =G13 = 3.99 G= 23.67

G23 = 3.6
Poisson ratio ν12 = ν13 = 0.275 ν= 0.31

ν23 = 0.42
Density ρ (kg m−3) 1788.5 7500
Piezoelectric
constant

— d31 = d32 =−274 × 10
−12

(m V−1) d24 = d15 = 741 × 10
−12

Permittivity (nF m−1) — b11 = b22 = b33 = 14.41
Length (m) 0.3 0.05
Width (m) 0.06 0.04
Thickness (m) 0.125 × 10−3 0.25 × 10−3
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debonding case, the debonded piezoelectric actuator in the
inner debonding case can generate an actuating force due to
the presence of a bonding area on both sides. Although it has
a 60% debonding area, the reduction of the magnitude is very

small. Thus, from the frequency response results, it can be
concluded that the effect of the inner debonding of the
actuator on its actuation ability is much smaller than that in
the edge debonding case.

Figure 3. Details of actuator debonding sizes and locations, (a) edge debonding, (b) inner debonding.
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Figure 4. Frequency responses of the tip displacement in the healthy
laminate and edge debonded actuator cases.

Figure 5. Frequency responses of the sensor output in the healthy
laminate and edge debonded actuator cases.

Figure 6. Effects of the actuator debonding on the first five bending
natural frequencies for the edge debonding actuator.

Figure 7. Frequency responses of the tip displacement in the healthy
laminate and inner debonded actuator cases.

Figure 8. Frequency responses of the sensor output in the healthy
laminate and inner debonded actuator cases.

Figure 9. Effects of the actuator debonding on the first five bending
natural frequencies for the inner debonding actuator.
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3.2. Transient response

In the previous section, we found that the debonding causes a
reduction of the actuation force transfer capability. This effect
also influences the system response in the time domain as

well. Thus, we also investigated the transient responses of the
smart composite laminate with partially debonded piezo-
electric actuator. The clamped plate is excited by a 100 V
electric impulse load for a time period of 10 ms and the tip

Figure 10. Transient responses of the tip displacement under the electrical impulse load in the healthy laminate and edge debonded actuator
cases, (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) relative difference of the peak values.
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displacement and sensor output are calculated as the system
response. For the finite element method based governing
equation, the transient response can be solved by the direct
time integration method. In the current linear vibration pro-
blem, we prefer using the Newmark time integration, which is
conventionally used to solve finite element method based
linear vibration problems. In the algorithm, the displacement
variable and its first derivative are approximated by Taylor’s
expansions with terms up to the second derivative. With the

help of these Taylor’s expansions, the governing equation can
be reduced to set of algebraic equations. The governing
equation can be solved through an iterative process involving
only the given initial conditions and the force input for each
time step. The transient responses of the tip displacement in
the edge debonding cases are shown in figures 10(a)–(f). It is
found that a difference in the peak values between the healthy
and debonded laminates clearly appears in each graph. The
10% debonding case shows the smallest relative difference

Figure 11. Transient responses of the sensor output under the electrical impulse load in the healthy laminate and edge debonded actuator
cases, (a) 10%, (b) 20%, (c) 30%, (d) 40%, (e) 50%, (f) relative difference of the peak values.
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and the 50% debonding case shows the largest one. The
relative difference of the peak value is defined by the fol-
lowing equation

( )Relative Peak Peak /

Peak 100%. (23)

healthy debonding

healthy

= −
× ×

The effect of the debonding area on the relative differ-
ence in the peak values is shown in figure 10(f). From the
curve, it is found that with increasing debonding area, the
relative difference increases almost linearly. The 50%
debonding of the actuator causes an almost 50% drop in the
peak value of the displacement output. The results of the tip
displacement output also show that the actuation ability
decreases considerably due to the actuator debonding effect
for such an edge debonded actuator. On the other hand, the
sensor outputs are also calculated and shown in figures 11(a)–
(f). Since the sensor output is dependent on the mechanical
strain, the attenuation of the vibration definitely leads to a
reduction of the induced strain. Thus, the actuator debonding
affects the vibration amplitude and consequently decreases
the sensor output. The results provided good evidence of this
phenomenon. Figures 11(a)–(f) well illustrate the reduction in
the sensor output due to the actuator debonding effect. The
percentage relative difference in the peak value also increases
almost linearly with increasing debonding area. Thus, using
these transient response results, the actuation ability of the
actuator can be well evaluated.

In the actuator inner debonding case, the transient
responses are also investigated and the results are shown in
figures 12–14. From the previous frequency response analy-
sis, we already know that the reduction in actuation ability in
the inner debonding case is less than that in the edge deboning
case. This conclusion is confirmed by the transient response
results. The transient responses of the tip displacement and
sensor output are shown in figures 12 and 13, respectively. It
is found that the differences in the peak value are very small
in the 20, 40 and even 60% debonding cases. The relative
differences in the peak values for the tip displacement and
sensor output are shown in figure 14. Since the sensor outputs
are induced by the mechanical strain, the relative differences
of peak values are same for both the tip displacement and
sensor output. From the graph, it can be seen that although the
actuator suffers from 60% debonding, the relative difference
in the peak value is still less than 10% for both the tip dis-
placement and sensor output. This result is very different from
that of the edge debonding case. However, the transient
response results are in good agreement with the frequency
response results. It can be concluded that the effect of inner
debonding of the actuator on the structural response is much
smaller than that of edge debonding.

4. Concluding remarks

In this work, the modeling of a smart composite laminate with
partially debonded piezoelectric actuator was developed.
Using the developed modeling, the dynamic characteristics

Figure 12. Transient response of the tip displacement under the
electrical impulse load in the healthy laminate and inner debonded
actuator cases.

Figure 13. Transient response of the sensor output under the
electrical impulse load in the healthy laminate and inner debonded
actuator cases.

Figure 14. Relative difference of the peak values for the tip
displacement and sensor output under the electrical impulse load in
the healthy laminate and inner debonded actuator cases.
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were examined in both the frequency and time domains. The
actuators suffering from both edge debonding and inner
debonding were investigated for the analysis of the reduction
in their actuation ability. The numerical results demonstrated
that the reduction in actuation ability in the edge debonding
case is much larger than that in the inner debonding case.
Based on these dynamic analysis results, it is concluded that
the actuator debonding failures, especially the edge debond-
ing, have great effect on the actuation ability and reduce the
controllability in active structures. Since the actuator
debonding failure may happen during their service life, it is
necessary to take the debonding failure into the consideration
as an uncertainty parameter to make the system damage tol-
erable. We believe that the proposed method well describes
the effect of actuator debonding on the dynamic behaviors of
such laminated smart composite structures. The proposed
modeling could be used to analyze the actuator debonding
failures in engineering applications.
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