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A B S T R A C T

Composite material has been widely used in the engineering field because of its excellent fatigue and corrosion
resistance and good impact resistance. However, the structural instability of composite structure is observed
due to the thermal buckling phenomena when applied with heat. The present study aims to achieve the thermal
structural stability of composite plate structure by developing a topography optimization method and a size
optimization method to control linear buckling temperature and thermal buckling modes. In this study, the
nodal positions or the shell element thicknesses are set as the design variables. The buckling temperature
values and buckling mode shapes are included in the objective function. The developed optimization methods
determine the optimal thickness distributions and geometries of composite structure, to induce the target
buckling temperatures and target buckling mode shapes. To demonstrate the validity of the present approach,
several structural optimization problems considering composite plates are solved. The proposed optimization
methods allows the convergence of buckling temperatures within 1% range, and that of buckling mode shapes
to desired geometries. In addition, the engineering application of the optimization method on reaction turbine
blade is presented. The results of this study support the implementation of the topography and size optimization
methods to achieve the optimum structural designs for various engineering applications regarding buckling
temperature and thermal buckling mode shape.
1. Introduction

Composite material has been widely used in the engineering fields
such as aerospace, mechanical, electrical, bio-medicine and military
engineering because of its excellent fatigue and corrosion resistance
and good impact resistance [1]. With increasing demand, various ma-
terials and manufacturing methods have been utilized and developed
to manufacture composites. Materials such as carbon fiber, epoxy,
metals, and plastic resin have been involved in prepregging process [2],
cladding of metal components [3], and fused deposition methods [4] to
manufacture various composite materials. Fig. 1 shows the examples
of composite structures in real life, manufactured using the listed
methods. Yet, composite materials do show some limitations in certain
aspects, and one of the limitations of composite materials is the struc-
tural instability caused by thermal buckling phenomena when applied
with heat. The present study aims to achieve structural stability of
composite structures at external thermal conditions. As finite element
method (FEM) can be used to accurately predict buckling distortion [5]
and conduct buckling analysis of composite plates with combined
thermal and mechanical loads [6], this study develops topography and
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size optimization methods using finite element simulations of compos-
ite structure to control the linear buckling temperature and thermal
buckling modes. According to the buckling theory, geometric features
affect the buckling temperature and buckling modes of the structures.
Thus, this study sets the node positions (topography optimization)
and element thicknesses (size optimization) as the design variables,
by applying the FEM. The buckling temperature and buckling mode
shapes are included in the objective function. To validate the present
optimization methods, several optimization examples including plate
and turbine blade are solved, to control the buckling temperature and
buckling mode shapes.

The structural instability, arising from the buckling phenomenon
under various thermal conditions, has been an important and widely
investigated issue in engineering fields. The analyses of thermal buck-
ling and instability of porous plates [7], a coupling of the thermoelastic
instability and buckling in automotive clutches [8], an investigation
of beam instability under thermal loading [9], and studies on the
dynamic instability of multi-layer beams in thermal environments [10]
have been conducted to analyze the structural instability. Nonlinear
bending analysis of porous micro tubes based on modified couple stress
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Fig. 1. Composite materials: (a) Carbon–epoxy plate, (b) Tantalum and Niobium coated with copper (Courtesy by MELD Manufacturing Corporation via http://meldmanufacturing.
com/coat/), and (c) 3D printed structure.
𝑁
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theory [11] and buckling analysis of smart beams based on higher
order shear deformation theory [12] have been conducted to apply
various theories in the analyses of nonlinear deformation issues. Studies
on the influence of temperature change on column buckling [13],
thermo-mechanical buckling of cylindrical panels [14], temperature
distribution effects on the buckling behavior [15], and thermal buckling
of thin composite plates [16] have been conducted to investigate the
effects of temperature on the buckling issues. Studies on the col-
umn buckling of structural bamboo [17], local buckling of structural
steel shapes [18], and design of composite wings for buckling con-
straints [19] have been conducted to investigate the effects of the
structural design on the buckling problems. Studies on the influence
of the material composition on the buckling response [20] and the
effect of plates with internal discontinuities on the buckling [21] have
been investigated to determine the effects of the material composi-
tion on the buckling issues. A thermal buckling analysis of porous
plates [22], an investigation of the surface and thermal load effects
on the buckling of the nanowires [23], research on the buckling of
thick plates under thermal loads [24] and buckling behavior of the
plates under non-uniform thermal loads [25] have been conducted
to understand the thermal buckling issues. Despite the remaining un-
certainties that lead to structural instability, buckling phenomenon
has been applied in various engineering fields that require intention-
ally large deformations within a short period of time. Buckling has
been used to trigger the movements of programmable soft robots and
actuators [26–28]. The motion of flexible structures and wearable
electronics has been triggered using buckling in recent studies [29–31].
The transformation of origami-inspired structures has been actuated
using the buckling phenomenon [32–36]. The increasing demand for
buckling in various engineering applications has increased the need
to control unpredictable phenomena. Reviewing the relevant studies,
various numerical methods have been developed and applied to solve
the buckling problems. Studies on topology optimization [37,38] and
section thickness optimization [39] considering thermal buckling have
been conducted. However, the results of such studies have shown
limitations in direct application to engineering fields, as structural de-
signs with non-continuous thickness variations are induced. The current
engineering field requires a practical optimization scheme that consid-
ers thermal buckling, which can be directly applied to the structural
optimization problems. Thus, this study aims to develop optimization
frameworks, determining continuous thickness variations as well as
topography while optimizing the buckling temperature and buckling
mode shape.

In the present topography and size optimization, the location of
nodes or thickness of shell elements are set as the design variables, as
shown in Fig. 2. In the topography optimization method, the locations
of the nodes in the out-of-plane direction are used as the design
variables. As the structural stiffness varies from the perturbation of the
coordinate values of the nodes, it is possible to change and optimize
the buckling temperature and buckling mode. In the size optimization
method, the thickness values of the shell elements at each node are
varied. The thickness values inside the shell element vary according to
2

the assigned thickness values of the corresponding nodes, which are
perturbed from the mid-plane. The perturbed design variables affect
the stiffness matrix of the structure as well as the linear buckling
temperature and buckling mode shapes. The difference between the
buckling and target buckling temperatures and that between the buck-
ling and target buckling modes are set as the objective functions. To
consider the cost, the volume of the structure is bounded. An FEM
analysis with a 181-shell element in ANSYS and a gradient-based
optimization algorithm in MATLAB are employed for the present to-
pography and size optimization methods. With the present optimization
schemes, it is possible to acquire the optimal designs of composite
structure with desired buckling temperature values and buckling mode
shapes. Several optimization problems considering composite plates are
solved using the present frameworks, to validate their efficiency and
accuracy. In addition, the engineering application of the optimization
method on reaction turbine blade is presented. Regardless of the struc-
tural complexity, and the presence of heat dissipation and centrifugal
force, structural stability of the blade is achieved. The results in this
study supports the application of the proposed structural optimiza-
tion method on various engineering applications to solve structural
instabilities present in thermal buckling cases.

The remainder of this paper is organized as follows. Section 2
provides the theoretical background for the eigen-buckling analysis and
optimization formulation. Section 3 provides several structural opti-
mization examples, considering the buckling temperatures and buck-
ling mode shapes. Section 4 presents the application of the present
optimization scheme to some practical examples, considering the ther-
mal buckling of steam turbine blades. Finally, some concluding remarks
and future research topics are discussed in Section 5.

2. Optimization formulation

2.1. Linear eigen-buckling analysis

Linear eigenvalue buckling analysis using four-node shell elements
is conducted in this study, because shell structures experience several
buckling cases among 3D structures [40,41]. The shape functions of the
four-node shell element are formulated as follows.

𝑁1 =
1
4
(1 − 𝜉)(1 − 𝜂), 𝑁2 =

1
4
(1 + 𝜉)(1 − 𝜂)

3 =
1
4
(1 + 𝜉)(1 + 𝜂), 𝑁4 =

1
4
(1 − 𝜉)(1 + 𝜂)

(1)

The isoparametric space is defined as 𝜉 − 𝜂. To obtain the stiffness
matrix, the strain–displacement matrix, 𝐁, is defined as follows.

𝐁 =
[

𝐁̄1 𝐁̄2 𝐁̄3 𝐁̄4
]

,

̄
𝑛 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

𝑁𝑛,𝜉 0 0 0 0 0
0 𝑁𝑛,𝜂 0 0 0 0

𝑁𝑛,𝜂 𝑁𝑛,𝜉 0 0 0 0
0 0 0 0 𝑁𝑛,𝜉 0
0 0 0 𝑁𝑛,𝜂 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

(2)
⎣ 0 0 0 𝑁𝑛,𝜉 𝑁𝑛,𝜂 0 ⎦
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Fig. 2. Illustration of topography and size optimization mechanism.
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The strain–displacement matrix, 𝐁, is composed of the derivatives
of the shape functions. The shell element constitutive matrix, 𝐃, is
xpressed as follows.

= 𝐸
(1 − 𝜈2)

[

𝐃̄ 0
0 ℎ3

12 𝐃̄

]

, 𝐃̄ =
⎡

⎢

⎢

⎣

1 𝜈 0
𝜈 1 0
0 0 1−𝜈

2

⎤

⎥

⎥

⎦

(3)

The elastic modulus, Poisson’s ratio, and the thickness of the shell
lement are expressed as 𝐸, 𝜈, and ℎ, respectively. Matrices 𝐁 and 𝐃
re used to calculate the element stiffness matrix of a single shell layer.
hen the coordinates in the thickness direction are expressed as 𝑧, the

lement stiffness matrix of a single shell layer is obtained using the
acobian matrix, 𝐉.

𝐨 = ∫v
𝐁T𝐃𝐁𝑑v = ∫

1

−1 ∫

1

−1 ∫

1

−1
𝐁T𝐃𝐁 |𝐉| 𝑑𝜉𝑑𝜂𝑑𝑧 (4)

In the case of the element stiffness matrix of a composite shell layer,
the element stiffness matrix is different for each shell layer and is not
continuous in the 𝑧-direction. These discontinuities can be calculated
y dividing and converting integral section 𝑧 into 𝑧𝑙 [42]. Here, 𝑧𝑙
epresents the coordinates of the section where the 𝑙th shell layer of the
omposite shell is located. The coordinate transformation is applied as
ollows.

= −1 + [ℎ𝑙(𝑧𝑙 − 1) + 2
𝑙

∑

𝑖=1
ℎ𝑖]∕ℎ𝑡, 𝑑𝑧 = 𝑑𝑧𝑙ℎ𝑙∕ℎ𝑡 (5)

Here, ℎ𝑙 represents the thickness of the 𝑙th shell layer, and ℎ𝑡
epresents the total thickness of the composite shell layer element.
sing the coordinate transformation, the element stiffness matrix of the
omposite shell layer comprising L layers is calculated.

𝐨,𝐜 =
L
∑

𝑙=1
∫

1

−1 ∫

1

−1 ∫

1

−1
𝐁T
𝑙 𝐃𝑙𝐁𝑙(ℎ𝑙∕ℎ𝑡) |𝐉| 𝑑𝜉𝑑𝜂𝑑𝑧𝑙 (6)

The deformation vector, 𝐝, represents the deformation of the struc-
ure, and is calculated using the applied load, 𝐅, as follows.

= (𝐊𝐨,𝐜)−1𝐅 (7)

The deformation vector, 𝐝, is used to calculate the stress formed
n the structure of interest. The stress values at individual integration
oints are given as follows.
= 𝐃𝐁𝐝 (8) c

3

The single-shell element geometric stiffness matrix, 𝐊𝝈 , and com-
posite shell element geometric stiffness matrix, 𝐊𝝈,𝐜, are calculated
using 𝐆 and 𝐒. The matrix of the shape function derivatives at each
integration point and the matrix of the current Cauchy stresses are
denoted by 𝐆 and 𝐒, respectively.

𝐊𝝈 = ∫v
𝐆T𝐒𝐆𝑑v = ∫

1

−1 ∫

1

−1 ∫

1

−1
𝐆T𝐒𝐆 |𝐉| 𝑑𝜉𝑑𝜂𝑑𝑧 (9)

𝝈,𝐜 =
L
∑

𝑙=1
∫

1

−1 ∫

1

−1 ∫

1

−1
𝐆T

𝑙 𝐒𝑙𝐆𝑙 |𝐉| (ℎ𝑙∕ℎ𝑡)𝑑𝜉𝑑𝜂𝑑𝑧𝑙 (10)

The calculated matrices can be used to formulate the eigen-buckling
quation for shell element due to the thermal load.

𝐊𝐨,𝐜 + 𝜆𝑐𝑟𝐊𝝈,𝐜]𝐯 = 𝟎 (11)

The eigenvalue, 𝜆𝑐𝑟, is a load multiplier adjusting the thermal load
ector to the critical threshold value, which induces buckling. The
igenvector, 𝐯, represents the shape of the buckling mode.

.2. Optimization formulation

The optimization schemes are presented in this study. The first
ptimization method is the topography optimization method, setting
he positions of the nodes as the design variables to optimize the struc-
ure with desired buckling temperatures. Desired temperature values
an be obtained by formulating the objective function to minimize the
ifferences of resultant and target temperature values [39]. Thus the
roposed optimization formula aims to minimize the difference of the
esultant and target buckling temperatures. The objective function and
he bound constraints are set as follows.

P1 ∶Min𝑢𝑖𝑓𝑜𝑏𝑗 =
𝑛
∑

𝑘=1
(𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 − 𝑇𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘)2

𝑢min ≤ 𝑢𝑖 ≤ 𝑢max, 𝑖 = 1, 2,… ,Nnodes

(12)

The computed and target buckling temperatures of the 𝑘th buckling
ode are expressed as 𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 and 𝑇𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘, respectively. The design

ariables, 𝑢𝑖, are the offset displacement value of the 𝑖th node of the
tructure. The upper and lower limits of the design variable, 𝑢𝑖, are
𝑚𝑎𝑥 and 𝑢𝑚𝑖𝑛, respectively. The number of buckling temperature values
onsidered herein is 𝑛. The number of the nodes is N.
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Fig. 3. Illustration of the optimization process.
The second optimization method sets the thicknesses of the shell
elements as the design variables and the objective function is set as
follows.

OP2 ∶Min𝑡𝑖𝑓𝑜𝑏𝑗 =
𝑛
∑

𝑘=1
(𝑇𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 − 𝑇𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘)2

𝑉𝑜 ≤ 𝑉 ∗

𝑡min ≤ 𝑡𝑖 ≤ 𝑡max, 𝑖 = 1, 2,… ,Nnodes

(13)

The design variables, 𝑡𝑖, are the thickness values of shell element
at the 𝑖th node of the structure. The upper and lower limits of the
design variable, 𝑡𝑖, are 𝑡𝑚𝑎𝑥 and 𝑡𝑚𝑖𝑛, respectively. Unlike the topography
optimization, size optimization involves changing the thickness values,
resulting in a change in the total volume of the structure. Thus, volume
constraint is added to the optimization formulation. The volume of the
tentative structure is 𝑉0, and the upper limit of the structure volume is
𝑉 ∗.

This study also aims to conduct the topography and size optimiza-
tion to acquire the desired thermal buckling mode shapes. Desired ge-
ometries can be obtained by formulating the objective function to min-
imize the displacement difference of resultant and target geometries.
Thus the proposed optimization formulation aims to minimize the dis-
placement differences of the resultant and target buckling mode shapes.
The optimization formulations of the two methods for controlling the
buckling mode shapes are set as follows.

OP3 ∶Min𝑢𝑖𝑓𝑜𝑏𝑗 =
𝑛
∑

𝑘=1
(𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 − 𝛿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘)2

𝑢min ≤ 𝑢𝑖 ≤ 𝑢max, 𝑖 = 1, 2,… ,Nnodes

(14)

OP4 ∶Min𝑡𝑖𝑓𝑜𝑏𝑗 =
𝑛
∑

𝑘=1
(𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 − 𝛿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘)2

𝑉𝑜 ≤ 𝑉 ∗

𝑡min ≤ 𝑡𝑖 ≤ 𝑡max, 𝑖 = 1, 2,… ,Nnodes

(15)

The displacement values of the 𝑘th buckling mode shape and the
target buckling mode shape from the initial structural geometry are
expressed as 𝛿𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙,𝑘 and 𝛿𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒,𝑘, respectively. The design variables
and constraints in Eqs. (14) and (15) are identical to those of Eqs. (12)
and (13), respectively.

The buckling-related sensitivity analysis based on the finite dif-
ference method (FDM) is employed after formulating the above opti-
mization formulations. The buckling analysis is performed by applying
thermal load to composite structure. The buckling temperature can be
obtained by multiplying the eigenvalue obtained through the analysis
with the thermal load value. The optimization process proceeds until
the target buckling temperature or the target mode shape is achieved
as shown in Fig. 3.

3. Optimization results

This section presents several optimization examples to validate the
present optimization formulations. The MATLAB optimizer, fmincon, is
4

used to solve the optimization problems in the integrated framework of
ANSYS APDL. The optimization examples are carried out on the com-
posite structures of 100 mm × 10 mm or 100 mm × 100 mm, as shown
in Fig. 4(a). The ends of the structures are clamped. The two structures
are modeled using four-node shell 181, with initial shell thickness
values of 1.5 mm. To validate the FEM for the considered buckling
problems, analysis is done on composite structures of 100 mm × 10 mm
comprising different numbers of elements. Note that the number of
elements in the length direction are equal to that in the width direction.
Fig. 4(b) shows the results of the first, second, and third buckling
temperatures. From the results, the buckling temperatures converge
when the structures comprise more than 25 elements, indicating that
the FEM is valid for buckling analysis of those structures. Based on the
results, the composite structures used for the optimization examples are
modeled with 25 elements and 36 nodes.

3.1. Sensitivity analysis

The present structural optimization scheme considers the node posi-
tion (topography optimization) or element thickness (size optimization)
at each node as the design variable. Because the two composite struc-
tures shown in Fig. 4 are modeled with 36 nodes, 36 design variables
are optimized in the case studies. The sensitivity of the objective
function can be calculated efficiently using the FDM. To prove this,
sensitivity analysis is carried out on a 100 mm × 10 mm plate. The
design variables are set as the thicknesses of the elements at each
node. The left and right ends of the structure, which are based on
Fig. 5(a), are clamped, and the FDM sensitivity analysis is conducted
by applying temperature load to the entire surface. Fig. 5(b) shows
the results of the sensitivity analysis with respect to the perturbed
design values. As the ends of the structure are constrained and the
temperature load is applied to the entire surface, the sensitivity values
are symmetric vertically and horizontally. Fig. 5(b) shows that the eight
chosen design parameters, which are specified in Fig. 5(a), have the
same sensitivity values for each symmetric position, regardless of the
perturbation values. Based on the results of the sensitivity analysis, the
optimization processes can be carried out, with the perturbation values
of the design variables set as 0.01 mm for all cases.

3.2. Topography optimization: Control of buckling temperature

The first optimization example is to control the buckling tempera-
ture of the first three modes using the topography optimization method.
The design variables in this optimization scheme are the positions of
the 36 nodes. The optimal design is applied on a 100 mm × 10 mm
plate. The thickness of the structure is set as 1.5 mm. Linear eigen-
buckling analysis is conducted by applying temperature load to the
elements of the structure. Two case studies are considered in this
example, the first case that has the temperature load applied to the
entire structure surface, and the second case that has the temperature
load applied to only certain parts of the structure surface. Fig. 6(a)
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Fig. 5. Sensitivity analysis: (a) Design variables and (b) FDM test results.
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shows an illustration of the heated elements of the structure for the
first case, where the elements shaded in red have temperature loading
applied. In the first case study, the initial buckling temperatures of the
structure are 94.9640 ◦C, 249.5486 ◦C, and 710.2855 ◦C for the first
three buckling modes. The optimization aims to increase the buckling
temperature. The target buckling temperature values are increased
by approximately 20 ◦C, 40 ◦C, and 60 ◦C from the initial buckling
emperature values. Thus, the target buckling temperature values for
he first case are set as 115 ◦C, 290 ◦C, and 770 ◦C for the first three
uckling modes. The upper and lower limits of the node displacement
re set as 5.00 and −5.00 mm from the initial positions, respectively.
he displacement values of each node are obtained by applying the
ptimization and shown in Fig. 6(b).

It can be observed from the optimization result that the positions of
he nodes at the edges and center of the structure show small changes,
ith displacement values of the nodes having values of between 0.0000
nd 1.0000 mm in the out-of-plane direction. The remaining nodes
how greater offset displacement values ranging between 2.8731 and
.0000 mm in the out-of-plane direction. Because the example is sym-
etric, the optimized structure also shows a symmetric result in both

he vertical and horizontal directions, where both ends of the plate are
lamped, and temperature load is applied to the entire surface. The
esultant first, second, and third buckling temperatures of the optimized
tructure are changed to 115.6351 ◦C, 287.3625 ◦C, and 772.7367 ◦C,
espectively. The resultant buckling temperatures are close to the target
uckling temperatures, with errors of 0.5523%, 0.9095%, and 0.3554%
or the first three buckling modes.

In the second case, the temperature load in Fig. 7(a) is applied to
ertain parts of the structures. In this case, the initial buckling temper-
tures of the structure are 72.5129 ◦C, 124.6304 ◦C, and 454.4162 ◦C
or the first three buckling modes. The optimization aims to increase
he buckling temperature. As in the first case, the target buckling
5

emperatures are increased by approximately 20 ◦C, 40 ◦C, and 60 ◦C
rom the initial buckling temperatures. Thus the target buckling tem-
eratures for the second case are set as 95 ◦C, 165 ◦C, and 515 ◦C
or the first three buckling modes. The upper and lower limits of
he node displacement are set as 5.00 mm and −5.00 mm from the
nitial positions, respectively. The displacement values of each node are
btained by conducting the optimization, and the results are shown in
ig. 7(b).

It can be observed that the results show significant differences with
he results of the first case study. Unlike the first case study, the
esultant displacements of the nodes do not show the symmetric ten-
ency, and negative displacements can be observed in the results. The
esultant first, second, and third buckling temperatures of the optimized
tructure are changed to 94.6155 ◦C, 165.0251 ◦C, and 515.2912 ◦C,
espectively. The resultant buckling temperatures are close to the target
uckling temperature with errors of 0.4047%, 0.0152%, and 0.0565%,
espectively, for the first three buckling modes. The results of the topog-
aphy optimization to control buckling temperature are shown in Fig. 8.
he errors for all cases are below 1%, indicating that the topography
ptimization allows the convergence of the first, second, and third
uckling temperatures to the target values successfully. Among the two
ases, the asymmetric temperature load case converges closer to the
arget values, where error rates are lower than those of the symmetric
emperature load case for all three buckling modes. Overall, the case
tudies show that the present method is applicable for both symmetric
nd asymmetric load conditions.

.3. Size optimization: Control of buckling temperature

The next example is conducted to control the buckling temperature
n the framework of size optimization. Similar to the previous example,
wo case studies are conducted in this example. The design variables in
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Fig. 6. Illustration of topography optimization: (a) Temperature load application and (b) optimized plate.
Fig. 7. Illustration of topography optimization: (a) Temperature load application and (b) optimized plate.
Fig. 8. Summarized results of topography optimization to control buckling temperature.
6
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Fig. 9. Illustration of optimized plate after size optimization.
Fig. 10. Illustration of optimized plate after size optimization.
this optimization scheme are the thickness values of the shell elements
at the 36 nodes. The optimization domain is set as a 100 mm × 10 mm
omposite plate shown in Fig. 4. The initial thickness of the structure is
et as 1.5 mm. Linear eigen-buckling analysis is conducted by applying
emperature load to the elements of the structure. The elements applied
ith temperature load are identical to those of the previous example,
here temperature load is applied to the entire structure surface in the

irst case and to certain parts of the structure surface in the second
ase as shown in Figs. 6(a) and 7(a). The initial conditions of the
ptimization procedure are identical to those used in the previous
xample. Consequently, the initial buckling temperature values of the
tructure are identical to those of the first example for both case studies.
he target buckling temperature values are also established identically.
he upper and lower limits of the element thickness are set as 3.00 mm
nd 0.30 mm, respectively. The thickness values of the elements at each
ode are obtained by applying the size optimization. The result for the
irst case is presented in Fig. 9.

For the first case, except for the four corners of the structure, the
hickness of the elements at the edges and center of the structure
enerally become thicker, with the thicknesses of the shell elements
anging between 1.5898 mm and 2.8416 mm. The remaining elements,
ositioned at the four corners and between the edges and the cen-
er of the structure, show decrease in thicknesses, ranging between
.8720 mm and 1.2781 mm. Identical to the first topography optimiza-
ion case study, the results of this size optimization case study show
symmetric trend in both the vertical and horizontal directions. The

ymmetric boundary and loading condition resulted in the symmetric
hickness distribution. The resultant first, second, and third buckling
emperatures of the optimized structure are changed to 114.1030 ◦C,

291.7120 ◦C, and 764.5235 ◦C, respectively. The resultant buckling
temperatures are close to the target temperature, with error values of
0.7800%, 0.5903%, and 0.7112%.

The results for the second case are presented in Fig. 10. In this case,
the results do not show a symmetric trend, due to the asymmetric load-
ing condition. The resultant buckling temperatures of the optimized
structure are changed to 95.0175 ◦C, 164.9842 ◦C, and 512.8700 ◦C for
he first three buckling modes. Again, the resultant buckling tempera-

ure values are close to the target temperature with errors of 0.0184%,

7

0.0096%, and 0.4136%, respectively, for the first three buckling modes.
The results of the size optimization to control buckling temperature are
shown in Fig. 11. Like the topography optimization method, the errors
for all cases are below 1%, indicating that the size optimization using
the element thickness allows the convergence of the first, second, and
third buckling temperatures of the composite structure to the target
values for both symmetric and asymmetric cases. Among the two cases,
the asymmetric temperature load case converges closer to the target
values, with lower error rates than those of the symmetric temperature
load case for all three buckling modes. Overall, the case studies show
that the size optimization method is applicable for both symmetric and
asymmetric load conditions.

3.4. Topography optimization: Control of buckling mode shape

Previous examples show that both topography and size optimization
methods can be used to control the buckling temperature values by
changing the node positions or element thicknesses. The following
examples are conducted to show that buckling mode shapes can be
controlled using the proposed structural optimization methods. In this
example, topography optimization is used to change the first buckling
mode shape to the desired geometry. The design variables are the
positions of the 36 nodes. Unlike the previous buckling temperature
examples, the optimal design is applied on a 100 mm × 100 mm plate
in this example, because the deformation value is too small for analysis
when using a 100 mm × 10 mm plate. The thickness of the structure is
set as 1.5 mm. Linear eigen-buckling analysis is conducted by applying
temperature load to all elements of the structure. The first buckling
mode of the structure occurs at 92.7467 ◦C, and the initial first buckling
mode shape is as shown in Fig. 12.

The target buckling mode shape is set to have the center of the
structure bulge up, whereas the rest of the parts have minimum de-
formation. This is achieved by maximizing the deformation value of
the four nodes at the center, and by setting the deformation of the
remaining nodes to zero in the formulation of the objective function.
The upper and lower limits of the node displacement are set as 5.00 and
−5.00 mm from the initial positions, respectively. The displacement

of each node is obtained by conducting the optimization scheme; the
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Fig. 11. Summarized results of size optimization to control buckling temperature.
Fig. 12. Initial plate geometry and mode shape.
Fig. 13. Optimization results: (a) Node position, (b) plate geometry, and (c) mode shape.
results are shown in Fig. 13(a). The positions of the nodes do not show
any negative values, wherein the displacement values of the nodes
are between 0.0000 and 3.0224 mm in the out-of-plane direction. The
changes in the node positions make the initially flat plate have a natural
arch-shaped geometry, with the center of the plate slightly submerged.
The geometry of the composite plate and the associated first buckling
mode shapes are illustrated in Fig. 13(b) and (c). Although the first
buckling mode shape cannot be numerically compared with the target
mode shape, it is evident that the mode shape resembles a volcano
visually, with only the center of the plate bulging up as desired.
From this example, it can be seen that the proposed topography op-
timization method can change the buckling mode shape to the desired
geometry.
8

3.5. Size optimization: Control of buckling mode shape

This optimization example is conducted to control the first buckling
mode shape using size optimization. The design variables are the
thicknesses of the shell elements at the 36 nodes. The optimal design
is applied on a 100 mm × 100 mm plate. The initial thickness of the
structure is set as 1.5 mm. Linear eigen-buckling analysis is conducted
by applying temperature load to all elements of the structure. The
initial conditions of the optimization procedure are identical to those
of the previous buckling mode shape example. Consequently, the initial
first buckling temperature and buckling mode shape of the structure are
identical to those of the previous example, as indicated in Fig. 12. The
target buckling mode shape is also identical to the previous buckling
mode shape example, where the target buckling mode shape is set to
have the center of the structure bulge up, with the remainder having
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Fig. 14. Optimization results: (a) Node thickness, (b) plate geometry, and (c) mode shape.
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minimum deformation. An identical procedure is conducted in the
formulation of the objective function. The upper and lower limits of the
element thickness are set as 5.00 mm and 0.30 mm, respectively. The
thicknesses of the elements at each node are obtained by performing
the optimization, the results of which are shown in Fig. 14(a). The
results show that the upper and lower sections of the structure generally
become thicker, whereas the center section of the structure decreases
in thickness, ranging between 0.4978 and 0.7993 mm. The geometry
of the composite plate and the associated first buckling mode shapes
are illustrated in Fig. 14(b) and (c). Although the first buckling mode
shape cannot be numerically compared with the target mode shape, it
is apparent that the mode shape resembles a volcano visually with only
the center of the plate bulging up as desired. Similar to the topography
optimization method, the size optimization method makes it possible
to change the geometry of the first buckling mode shape to the desired
geometry, thus showing that the proposed optimization frameworks are
capable of controlling the buckling mode shapes.

3.6. Optimization considering the centrifugal force

For the last engineering application, the present optimization scheme
is now applied in order to control the thermal buckling temperature
and the buckling mode shapes considering the centrifugal effect. The
centrifugal force is formulated in the eigen-buckling analysis using the
following formulation.

𝐅 = 𝐅𝑇 + 𝐅𝐶 , 𝐅𝐶 = 𝑚𝝎 × (𝝎 × 𝒓) (16)

Note that the centrifugal force is dependent on the design variables. The
centrifugal force 𝐅𝐶 is added to the temperature load 𝐅𝑇 to form the
total applied load 𝐅. The centrifugal force is calculated using the mass,
angular velocity and distance of the object from the rotating axis, each
denoted by 𝑚, 𝝎 and 𝒓 respectively.

To verify the effects of centrifugal force, the present example consid-
ers a rotating steam turbine blade. The diameter, length and maximum
width of the blade are set as 1200 mm, 1000 mm and 500 mm,
respectively. The maximum thickness is set as 52.5 mm and it is
assumed that the thickness values of the cross-section of the blade are
constant in the length direction. The turbine rotor is designed to have
diameter of 1200 mm. The material properties of steel are assigned
for the finite element turbine blade model. The model is discretized
by 400 four-node shell elements of ANSYS (Element 181) for accurate
and valid buckling analysis. The boundary conditions are imposed
along the bottom section of the blade and the eigen-buckling analysis
is carried out by applying temperature load to all elements and by
rotating the blade (the centrifugal force). The geometry, temperature
load dissipation and the initial thickness distributions of the blade are
summarized in Fig. 15(a) and (b).

To observe the influence of centrifugal force before the optimiza-

tion, the blade is rotated and the eigen-buckling analysis with the

9

centrifugal force is carried out. The first three buckling temperatures
of a stationary turbine blade with the initial thickness values are
287.5912 ◦C, 318.1598 ◦C, and 548.7110 ◦C, respectively. By increas-
ng the angular velocity of the blade and increasing the magnitudes
f the centrifugal force, the buckling temperatures and the buckling
odes are subject to be changed accordingly. Fig. 16 illustrates the

urves of the three buckling temperatures with respect to the rotating
peed of the blade. It is observed that the buckling temperature values
ecrease and the first and the second buckling temperatures merge after
0 rad/s approximately. Not only the buckling temperatures, but also
he buckling modes are influenced due to the centrifugal force. Thus, it
s challenging to consider the effect of this angular velocity during an
ptimization process.

In this example, we aim to increase the buckling temperature with
nd without the centrifugal force. With zero rotational speed (no cen-
rifugal force), the target buckling temperatures are set as 320 ◦C, 360
C, and 600 ◦C. For the rotation case with angular velocity of 50 rad/s,
he target temperatures are set as 135 ◦C, 150 ◦C, and 225 ◦C. These
alues are chosen to increase the first three buckling temperatures by
0 ◦C, 40 ◦C and 50 ◦C respectively, and are arbitrary chosen to set
he first three buckling temperatures differently. The thickness values
an be varied between −2mm and 2 mm from the initial thickness
alues considering the airfoil geometry. Note that the thickness values
f the elements are constant along the blade direction. The optimization
esults are summarized in Figs. 17 and 18.

The optimized thicknesses without the consideration of blade rota-
ion are presented in Fig. 18(a). The 12 design variables are increased
nd the 9 design variables are decreased among the 21 nodal thick-
ess values resulting the volume increase about 0.4132%. After the
ptimization, the buckling temperatures are changed to 324.1225 ◦C,
65.8901 ◦C, and 592.2094 ◦C. The resultant buckling temperatures
re close to the target temperatures, with error values of 1.2883%,
.6361%, and 1.2984%, respectively. Considering the rotation of the
lade and the centrifugal force, the optimization result with the in-
reased 17 design values and the decreased 4 design variables is
btained in Fig. 18(b). After the optimization process, the volume is
ncreased about 4.2067% and the first three buckling temperatures
re changed to 138.8979 ◦C, 146.0847 ◦C, and 227.9672 ◦C. The
esultant buckling temperatures are close to the target temperatures,
ith error values of 2.8873%, 3.2769%, and 1.3188%, respectively.
his example shows that the rotation plays an important role in the
etermination of buckling temperature and the present optimization
cheme can successfully consider the effect of rotation and the centrifu-
al force on the buckling temperature. From an engineering point of
iew, thus, it is important to consider the effect of the centrifugal force
ot only for the static failure but also the dynamic failure.

The next example aims to control the buckling mode shape of the
urbine blade. The eigen-buckling analysis of the initial model of the
urbine blade is conducted to determine the first buckling mode. As
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Fig. 15. (a) Temperature load on turbine blade and (b) initial element thickness values at each node of the turbine blade.
Fig. 16. Buckling temperatures of the buckling modes at different angular velocities.
Fig. 17. Initial values, target values, and resultant values of buckling temperatures of first three buckling modes with angular velocity of 50 rad/s.
in the previous example, the optimization problems without and with
the centrifugal force of 50 rad/s are considered. The initial shapes of
10
the first buckling modes of the two cases are shown in Fig. 19. It is
observed that some instabilities are present at the trailing edge and near
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Fig. 18. Optimized element thickness values at each node of turbine blade’s cross-sections: (a) Static case and (b) rotating case.
Fig. 19. First mode of turbine blade: (a) Static case and (b) rotation case.
he constrained bottom section of the blade. Thus, the optimization
roblem aims to increase the stability along the trailing edge. To
chieve this, the optimization problem minimizing the deformation of
he corresponding nodes at the trailing edge is considered. For the
hickness constraints, the thickness values are set to increase linearly
long the top cross-section to the bottom cross-section. The thicknesses
f the top sections are set to have values of 1.00 mm. The thickness
f the bottom sections are set to run values between 10.00 mm and
0.00 mm. With the present formulation, the optimization results in
igs. 19 and 20 are obtained.

The results in Fig. 20 show the thicknesses of the bottom sections of
he blade. The top sections have constant thickness values of 1.00 mm,
nd the elements between the top and bottom sections have linearly
11
increasing thicknesses proportionally from the top to the bottom for
the both cases. The thickness values of the elements in the bottom
section vary between 39.4576 mm and 53.8097 mm for the static case,
and vary between 30.0000 mm and 60.0000 mm for the rotation case
(50 rad/s). Fig. 19(a) and (b) show that the buckling modes for the
two cases and it turns out that the local instabilities marked by the
red circles are removed after the optimization processes. This example
indicates that the present optimization process is effective to remove
the local instability considering the centrifugal force.

The engineering application of the size optimization on the reaction
turbine blade shows that the proposed optimization scheme can be
used to control the buckling temperature and buckling mode shapes
to achieve structural stability. Regardless of the structural complexity,
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Fig. 20. Optimized element thickness values at each node of turbine blade’s bottom cross-sections: (a) Static case and (b) rotation case.
resence of heat dissipation within the structure, and the presence of
entrifugal force, the optimization method is successful in achieving
he desired buckling temperatures and buckling mode shapes. Thus, the
roposed optimization method can be applied to various engineering
roblems, showing its capability to solve structural instabilities that are
resent in thermal buckling cases, while preventing an increase in the
aterial costs.

. Conclusion

This study proposed new optimization methods for controlling the
uckling temperatures and buckling mode shapes of composite struc-
ures. Achieving structural stability by predicting and preventing un-
xpected buckling phenomena are critical issues in the engineering
ield. To overcome these issues, the buckling temperature and buck-
ing modes were numerically analyzed using computational theories
nd mathematical programming. To validate the proposal, this study
onsidered composite plates, and formulated structural optimization
ase studies using the node positions and element thicknesses as the
esign variables. The optimization formulations helped determine op-
imal structural designs with the desired buckling temperature values
nd buckling mode shapes. The proposed optimization scheme was
lso applied to ensure the stability of the reaction turbine blade and
alidate its application to practical engineering problems. Despite the
tructural complexity, presence of heat dissipation within the turbine
lade, and the presence of centrifugal force, optimization was success-
ul in solving the structural instabilities present in thermal buckling.
n conclusion, this study proposed and validated several optimization
rameworks, to control the buckling temperature and buckling mode

hape of composite structures.
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