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Topology Optimization Under
Stress Relaxation Effect Using
Internal Element Connectivity
Parameterization
The creep phenomenon has enormous effect on the stress and displacement distribution
in the structures. Redistribution of the stress field is one of these effects which is called
stress relaxation. The importance of stress relaxation in the design of structures is
increasing due to engineering applications especially in high temperature. However, this
phenomenon has remained absent from the structural optimization studies. In the present
study, the effect of stress relaxation due to high temperature creep is considered in topol-
ogy optimization (TO). Internal element connectivity parameterization (I-ECP) method is
utilized for performing TO. This method is shown to be effective to overcome numerical
instabilities in nonlinear problems. Time-dependent adjoint sensitivity formulation is
implemented for I-ECP including creep effect. Several benchmark problems are solved,
and the optimum layouts obtained by linear and nonlinear methods are compared to
show the efficiency of the proposed method and to show the effect of stress relaxation on
the optimum layout. [DOI: 10.1115/1.4041578]

Keywords: topology optimization, stress relaxation, element connectivity parameteriza-
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1 Introduction

The main purpose of this study is considering the effect of the
stress relaxation at high temperature creep on the optimum layout
of the structures. The steady-state creep is modeled as an ascend-
ing function of stress. Therefore, parts of the structure with more
stress are under more creep effect. Stress relaxation causes
changes in the stress distribution, reduction of the maximum
stress, and increment in the displacement. These changes
happen over time and they are the function of temperature as well.
Figure 1 shows the creep deformation in an old wood structure.
This unwanted deformation can disrupt the performance of the
structures. Experimental tests indicate that the creep effect has
three main periods and continues until the rupture of the structure.
This issue is discussed in Secs. 1.3 and 2.1.

1.1 Topology Optimization and Material Nonlinearity
Problems. Today, topology optimization (TO) is widely used as a
powerful tool in structural optimization. It has been well devel-
oped to obtain the optimum layout for structural and nonstructural
problems. Based on the governing equation, these problems can
be divided into linear and nonlinear problems. In the structural
problems, nonlinearity can be due to nonlinear behavior of materi-
als or large deformation which is called geometrical nonlinearity.
Moreover, there is contact nonlinearity which is due to the contact
of different parts of the structure. Material nonlinearity is includ-
ing any inelastic behavior of material and is categorized as
rate-independent and rate-dependent nonlinearity [1]. Nonlinear
elasticity behavior, buckling, and plasticity behavior are in the
first category and viscoelasticity, visco-plasticity, fatigue, and
creep are classified in the rate-dependent nonlinearity (Fig. 2).

Although TO was introduced to solve linear structural prob-
lems, it was rapidly developed to consider nonlinearity aspects of
structures. However, most studies have focused on large deforma-
tion behavior especially in mechanism problems since the dis-
placements of mechanisms are intrinsically large [2]. The first
studies which investigated nonlinearity in TO were performed by
homogenization [3,4] approach. Swan and Kosaka demonstrated
that the optimal layout for maximal strength considering nonli-
nearity can be significantly different from the layout for minimal
elastic compliance [5]. As a popular method in TO, solid isotropic
material with penalization method (SIMP) [6] is utilized in solv-
ing structural nonlinearity by Jung and Gea [7]. Green–Lagrange
strain tensor and second Piolar–Kirchhoff stress tensor were used
to express strain and stress in large deformation, respectively, and
generalized convex approximation is utilized in TO.

Fig. 1 Deformations due to creep effect in a wood structure
(Braunschweig, Germany)

Fig. 2 Creep in structural TO problems category
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In both geometric and material nonlinearities, several instabil-
ities and difficulties are reported. These problems are mostly in
the analysis step but not in the sensitivity or optimization part. In
addition to the computational cost, one difficulty in considering
nonlinearity in SIMP method is the problem of indefinite or even
negative definite tangent stiffness matrix in low-density elements
[8,9]. This is due to large displacements during TO process. To
overcome this problem, one might remove low-density elements
[10]. Another method is relaxation of the convergence criteria [8].
Huang and Xie [11] proposed modified bidirectional evolutionary
structural optimization method to solve this problem in topology
optimization of nonlinear structures which is based on removing
and adding elements. In their study, a new scheme for ranking
solid and void elements is used. Significant improvements in
results are obtained. However, the oscillation between designs of
two different deformation states is reported due to nonlinearity
and partial unloading of material. Another approach is equivalent
static loads method which is proposed in Ref. [9] to consider dif-
ferent kinds of nonlinear static response in TO. In this method,
after nonlinear analysis, equivalent static loads are calculated and
linear static topology optimization was performed [12]. Using
multi-scale TO is an other novel approach in nonlinear structural
design [13–15]. More recently, the effect of void elements such as
layering and islanding is investigated [16]. The proposed algo-
rithm is based on performing all finite element (FE) analyses for
subdomains with solid and gray elements via removing all void
elements. In a different approach, a discrete filtering scheme is
utilized to remove spurious members in topology optimization of
truss lattices [17].

Another popular method in TO is based on level-set [18–20].
Considering geometric nonlinearity in level-set based TO is
reported by using unstructured mesh [21] in which the conver-
gence difficulty is significantly relieved.

One of the obstacles related to low density is excessive mesh
distortion which causes problems in convergence of the optimiza-
tion. A method which is proved to be efficient to overcome this
problem and the other instability problem in nonlinear TO is ele-
ment connectivity (ECP) method [22,23]. This method is
described in the next section and utilized in this study.

1.2 Internal Element Connectivity Parameterization
Approach. The internal element connectivity parameterization (I-
ECP) method [22,24–30] is an efficient method to circumvent
numerical instabilities in nonlinear problems related to low-
stiffness elements. In this method, the elements are solid (in
contrast to SIMP) but they are connected by zero-length links.
Design variables define the stiffness of these links. There are two
modeling techniques in ECP method: external ECP [22,24] and I-
ECP [26,27]. The difference is in links location, while in external
ECP, elements do not share nodes and they are connected by exter-
nal links, in I-ECP, internal links are used to connect element to the
shared nodes. Figure 2 depicts an element in I-ECP method. Here,
the stiffness matrix of solid element e is ke

str which is connected by
one-dimensional zero-length links with stiffness le to the finite ele-
ment nodes. The degrees-of-freedom of the internal nodes defining
the finite element are eliminated by the static condensation tech-
nique. Therefore, the number of assembled nodes in the global
stiffness matrix is exactly the same as that required for the SIMP
method. The details of FE computations are given in Sec. 2.2.

1.3 Stress Relaxation in Creep. The behavior of the most
materials can be well described by the theory of elasticity. How-
ever, at high temperature conditions, the importance of creep is
revealed. The increasing use of high temperature equipment repre-
sents the importance and urgent need of design under creep effect.
It was first noticed in the development and design of turbines [31].
Today, the theory of creep for different materials and condition is
well developed and there are lots of formulation to define this
effect under different situations. The behavior under creep can be

divided into three stages as the primary, secondary, and tertiary
creep stages [32]. A typical creep curve is shown in Fig. 4. This
division is based on the decreasing, constant, and increasing creep
strain rates, respectively.

Despite the significant progress in the theory of creep, there are
few studies in considering creep or viscoelasticity in TO. Among
rate-dependent material nonlinearity, viscoelastic TO has been
studied sporadically mostly as viscoelastic damping [33]. How-
ever, there are several studies that investigated nonlinear contin-
uum damage models in TO [34,35]. Recently, James and
Waisman [36] performed TO for viscoelastic creep deformation.
A linear viscoelastic model is utilized in standard TO (SIMP) and
time-dependent adjoint method is used for sensitivity analysis.
The results show high dependency of optimal layout to the load
duration. In their study, Prony series function is utilized to define
Young’s modules as a function of time.

Despite the mentioned studies, there is a significant void within
the nonlinear TO in considering creep effects such as stress relax-
ation. Creep is a complex function of time, stress, and tempera-
ture. Considering whole, these complexities in TO would be an
open field of research. In this paper, we investigate the effect of
creep stress relaxation on optimal design. The proposed method
obtained the optimal layout at the end of the secondary stage
under constant load. To this end, a creep stress relaxation theory
is utilized which leads to increment in the displacement field and
alleviates the maximum stress in the structure. Section 2 describes
the formulation of the used stress relaxation theory and finite
element implementation. In Sec. 3, sensitivity analysis for using
in I-ECP is derived. The results and discussion are given in Sec. 4,
and finally, conclusion is presented in Sec. 5.

2 Mathematical Formulation for Creep and Internal

Element Connectivity Parameterization

In this section, the theory of stress relaxation creep which is
used in this study is presented. Moreover, a brief review of I-ECP
method is given, and then, implementation of the stress relaxation
in finite element analysis by I-ECP method is described.

2.1 Stress Relaxation Formulation. Creep is a time-
dependent stress–strain relation, and in general, it is the function
of time (t), stress (r), and temperature (T) [31] which can be writ-
ten as following mathematical form:

ecreep ¼ f ðt; r; TÞ ¼ f1ðtÞf2ðrÞf3ðTÞ (1)

In the above relation, it was assumed that each function depends
on only one variable. The aim of this study is to optimally design
the structures during secondary stage when the stress distribution
is changed due to the creep effect. The primary stage is almost
fast and the tertiary stage leads to rupture but the secondary stage
is a steady-state which covers the most period of the life of the
structure. By assuming the constant temperature, the creep strain
that causes stress relaxation can be written just as a function of the
stress

ecreep ¼ f ðrÞ (2)

Many researchers have investigated the above relation mainly for
the secondary stage of the creep. For both metal and alloys, the
secondary creep rate (_e) can be expressed by a power relation
[31,37]

_e ¼ arz (3)

Here, the parameters a and z are material properties’ parameters.

There are some other relations such as aðeðr=r0Þ � 1Þ and
aðsinhðr=r0ÞÞz[38]; however, it does not have effect on generality
of our optimization method and one can use different relations for
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creep strain in the present TO method just by changing Eq. (4) in
FE analysis and Eq. (41) in sensitivity analysis.

The appropriate range for z in annealed metals is between 1 and
7 [31,39]. In most cases of creep at high temperature and for
alloys, z varies between 2 and 4 [31]. The total strain at the arbi-
trary time (t ¼ tf ) can be obtained as summation of elastic and
creep strains

e ¼ r
E0

þ arztf ¼ r
1

E0

þ arz�1tf

� �
) r

e

¼ E0

1þ atf E0rz�1
) E ¼ E0

1þ brm
(4)

The above relation is called strain hardening and we used the
assumption of constant slope of the creep strain curve in the sec-
ondary stage. The intensity of stress relaxation and the desired
time for design (tf ) are seen in the parameter b which is equal to
atf E0. Moreover, z� 1 is replaced by m for the convenience of
calculations. As shown in Eq. (4), the points with higher stress
have lower stiffness and this tends to redistribution of stress and
displacement field in the structure which is called stress relaxa-
tion. Equation (4) is obtained from uniaxial test but it can general-
ize for stress relaxation in multi-axial stress state [40]. The
equivalent effect of a multi-axial stress system has been achieved
through the concept of yield criterion [38]. Von Mises yield crite-
rion (rv) is commonly assumed as the effective stress.

2.2 Internal Element Connectivity Parameterization
Formulation. The details of computations of I-ECP method can
be found in Ref. [26]. Here, we provide a summary of calculation
which is used in this research. Assume an element in I-ECP method
that is depicted in Fig. 3. The shown (zero-length) four links have
different values for stiffness. However, to reduce the number of
design variables, we used one stiffness value (le) for each element.
Therefore, by using ke

I ¼ leI8�8 for planar element, the stiffness
matrix and equilibrium equation for element e can be written as

ke
I �ke

I

�ke
I ke

I þ ke
str

" #
ue

out

ue
in

( )
¼

fe
out

fe
in

( )
(5)

The indices in and out represent the inner and outer node’s force
or displacement, respectively. Note that all elements in the inner
force vector (fe

in) are zero. Here, ke
str is the stiffness of the solid

element inside the I-ECP element. This stiffness is only the func-
tion of Young’s modulus and not design variables. To reduce the
total degree-of-freedom of the system and computational cost,
static condensation scheme was proposed [26]. The results are
given here for the relation between inner and outer displacements

ue
in ¼ ðke

I þ ke
strÞ
�1

ke
I ue

out (6)

After some calculation using Woodbury formula, the condensed
stiffness matrix (ke

con) would be obtained as follows:

ke
con ¼ ke

str I8�8 þ
1

le
ke

str

� ��1

(7)

When condensed stiffness matrix is calculated, the relation
between outer displacement and force vectors can be written as

ke
conue

out ¼ fe
out (8)

The final step is assembling the stiffness matrix and load vector
and then solving the following linear equation system, to achieve
the displacement field:

KconUout ¼ Fout (9)

Moreover, the following interpolation function is used to map
design variable of the eth element (xe) which varies between zero
and one into the stiffness of zero-length links (le):

le ¼ lmax � lminð Þ xeð Þp

1þ 1� xeð Þp
� � lmax � lminð Þ

kdiag
str � 2

þ lmin (10)

The values for upper bound (lmax) and lower bound (lmin) are cho-

sen as 104 and 10�4, respectively. In addition, p is the penalty

function, which is equal to 3. kdiag
str is the average of diagonal ele-

ments in stiffness matrix of solid element. This value is constant

in this study since we use a uniform mesh (sdiag ¼ kdiag
str � 2

¼ const:).

2.3 Nonlinear Finite Element Implementation. To obtain
the displacement and stress field, a step-by-step algorithm is per-
formed for nonlinear finite element analysis. Figure 5 depicts the
schematic of analysis procedure. The applied force (Fs) is
increased gradually and Young’s modulus of each element is
updated after calculating von Mises stress field at each step. Index
s stands for the number of step and the total number of steps is n.
It should be mentioned that b is the function of material property
(a) and the lifetime of the structure (tf ) but not time-step in non-
linear analysis. Therefore, it is constant during nonlinear analysis.
The stiffness matrix of solid element inside each I-ECP element is
obtained as follows:

ke
str ¼ Ee

ð
BTDBdXe ; Ee ¼ E0

1þ brm
v

(11)

Here, D represents material tensor, B stands for gradient matrix,
and von Mises can be written in the form of stress components
(rij) for 2D problems

rv ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

11 þ r2
22 � r11r22 þ 3r2

12

q
(12)

A cantilever beam (Fig. 6) is analyzed under a unit concentrated
load by the aforementioned algorithm with 10 steps (n ¼ 10).

Fig. 3 An element in I-ECP

Fig. 4 Typical creep curve
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Initial Young’s modulus is E0 ¼ 1 N=m2 and � ¼ 0:3 is selected
for the Poisson ratio. The following relation by selecting b ¼ 10
and m ¼ 2 is used to update the Young modulus values:

Ee ¼ 1

1þ 10r2
v

(13)

The obtained stress field in the domain for this problem and for
the linear analysis problem (b ¼ 0) is shown in Fig. 7. In addition,
the displacement values at the tip of the cantilever beam for both
linear and nonlinear analyses are plotted in Fig. 8. As it can be
seen, the maximum stress is reduced about 18.8% due to the stress
relaxation and the stress field has become smoother. Moreover,
the maximum displacement is increased which leads to the incre-
ment in stored strain energy in the structure.

3 Optimization Formulation and Sensitivity Analysis

Stored strain energy is selected as the objective function. This
is the area under displacement-force curve in Fig. 8

C ¼
ð

X
u � df ¼

Xn

s¼1

Us � Us�1ð ÞT Fs þ Fs�1

2

� �

¼
Xn

s¼1

Us � Us�1ð ÞT 2s� 1

2n

� �
F

¼
Xn

s¼1

Us � Us�1ð ÞT s

n

� �
F� 1

2n

Xn

s¼1

Us � Us�1ð ÞTF

¼ Unð ÞTF� 1

n

Xn�1

s¼1

Usð ÞTF� 1

2n
Unð ÞTF

¼ 2n� 1

2n
Unð ÞTF� 1

n

Xn�1

s¼1

Usð ÞTF (14)

Fig. 5 Schematic diagram for nonlinear analyzing algorithm

Fig. 6 Cantilever beam problem

Fig. 7 von Mises stress field for (a) b 5 0 (rmax 5 13:2827 N/m2) and (b) b 5 10(rmax 5
10:7875 N/m2)

Fig. 8 Displacement—Load history at load point (b 5 0 and
b 5 10)
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Here, s shows the number of step and n is the total number of
steps in nonlinear finite element analysis. Using the above objec-
tive function, the TO problem can be formulated as follows:

Min
X�D

fStrain energyg ¼ C

Subject to :

jXj ¼ jXj�

KconUout ¼ Fout

(15)

Here, X is a topology that must be computed within the design
domain and jXj�is the final volume fraction.

3.1 Sensitivity Analysis Using Time-Dependent Adjoint
Method. Sensitivity analysis by utilizing adjoint method is per-
formed in this section. To this end, we add the objective function
with the summation of equilibrium equation at all steps of analysis
multiplied to an arbitrary adjoint vector (ks). Therefore, the sensi-
tivity of the stored strain energy with respect to arbitrary design
variable x is

C ¼ 2n� 1

2n
Unð ÞTF� 1

n

Xn�1

s¼1

Usð ÞTFþ
Xn

s¼1

ks Ks�1Us � Fsð Þ

) dC

dx
¼ 2n� 1

2n

dUn

dx

� �T

F� 1

n

Xn�1

s¼1

dUs

dx

� �T

F

þ
Xn

s¼1

ks
dKs�1

dx
Us þKs�1

dUs

dx

� �
(16)

For the sake of simplicity, we removed the index con for the con-
densed stiffness matrix. Considering stress relaxation, the stiffness
matrix is the function of both design variables (x) and Young’s
modulus. Applying the chain rule, we have

ks
dKs�1 x;Us�1ð Þ

dx
Us

¼
Xnele

e¼1

ke
s

dke
s�1

dx
ue

s ¼
Xnele

e¼1

ke
s

@ke
s�1

@x
þ @ke

s�1

@Ee
s�1

� dEe
s�1

dx

� �
ue

s

¼
Xnele

e¼1

ke
s

@ke
s�1

@x
ue

s þ ke
s

@ke
s�1

@Ee
s�1

ue
s �

dEe
s�1

dx

¼
Xnele

e¼1

ke
s

@ke
s�1

@x
ue

s þ qe
s �

dEe
s�1

dx
(17)

Here, nele is the number of elements in FE model and qe
s in each

step is defined as follows:

qe
s ¼ ke

s

@ke
s�1

@Ee
s�1

ue
s (18)

On the other hand

dEe
s�1

dx
¼ dEe

s�1

dre
s�1

� dre
s�1

dx

¼ dEe
s�1

dre
s�1

�
X8

i¼1

@re
s�1

@uin
s�1 ið Þ �

duin
s�1 ið Þ
dx

 !
þ @r

e
s�1

@Ee
s�2

� dEe
s�2

dx

 !

(19)

We can write the above equation in the vector form

dEe
s�1

dx
¼ dEe

s�1

dre
s�1

� @re
s�1

@uin
s�1

 !T

� duin
s�1

dx
þ @r

e
s�1

@Ee
s�2

� dEe
s�2

dx

0
@

1
A (20)

The derivative of inner displacement with respect to design vari-
able is obtained as follows:

uin
s�1 ¼ ke

I þ ke
strð Þ�1

ke
I uout

s�1 ) ke
I þ ke

strð Þuin
s�1

¼ ke
I uout

s�1 )
dle

dx
uin

s�1 þ
dEe

s�2

dx
ke

stru
in
s�1 þ ke

I þ ke
s

� � duin
s�1

dx

¼ dle

dx
uout

s�1 þ le
duout

s�1

dx
) duin

s�1

dx

¼ ke
I þ ke

s�2

� ��1

� dle

dx
uout

s�1 � uin
s�1

� �
� dEe

s�2

dx
ke

stru
in
s�1 þ le

duout
s�1

dx

� �
(21)

Substituting in Eq. (20), we have

dEe
s�1

dx

¼ dEe
s�1

dre
s�1

� @re
s�1

@uin
s�1

 !T

� ke
I þ ke

s�2

� ��1 dle

dx
uout

s�1 � uin
s�1

� ��0
@

� dEe
s�2

dx
ksoliduin

s�1 þ le duout
s�1

dx

�
þ @r

e
s�1

@Ee
s�2

� dEe
s�2

dx

�
(22)

The above relation is written in simple form as follows:

dEe
s�1

dx
¼ Ae

s�1

dEe
s�2

dx
þ Be

s�1 þ Ve
s�1

duout
s�1

dx
(23)

where

Ae
s�1 ¼

dEe
s�1

dre
s�1

� @r
e
s�1

@Ee
s�2

� dEe
s�1

dre
s�1

dre
s�1

duin
s�1

� �T

� ke
I þ ke

s�2

� ��1 � ksoliduin
s�1

� �	 

(24)

Be
s�1 ¼

dEe
s�1

dre
s�1

dre
s�1

duin
s�1

� �T

� ke
I þ ke

s�2

� ��1 � dle

dx
uout

s�1 � uin
s�1

� �� �
(25)

Ve
s�1 ¼

dEe
s�1

dre
s�1

� dre
s�1

duin
s�1

� �T

ke
I þ ke

s�2

� ��1
le

 !
(26)

Substituting Eq. (23) in Eq. (17) yields

ks
dKs�1 x;Us�1ð Þ

dx
Us ¼

Xnele

e¼1

ke
s

@ke
s�1

@x
ue

s þ qe
s

� Ae
s�1

dEe
s�2

dx
þ Be

s�1 þ Ve
s�1

duout
s�1

dx

� �
(27)

Therefore, there is a recurrence relation to define the coefficient
for ðdEe

s�2=dxÞ

qe
s�1 ¼ ke

s�1

@ke
s�2

@Ee
s�2

ue
s�1 þ qe

sAe
s�1 (28)
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Finally, Eq. (17) would be obtained

ks
dKs�1 x;Us�1ð Þ

dx
Us ¼

Xnele

e¼1

ke
s

@ke
s�1

@x
ue

s

þ qe
sAe

s�1

dEe
s�2

dx
þ he

s�1 þ pe
s�1

duout
s�1

dx

� �
(29)

Here, pe
s�1 and he

s�1 are defined as follows:

pe
s�1 ¼ qe

s � Ve
s�1

he
s�1 ¼ qe

s � Be
s�1

(30)

Substituting in Eq. (16), the desired derivative will be written as
follows:

dC

dx
¼ 2n� 1

2n

dUn

dx

� �T

F� 1

n

Xn�1

s¼1

dUs

dx

� �T

F

þ
Xn

s¼1

ks
@Ks�1

@x
Us þ Hs�1 þ Ps�1

dUs�1

dx
þ ksKs�1

dUs

dx

� �

(31)

To vanish the terms with coefficient ðdUn=dxÞ, the following rela-
tion must be established:

2n� 1

2n

dUn

dx

� �T

Fþ kT
n Kn�1

dUn

dx

� �

¼ 0) Kn�1kn ¼ �
2n� 1

2n
F (32)

and for vanishing the terms with coefficient ðdUs=dxÞ, we need

� 1

n

Xn�1

s¼1

dUs

dx

� �T

Fþ
Xn

s¼1

PT
s�1

dUs�1

dx
þ kT

n Ks�1

dUs

dx

� �
¼ 0

) Ks�1ks ¼
1

n
F� Ps�1 s ¼ 1; 2;…; n� 1ð Þ

(33)

After solving Eqs. (32) and (33), adjoint vector (ks) will be
obtained. Then, the desired sensitivity will be calculated as
follows:

dC

dx
¼
Xn

s¼1

kT
s

@Ks�1

@x
þHs�1

� �
Us (34)

In the above relations, the stiffness matrix of each element is
defined as Eq. (7). Therefore

@K

@x
¼ @ke

@x
¼ @ke

@le
� dle

dx
(35)

The first term in the derivative can be obtained from recasting the
stiffness matrix

ke¼ke
str Iþ 1

le
ke

str

� ��1

) Iþ 1

le
ke

str

� �
ke¼ke

str

) lekeþke
ske¼ leke

str)keþ le @ke

@le

� �
þke

s

@ke

@le

� �
¼ke

str

) leIþke
strð Þ @ke

@le

� �
¼ke

str�ke)@ke

@le
¼ ke

str�keð Þ leIþke
strð Þ�1

(36)

The second term of derivative in Eq. (35) will be obtained easily
as follows:

dle

dx
¼ n lmax � lminð Þxn�1

1þ 1� xnð Þ lmax � lminð Þ
kdiag

s � 2

�
lmax � lminð Þxn � � n lmax � lminð Þ

kdiag
s � 2

xn�1

 !

1þ 1� xnð Þ lmax � lminð Þ
kdiag

s � 2

 !2
(37)

In Eq. (19), the sensitivity of the von Mises stress in each element
with respect to inner displacement at degree-of-freedom i needs to
be calculated. From the definition of von Mises stress in 2D plane
stress (Eq. (12)), we have

@re

@uin ið Þ ¼
Ee

2re

� �
� DBð Þ1;i 2r11 � r22ð Þ
�

þ DBð Þ2;i 2r22 � r11ð Þ þ 6 DBð Þ3;ir12

�
(38)

Here, ðDBÞj;i represents the jth row and the ith column of DB

matrix. Moreover, in Eq. (18), the derivative of the condensed ele-
ment stiffness with respect to Young’s modulus (@ke=@Ee) will be
obtained by using Eq. (7)

ke ¼ ke
str Iþ 1

le
ke

str

� ��1

) Iþ 1

le
ke

str

� �
ke ¼ ke

str

) leke þ ke
strk

e ¼ leke
str

) le @ke

@Ee
þ @ke

str

@Ee
ke þ ke

str

@ke

@Ee
¼ le @ke

str

@Ee

) leIþ ke
strð Þ @ke

@Ee

� �
¼ le @ke

str

@Ee
� @ke

str

@Ee
ke

) @ke

@Ee
¼ le @ke

str

@Ee
� @ke

str

@Ee
ke

� �
leIþ ke

strð Þ�1 (39)

where

ke
str ¼ Ee

ð
BTDBdXe ) @ke

str

@Ee
¼
ð

BTDBdXe (40)

Moreover, in Eq. (24), the required derivative of Young’s modu-
lus is calculated as follows:

@Ee

@re
¼ �E0mb reð Þm�1

1þ b reð Þm
� �2

(41)

and finally, the derivative of von Mises stress would be obtained

@re

@Ee
¼ re

Ee
(42)

3.2 Sensitivity Verification With Finite Difference
Method. Since sensitivity analysis is the core of the gradient-
based optimization methods, it is critical to verify the accuracy of
the presented adjoint method. To this end, the results from the
obtained analytical relations are compared with the numerical
results calculated by the finite difference method. The following
forward finite difference equation is used for computing numerical
derivative of stored strain energy (C) with respect to design vari-
able xe:

DC

Dxe
� C xe þ Dxeð Þ � C xeð Þ

Dxe
(43)
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A perturbation value Dxe ¼ 10�6 is used herein. A cantilever
beam, which is shown in Fig. 6, is discretized by 20 elements. The
adopted solid material properties are E ¼ 1 N=m2, � ¼ 0:3,
m ¼ 2, and b ¼ 10. The results for the finite difference and ana-
lytical are compared in Table 1. As it can be seen, a typical agree-
ment up to four significant digits of precision is obtained which
indicates the validity of the presented adjoint method.

3.3 Stability and Convergence. Stress relaxation due to the
creep effect in TO causes some instabilities similar to stress con-
strained TO problems. This is because the value for the elasticity
coefficient (Ee) depends on the stress value. In such problems and
in both SIMP and ECP methods, it is needed to modify the stress
calculation relation. To describe this problem, assume a simple
plate under tension which is shown in Fig. 9(a). The optimum
expected layout for the linear analysis (b ¼ 0) and volfrac ¼ 0:33
is depicted in Fig. 9(b). Here, Poisson’s ratio is zero.

If the same problem is solved considering stress relaxation (for
example, m ¼ 2 and b ¼ 500), the algorithm does not converge
and it oscillates between two layouts which are shown in Fig. 10.

This problem occurs because the stress in low stiffened ele-
ments tends to zero instead of being infinite. The same problem
would be seen in the stress-based TO using SIMP method.
Assume we have just one element under force (F) and the stiffness

for all elements obtained by ksolid ¼
Ð
Xe

BTDBdX. In the SIMP

method and for element with density q, the displacement in nodal

points is obtained from ue ¼ ðk�1
solidF=qpEeÞ and the stress tensor

is calculated as follows:

r ¼ qqEeBDue ¼ qqEeBD
k�1

solidF

qpEe
¼ qq�p BDk�1

solidF
� �

(44)

Therefore, the necessary condition of convergence in SIMP
method is q < p [41]. This condition guarantees that the stress
tends to be infinite when density approaches zero. To overcome

this problem in the I-ECP method, one might utilize the same idea
of using different mapping relations for calculating the stiffness of
links in stiffness matrix (le) and in computing stress in element
(le0). Hence, the stress in the same problem of one element under
force (F) by I-ECP method is obtained as follows:

r ¼ EeBDuin ¼ EeBD le0Iþ Eeksolid

� ��1
le
0
uout

¼ EeBD le
0
Iþ Eeksolid

� ��1
le0 k�1

conF
� �

¼ EeBD le
0
Iþ Eeksolid

� ��1
le0 1

Ee
Iþ 1

le
Eeksolid

� �
k�1

solidF

� �

¼ BD le
0
Iþ Eeksolid

� ��1
le
0
Iþ le0

le
Eeksolid

� �
k�1

solidF

� �
(45)

Here, we used

ke
Con ¼ ke

s Iþ 1

le
ke

s

� ��1

) ke
Con Iþ 1

le
ke

s

� �
¼ Eeksolid

) ke
Con Iþ 1

le
ke

s

� �
k�1

solid ¼ EeI) k�1
Con ¼

1

Ee
Iþ 1

le
ke

s

� �
k�1

solid

(46)

Therefore, the condition for the convergence is

lim
x!0

le
0
Iþ Eeksolid

� ��1
le0Iþ le

0

le
Eeksolid

� �
ue

soild

� �
¼ 1 (47)

Table 1 Finite difference and analytical results

El. No. Finite difference Analytical El. No. Finite difference Analytical

1 �2.011582012 �2.011585349 11 �0.563482416 �0.56345128
2 �1.05231166 �1.052320516 12 �0.742240402 �0.742199705
3 �1.063933297 �1.063959995 13 �0.326370042 �0.326420441
4 �2.031656265 �2.031705055 14 �0.348299167 �0.348309037
5 �1.170171871 �1.170160484 15 �0.409829681 �0.409815976
6 �0.807818168 �0.807900608 16 �0.298555491 �0.298533571
7 �0.820285351 �0.820357585 17 �0.053574922 �0.053574249
8 �1.189253496 �1.189197182 18 �0.447473525 �0.447516982
9 �0.692880064 �0.692903377 19 �1.052577048 �1.052589049
10 �0.527483479 �0.527478088 20 �2.179443825 �2.179498702

Fig. 9 (a) Simple plate with 15 elements and (b) the optimum
layout for b 5 0 Fig. 10 Oscillating in the optimum layout for b 5 500
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Different mapping (le
0
) can be obtained by change in the parame-

ter p or sdiag used in Eq. (10). Figure 11 shows the effect of these
parameters on the stress when design variable (xe) approaches
zero.

Therefore, change in the penalty power or sdiag value does not
work for solving the convergence problem because the obtained
value for the stress is zero when xe approaches zero. One idea is
using the following relation to compute the stress:

re ¼ 1

xe
EeBDuin (48)

Figure 12(a) shows the efficiency of using Eq. (48) in calculating
stress in low stiffness elements. Moreover, utilizing this equation
in I-ECP method leads to desired optimum layout (Fig. 12(b)) for
the problem defined in Fig. 9(a). It should be noted that since the
value of design variable (xe) for the element inside the domain
(X) is one, then the stress in the final optimum layout is calculated
correctly. This modification was implemented in the sensitivity
analysis. Therefore, Eq. (25) should be modified as follows:

Be
s�1 ¼

dEe
s�1

dre
s�1

� @r
e
s�1

@xe
þ dEe

s�1

dre
s�1

dre
s�1

duin
s�1

� �T

� ke
I þ ke

s�2

� ��1 � dle

dx
uout

s�1 � uin
s�1

� �� �
(49)

where

@re
s�1

@xe
¼ �1

xe
re

s�1 (50)

Moreover, Eq. (38) would be

@rv

@uin ið Þ ¼
1

xe

Ee

2rv

� �
� DBð Þ1;i 2r11 � r22ð Þ
�

þ DBð Þ2;i 2r22 � r11ð Þ þ 6 DBð Þ3;ir12

�
(51)

4 Results

To investigate the effect of the creep on the optimum layout,
several examples have been solved by the proposed method.
Without loss of generality, the following material properties were
chosen for Young’s modulus and Poisson ratio: E ¼ 1 N=m2 and
� ¼ 0:33. The mesh independency filter similar to SIMP method
[42] with filter radius rmin ¼ 1:5� size of the element is applied
for all examples. Moreover, m ¼ 2 in Eq. (4) and the number of
steps in nonlinear FE analysis (n) is 10.

4.1 Example 1. The first example is the classic cantilever
beam illustrated in Fig. 6 where one end of the beam is fixed,
while a unit load is applied at the middle of other end. The design
domain was discretized into 100� 50 elements and the mass limit
was set to 50% of the total domain. The optimum designs for dif-
ferent values of b (Eq. (4)) are shown in Figs. 13(a), 13(c), and
13(e). As can be seen, the optimum layout under creep has more
structural element. This topology is common in the optimum
design of nonlinear structures. If we reanalyze the design obtained
for linear case (Fig. 13(a)) under creep effect for b ¼ 200 and
b ¼ 300, the strain energy would be 39:5924 J and 43:0395 J,
while the strain energy in the obtained optimum layouts from the
proposed method (Figs. 13(b) and 13(c)) is less and is equal to
38:0078 J and 41:4702 J, respectively. This proves the efficiency
of the proposed method for considering stress relaxation effect.
However, the difference is not significant since the difference

Fig. 11 The relation between stress and xe using different (a)
penalty and (b) sdiag

Fig. 12 (a) The relation between stress and xe for
r 5 (1/xe)EeBDuin and (b) the optimum layout for b 5 500
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between these layouts is not huge. Finally, the optimum layout
should be chosen based on the material property and lifetime of
the structure.

The von Mises stress fields in the optimum layouts are shown
in Figs. 13(b), 13(d), and 13(f). By increasing the effect of creep
(b), the stress field became more uniform and the value of the
maximum stress reduced which was expected due to the stress
relaxation.

4.2 Example 2. The second example is a simply supported
beam from left and right sides and a unit concentrated load is
applied at the top middle of the beam (Fig. 14(a)). The beam is
discretized into 200� 50 elements. Figures 14(b) and 14(c) depict

Fig. 13 Optimum layouts and stress distributions: (a) optimum layout for b 5 0, C 5 31:9620 J,
(b) von Mises stress (N/m2),rmax 5 0:2563 N/m2, (c) optimum layout for b 5 200, C 5 38:0078 J,
(d) von Mises stress (N/m2), rmax 5 0:1642 N/m2, (e) optimum layout for b 5 300, C 5 41:4702 J,
and (f) von Mises stress (N/m2), rmax 5 0:1593 N/m2

Fig. 14 (a) Design domain and the boundary condition of beam example, (b) optimum layout
for b 5 0 (C 5 24:3057 J), and (c) optimum layout for b 5 50 (C 5 27:0388 J)

Fig. 15 Von Mises stress in high stress elements

Fig. 16 Optimum layouts under b 5 50 for the maximum dis-
placement umax 5 24:3 (obtained volume 5 0:4553V0)
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the optimum layouts with 40% mass constraint for linear case
(b ¼ 0) and under stress relaxation effect (b ¼ 50). As expected,
more structural element can be seen in the optimum layout
considering stress relaxation. Reanalyzing the linear optimum lay-
out under creep using b ¼ 50 would give compliance equal to
29:8521 J. In comparison, the compliance for the obtained opti-
mum design under creep is 27:0388 J which is less.

Von Mises stress in 800 high stress elements in both mentioned
cases is sorted and plotted in Fig. 15. The maximum stress in the
linear case is 0:3325 N=m2, while in domain under stress relaxa-
tion is 0:2720 N=m2. Moreover, under stress relaxation, the distri-
bution of stress is more uniform as shown in Fig. 15.

The optimum layouts with the same value for the objective
function (C ¼ 24:3 J) are shown in Fig. 16. For the linear case, the
volume of the optimum structure is 40% of the total design
domain, while under stress relaxation (b ¼ 50), the required vol-
ume for the optimum design is 45.4%. It means that if the maxi-
mum displacement during the lifetime of the structure is selected
as constraint, the structure should be designed more conserva-
tively with more mass.

4.3 Example 3. The design domain of the last example is
shown in Fig. 17(a) which is discretized into 200� 100 elements.
The unit force is applied in the inclined direction at the
center of the domain. Mass limit is selected as volfrac ¼ 0:25.
Figures 17(b) and 17(c) depict the optimum layout for linear and
nonlinear cases.

In this example, the optimum layouts are almost the same in
topology but there are differences in the shape of the obtained lay-
outs. For example, the curvature and the thickness of the bars are
different. This example is given to show that, in some cases, the
stress relaxation causes difference just in the shape of layouts not
in topology.

5 Conclusion

Creep as an important phenomenon in structures which
experience high temperature leads to increment in the displace-
ment field, and thus, it increases the nonlinear compliance
(stored strain energy). However, due to the stress relaxation,
the maximum stress in the structure is reduced. In this
research, the effect of stress relaxation on the optimum layout
of the structures was investigated. Topology optimization was
performed by I-ECP method and stress relaxation is formulated
in finite element analysis. Time-dependent adjoint method was
used to calculate the required sensitivity in the optimization
process.

Several benchmark problems are solved by the proposed
method. The comparison between the strain energies in linear
and nonlinear optimum layouts showed the efficiency of the pro-
posed method. The obtained results stated that the optimum lay-
outs under stress relaxation effect usually need more structural
bars in compression with linear cases. However, the designs do
not differ significantly. It would be expected to see more influ-
ences of the stress relaxation on the optimum layout, while
stress is considered as a constraint or objective function in TO.
Future work will focus on including stress relaxation effect in
stress-constrained TO.
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