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Abstract: This study develops a new response filtering approach for recovering dynamic mechanical
stresses under impact loading. For structural safety, it is important to consider the propagation of
transient mechanical stresses inside structures under impact loads. Commonly, mechanical stress
waves can be obtained by solving Newton’s second law using explicit or implicit finite element
procedures. Regardless of the numerical approach, large discrepancies called the Gibb’s phenomenon
are observed between the numerical solution and the analytical solution. To reduce these discrepancies
and enhance the accuracy of the numerical solution, this study develops a response filtering method
(RFM). The RFM averages the transient responses within split time domains. By solving several
benchmark problems and analyzing the stresses in the frequency domain, it was possible to verify
that the RFM can provide an improved solution that converges toward the analytical solution.
A mathematical theory is also presented to correlate the relationship between the filtering length and
the frequency components of the filtered stress values.

Keywords: stress wave propagation; finite element; numerical dispersion; Gibbs phenomenon;
response filtering method; post-processing

1. Introduction

This study develops a new response filtering approach for recovering dynamic mechanical stress
under impact loads. From a structural engineering point of view, a mechanical stress wave, due to
structural impacts such as an impact force, explosion, or collision, that propagates through a structural
medium is important. When this wave reaches weak parts of the structure, it can cause unexpected
catastrophic failure or fracturing of structural components. Thus, it is important to compute and
consider these stress waves in mechanical or civil engineering [1–4]. With the use of state-of-the-art
computational theory and computer hardware, numerical solutions can be regarded as acceptably
close to the analytical solution. However, from a theoretical perspective, some discrepancies and errors
remain, and verification of the convergence to the true solution is still important. Some efforts have
been undertaken to reduce the differences and the numerical errors between the numerical solutions
and analytical solutions [3,5,6]. To this end, this study develops a new post-processing approach for
transient stress waves named the response filtering method (RFM) with an average operator.

Numerical methods, e.g., the finite element (FE) method, finite volume method, or finite difference
method, have been employed for the transient analysis of complex structures. The numerical solutions
obtained using proper computational theory usually converge to the analytical solutions with a
refined time step and refined mesh [3,5,6]. However, it has been observed that it is f̃ =

fs
FL ·m ± f

difficult for a numerical solution to describe an analytical solution that has significant discontinuity,
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even when proper meshes and time steps are adopted. In finite element (FE) numerical solutions,
overshooting, undershooting, and oscillations occur around the discontinuity point known as the Gibbs
phenomenon [1,7–9]. Various studies have been conducted aiming to reduce these types of discrepancies
between the analytical and numerical solutions. Some relevant research can be found to improve
the numerical accuracy by introducing the numerical damping [10]. For instance, the discontinuous
Galerkin method and variational integrator have been proposed to accurately describe discontinuities
in the numerical solutions [11–15]. Other approaches have been proposed to reduce the dispersive
and dissipative errors in the numerical solution of partial difference equations [3,4,16,17]. Klaus and
Bathe make a significant contribution to the finite element method for wave propagation problem.
They present higher-order spatially discretized finite elements with an extra computational cost for the
wave propagation problem [3,16] and also present new implicit and explicit integration methods with
Noh [4,17]. Linear combinations of consistent and lumped mass matrices [18–20] and modified spatial
integration rules for mass and stiffness matrices [21,22] have been considered to ensure high-fidelity
solutions. Comprehensive and considerable benchmark problems for wave propagation can be
found in the work of Idesman et al. [23]. However, in numerical solutions, errors due to Gibb’s
phenomenon cannot be eliminated completely, and some improvements are required to the oscillation
of the numerical solution [9]. A few post-processing methods have been developed to reduce these
kinds of numerical errors [21,23,24].

The objective of this study is not to develop a new finite element or integration method but
to develop a simple post-processing approach, i.e., the RFM, to reduce discrepancies between the
numerical and analytical solutions. In this study, only one-dimensional problems are considered
to calculate exact solutions (analytical solution) as references. The transient stress values in the
discrete time domain are simply divided into several subset domains, and each subset domain is
averaged. The subsets have a specific number of stress values, which, in this paper, is called the
filtering length. The averaged stress values are set as the filtered stress values, and the original
stress values are replaced with the filtered values in the corresponding time domain, as shown in
Figure 1. The RFM not only efficiently solves the oscillation problem in the numerical solution by
adjusting the filtering length, but it also creates discontinuous solutions that converge to the analytical
solutions. Alternatively, it can be considered that the RFM can create new frequency components of
the responses (especially higher frequency components). In this study, the relationship between the
RFM and frequency components is mathematically verified, and a formulation is introduced to predict
the generated frequency components using RFM.Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 22 
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This remainder of this paper is organized as follows. In Section 2, the concept, application,
and limitations of finite element formulations for the mechanical wave problem and numerical
integration scheme, i.e., Newmark’s scheme, are reviewed. In Section 3, to resolve the oscillation issue,
i.e., Gibb’s phenomenon in the numerical solution, the RFM is presented. In Section 4, several numerical
examples are presented to demonstrate that the present RFM can be utilized to improve the accuracy
of numerical solutions. Finally, Section 5 provides conclusions and directions for future research.

2. Finite Element Analysis for the Transient Stress Response

2.1. Transient Finite Element Simulation

The transient response of a mechanical structure can be analyzed using the finite element procedure
as follows [3,5,6]:

..
Ui = M−1

[
Fi −C

.
Ui −KUi

]
(1)

where the mass, damping, and stiffness matrices are denoted by M, C, and K, respectively, and the
force vector at the ith time step is denoted by Fi, and the displacement, velocity, and acceleration vectors
at the ith time step are denoted by Ui,

.
Ui, and

..
Ui, respectively. Many numerical schemes can be applied

to solve the above Newton’s law. This study implements both explicit and implicit integration method
to investigate performance of the present RFM. Central-difference method and Newmark’s method are
adopted as representation of explicit and implicit integration methods.

Central-difference method approximates velocity and acceleration by

.
Ui =

1
2∆t

(Ui+1 −Ui−1) (2)

..
Ui =

1
∆t2

(Ui+1 − 2Ui + Ui−1) (3)

and Ui+1 and Ui−1 can be obtained by Taylor series about time i∆t:

Ui+1 = Ui +
∆t
1!

.
Ui +

∆t2

2!

..
Ui +

∆t3

3!

...
Ui + · · · (4)

Ui−1 = Ui −
∆t
1!

.
Ui +

∆t2

2!

..
Ui −

∆t3

3!

...
Ui + · · · (5)

Combining Equations (2)–(5) with the second-order accuracy provides the following equation:

Ui+1 =
[ 1

∆t2 M +
1

2∆t
C
]−1{

Fi −KUi +
1

∆t2 M(2Ui −Ui−1) +
1

2∆t
CUi−1

}
(6)

In Newmark’s method [3,5,6], displacement vector of i + 1th time step can be obtained as follows:

.
Ui+1 =

.
Ui + (∆t)

[
(1− γ)

..
Ui + γ

..
Ui+1

]
(7)

Ui+1 = Ui + (∆t)
.

Ui + (∆t)2
[(1

2
− β

) ..
Ui + β

..
Ui+1

]
(8)

where ∆t is the time step, and the two parameters of Newmark’s scheme are β and γ [6]. With the
above approximations of Newmark’s method, the following discretized equations in the time domain
can be obtained:

K
′

Ui+1 = F
′

i+1, (9)

K
′

=
M

∆t2β
+
γ

∆tβ
C + K, (10)
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F
′

i+1 = Fi+1 +
[

M+∆tγC
∆t2β

]
Ui +

[M+∆tγC
∆tβ −C

] .
Ui

+
[(

1
2β − 1

)
(M + ∆tγC) − ∆t(1− γ)C

] ..
Ui.

(11)

In this study, the coefficients of Newmark’s method, β and γ, are set to 1
4 and 1

2 , respectively for
unconditional stability.

The dynamic stress at the ith time step can be calculated from the displacements at the ith time
step as follows:

σi =


σx

σy

τxy


i

= DBUi. (12)

D =
E

1− ν2


1 ν 0
ν 1 0
0 0 1−ν

2

 (13)

2D plane stress : σi =
√
σ2

x − σxσy + σ2
y + 3τxy. (14)

The plane stress (von Mises stress), stress vector, displacement vector, constitutive matrix,
and strain–displacement matrix at the ith time step are denoted by σi, σi, Ui, D, and B, respectively.
The Young’s modulus and Poisson’s ratio are denoted by E and ν, respectively.

2.2. Wave Propagation Analysis and Gibb’s Phenomenon

Facilitated by the developments in hardware and software, finite element simulations of transient
systems have been applied in many application areas [3]. Despite their successful applications, one of
the remaining issues with transient finite element simulations is the Gibb’s phenomenon, with its
associated overshooting and undershooting phenomena [5]. This issue becomes a serious problem
in structural analyses. To illustrate this problem, let us consider the stress analysis in Figure 2 as an
example [5]. The right side of a 20-in-long rectangular bar (LT) with a cross-sectional area (A) of 1 in2 is
fixed, and a step load of 100 lb is applied in the x-direction on the left side of the bar at t = 0. The Young’s
modulus (E), density (ρ), and Poisson’s ratio (ν) of the bar are 30× 106 psi, 7.4× 10−4 lb-s2/in4, and zero
(for a one-dimensional problem), respectively. In this study, the analysis domain is discretized using a
40× 1 mesh of 4-node rectangular elements (Q4). The mesh size of this example is chosen by following
the parameters and setting of the reference [5]. In addition, it is worth to note that the issues of the
stability and the accuracy of the numerical integration schemes should be considered, and the time of
this example is chosen to consider the stabilities of the numerical integration schemes. The time step
(sampling time), ∆t, is set to 4.0× 10−7 s smaller than the critical time ( ∆tcr = Lc/v (= 2 .483× 10−6

)
,

v :
√

E/ρ, Lc: characteristic length) for the stability of the central-difference method.
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The transient finite element simulation determines the transient solution with application of a
sudden load to the cross section. The stress of the cross section in the steady-state solution becomes
100 psi. Figure 3 shows the mechanical stress value calculated at x = 9.75 in (20th element). The solid
and the dotted lines represent the analytical and numerical solutions, respectively. With mechanical
properties we can calculate speed of wave propagation (v =

√
E/ρ= 2.012× 105 in/s) and time stress

curve. Before the arrival time (t1=
9.75

2.012×105 = 4.7214× 10−5s), the stress values at x = 9.75 in are zero
because the stress wave has not yet arrived. After the first arrival time and before the next arrival time

(t2=
9.75+2×(20−9.75)

2.012×105 = 1.5158× 10−4s), the analytical stress value becomes 100 psi. After 1.5148× 10−4s,
the analytical stress value increases to 200 psi owing to the arrival of the reflected wave at the right
side. The steady-state stress is 100 psi. The stress values obtained with the explicit and implicit
method are plotted with exact solution in Figure 3. The overall tendency is similar to that of the
analytical solution, but some spurious oscillations naturally occur. It is observed that larger oscillations
occur at the areas of sharp transition (t1 = 4.7214 × 10−5s and t2 = 1.5158 × 10−4s). Comparing the
analytical and numerical solutions, it seems that the numerical solution obtained using the transient
finite element simulation contains additional frequencies. However, later we will demonstrate that the
numerical solution actually cannot carry valuable information in the frequency domain compared with
the analytical solution. From a mathematical perspective, this phenomenon is referred to as Gibb’s
phenomenon and has been widely studied (see [4,5] and the references therein). In finite element theory,
considering this phenomenon, the stability issue has been researched [4,5,9,14,16,20]. The present
study revisits the Gibb’s phenomenon and presents a heuristic approach for improving the accuracy of
finite element simulations.
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3. Response Filtering Method for Improved Transient Stress

This section presents a new engineering approach, i.e., the RFM, to improve the transient stress
calculated using the finite element approach. In static analysis, spatial-averaging approaches for the
stress have been proposed, but to the best of our knowledge, an averaging scheme in the time domain
has not been previously proposed.

3.1. Response Filtering Method

As its name implies, the RFM filters the transient stress values in the time domain. A standard
FE simulation is conducted to compute the transient stress values. As illustrated in the previous
section, the Gibb’s phenomenon hinders our ability to obtain accurate solutions using this method.
By investigating the responses and their characteristics, this study proposes the concept of averaging
the erroneous transient stress values using the RFM. Through averaging, or filtering, it is expected that
the oscillations can be cancelled out, and thus the accuracy of the computed transient stress values can
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be improved. This concept has been applied for the stress analysis of static structure systems and is
implemented in various commercial software [25,26]. As it is a relatively simple concept, it is easy to
implement in the post-processing stage of any FE package. The present study is confined to averaging
(or filtering) in the time domain in order to illustrate the benefit of the proposed RFM.

Figure 1 illustrates a schematic diagram of the proposed RFM. First, the stress and
displacement responses are computed in the time domain using a conventional numerical approach,
i.e., Newmark’s method. The resulting transient solutions are approximations of the analytical solution,
and oscillations inevitably occur due to the Gibb’s phenomenon. The displacement or stress response
at each time step in the numerical approach can be described by (12), and without the loss of generality,
the stress values are employed to illustrate the RFM.

σ = [σ1, σ2, · · · σN−1, σN] (N : number of time steps), (15)

where the (von Mises) stress of target element is denoted by σi, and the subscript i denotes the time
step and set of stresses with respect to time step is σ. The transient stress values can be divided into
NR regions and renumbered for convenience as follows:

σ = [σ1, σ2, · · · , σFL︸           ︷︷           ︸
the 1st region

, σFL+1, · · · , σ2FL︸             ︷︷             ︸
the 2nd region

, · · · , σN−FL+1, · · · , σN︸              ︷︷              ︸
the NR−th region

]

= [σ1
1, σ1

2, · · · , σ1
FL︸           ︷︷           ︸

the 1st region

, σ2
1, · · · , σ2

FL︸       ︷︷       ︸
the 2nd region

, · · · , σNR
1 , · · · , σNR

FL︸          ︷︷          ︸
the NR−th region

].
(16)

The “region” defined in this research refers the time step region in which the solutions are averaged.
To avoid confusion in notation, the ith stress at the jth region is denoted by σ j

i . The filter length,
which is equal to the number of stress values in each region, is denoted by FL. The filtered stresses or
responses are obtained by averaging with a weight factor as follows:

σ̃ = [ σ̃
1︸︷︷︸

the 1st
region

, · · · , σ̃
k︸︷︷︸

the k−th
region

, · · · , σ̃
NR︸︷︷︸

the NR−th
region

], (17)

σ̃
k= [̃σk

1, · · · , σ̃k
j , · · · , σ̃k

FL], (̃σ
k
1 = σ̃k

j = σ̃
k
FL), (18)

σ̃k
j =

FL∑
i=1

wk
i σ

k
i

FL∑
i=1

wk
i

, k = 1, 2, · · · , NR, j = 1, 2, · · · , FL
(
N = FL×NR, FR =

FL
N
× 100

)
, (19)

where the set of original and filtered stresses (responses) at all time steps are denoted by σ and σ̃,
respectively. The ith filtered stress and the weighting factor in the kth domain are denoted by σk

j and wk
j ,

respectively. The filtering length, filtering ratio and number of the filtered regions are FL, FR, and NR,
respectively. In the present study, the weight factors are set as equal to one. For example, the filtered
stress in (17) with an FL value of two becomes the following:

σ̃ =


σ1 + σ2

2
,
σ1 + σ2

2︸               ︷︷               ︸
σ̃1

,
σ3 + σ4

2
,
σ3 + σ4

2︸               ︷︷               ︸
σ̃2

, · · · ,
σN−1 + σN

2
,
σN−1 + σN

2︸                        ︷︷                        ︸
σ̃FL

 (20)
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This simple filtering approach, which is similar to the stress average in static FE analysis, is carried
out in the time domain rather than in the spatial domain. To validate the performance of the proposed
method, the benchmark problem in Section 2 can be revisited. The transient stresses of the benchmark
problem in Figure 2 are filtered using the proposed RFM by varying the ratio of filter data, FR,
in Figure 4. Moreover, the following norm-based absolute error for the stress (response) is employed to
evaluate the performance of the present method for transient analysis:

ξ =

∫ ∣∣∣σ(t) − σ(t)∣∣∣ dt or
∫ ∣∣∣σ(t) − σ̃(t)∣∣∣dt, (21)

where the exact (analytical), numerical, and filtered numerical solutions at time t are denoted by
σ(t) and σ̃(t), respectively. Figure 4 presents the tendency of the accuracy improvement of the RFM
with varying filtering ratio, FR. Table 1 shows the performance of RFM with respect to filtering
ratio (FR), the error valuer in Equation (21) is reduced by increasing FR by around 2% and also the
number of oscillations is reduced as shown in Table 2. The table shows that the RFM could show
similar performance regardless of integration methods. Approximately 2% of FR may show significant
improvement in accuracy under different numerical conditions.

Table 1. (a) Accuracy improvement of the RFM with different numerical integration method
(at 20th element, ∆t = ∆t1 = 4.0× 10−7s). (b) Accuracy improvement of the response filtering method
with different numerical integration method (at 20th element, ∆t = ∆t1 × 10−1s).

(a)

Central-difference method

Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5
Error indicator ξ(×10−3) 1.8472 1.8283 1.7097 1.5967 1.3808 1.2124 1.2241 1.1895

Number of over (under) shoots 67 65 58 45 28 21 19 19

Newmark’s method
Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5

Error indicator ξ(×10−3) 1.7223 1.7053 1.5941 1.4387 1.3123 1.1205 1.1937 1.1340
Number of over (under) shoots 65 65 65 49 27 20 20 19

(b)

Central-difference method
Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5

Error indicator ξ(×10−3) 1.7883 1.7539 1.6543 1.4968 1.3046 1.3640 1.2136 1.0409
Number of over (under) shoots 65 64 59 41 26 19 19 17

Newmark’s method
Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5

Error indicator ξ(×10−3) 1.7876 1.7515 1.6510 1.4962 1.3064 1.3618 1.2165 1.0495
Number of over (under) shoots 65 64 59 41 26 19 19 17

Table 2. Accuracy improvement of the RFM with different numerical integration method
(at 1st element, ∆t = 4.0× 10−7s)

Central-difference method

Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5
Error indicator ξ(×10−3) 1.6710 1.6400 1.5039 1.3723 1.0918 1.1012 0.9666 0.9809

Number of over (under) shoots 73 73 73 47 19 15 23 23

Newmark’s method
Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5

Error indicator ξ(×10−3) 1.6025 1.5811 1.4269 1.3339 1.1746 0.9752 0.9827 0.9688
Number of over (under) shoots 71 71 71 51 21 13 21 23
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Because the proposed method yields an artificially generated piecewise constant solution, it has
to be validated not only in time but also in space. Therefore, the benchmark problem in Figure 2
was conducted once more with different space condition. Both exact and numerical stress responses
at x = 0.25 in (1st element) were calculated by the same procedure as the previous example. Lots of
spurious oscillation was found around at second arrival time in the finite element method (t = 20+19.75

2.012×105 )
in Figure 5. The detail performance of RFM with different filtering ratio, FR, is written in Table 2.
Similar to the previous example, the FR (filtering ratio) value around 2% shows the improvement in
time and space.
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Figure 5. Comparison of the mechanical stresses at x = 0.25 in (1st element) for the benchmark problem
in Figure 2.

3.2. Analysis of the Accuracy Improvement with the Response Filtering Method

As shown in the previous section, the simple averaging procedure with the RFM results
in significant improvements in the prediction compared to the analytical solution by generating
piecewise constant solutions. For the sake of conducting an accuracy analysis of the proposed method,
this subsection investigates the solutions using the Fourier transformation.

Without the loss of generality, a simple signal, y, with a 50 Hz frequency component was generated
for 0.1 s with 100 samplings in Figure 6. In other words, y(t) = sin(2π50t), and the sampling time,
Ts = 0.001 s. Figure 6a (left) and (right) shows the original signal and its Fourier transformation,
respectively, with the peak at 50 Hz. Figure 6b–d shows the filtered signals with different filtering
lengths and their transformations. These figures illustrate that the Fourier transformations of the
filtered signals contain some additional frequency components. For example, with FL = 2, the filtered
signal bears additional frequency components at 450 Hz. With FL = 4, frequencies around 200, 300,
and 450 Hz are added, while with FL = 5, frequencies around 150, 250, 350, and 450 Hz are added.
Furthermore, the signals in the time domain become rectangular in shape owing to these added
frequency components. These analyses indicate that the filtering procedures used for the time signals
actually generate additional frequencies. In addition, it is found that there is a rule for the emerging
frequencies. For example, Figure 6a shows that the original signal has a single frequency component
of 50 Hz, whereas the filtered signal (FL = 2) has an additional frequency component at 450 Hz in
addition to the frequency component (50 Hz) of the original signal, as shown in Figure 6b.

Prior to determining the relationship between the filtering length and the added frequency
components, it should be noted that the discrete Fourier transform (DFT) defines the following
relationship between the analysis time and frequency:

Ts =
T0

N
, f0 =

fs
N

, f0 =
1

T0
, fs =

1
Ts

, (22)

where the number of time step, total analysis time and the sampling time (∆t) are denoted by N, T0,
and Ts, respectively, and the frequency step (∆ f ) and the sampling frequency are denoted by f0 and fs,
respectively. Using the above notations, this study formulates the following theory based on the DFT.
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Theorem 1. Consider the signal, ỹ, filtered from original signal, y, which has only a single frequency component,
f , with a filtering length FL. With sampling frequency, fs, the Fourier transformation of the filtered signal has
the following frequency component:

f̃ =
fs

FL
·m± f and 0 ≤ f̃ ≤

fs
2

, (23)

where m and f̃ denote an arbitrary integer and the frequency components generated by the frequency filtering
method (i.e., the RFM), respectively. The frequency components generated by the filtering scheme in DFT can be
mathematically found through the following proof.
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Proof. The N-point DFT of discrete signal yk is obtained as follows:

Yn =
1
N

N−1∑
k=0

yke− j 2πn
N ·k. (24)

Assuming yk = exp( j 2π f ∗

N k) (a signal with a single frequency component, f , where f ∗ = f
f0

),
the above DFT can be summarized as follows:

Yn =
1
N

N−1∑
k=0

e− j 2π
N (n− f ∗)·k = δ f (n), δ f (n) =

{
1 ( f ∗ = n)
0 ( f ∗ , n)

, (25)

where δ f (n) is the Kronecker delta function, and Equation (25) is used for the proof.

N−1∑
k=0

ark =


Na (r = 1)

a
(
1− rN

)
1− r

(r , 1)
, (26)

r =
(
e− j 2πn

N

)
= 1, (

n
N

= m, m is arbitrary integer), (27)(
e− j 2πn

N

)N
= 1. (28)

The condition of Equation (27) can be satisfied only if m = 0 because N is always larger than n in
Equation (25).

The DFT of the filtered signal, ỹ, obtained from the RFM with FL can be formulated as follows:

Ỹn = 1
N

N/FL−1∑
l=0

ỹFL·l ·
[
e− j 2πn

N FL·l + e− j 2πn
N (FL·l+1) + · · ·+ e− j 2πn

N {FL·l+FL−1}
]

= 1
N

N/FL−1∑
l=0

[yFL·l+yFL·l+1+···+yFL·l+FL−1]
FL ·

[
e− j 2πn

N FL·l + e− j 2πn
N (FL·l+1) + · · ·+ e− j 2πn

N {FL·l+FL−1}
]

= 1
N·FL

N/FL−1∑
l=0

yFL·l(y0 + · · ·+ yFL−1) · e− j 2πn
N FL·l(e0 + · · ·+ e− j 2πn

N {FL−1})

= 1
N·FL

(
FL−1∑
i=0

e j 2π f ∗
N ·i
·

FL−1∑
i=0

e− j 2πn
N ·i

)
·

N/FL−1∑
l=0

e j 2πFL f ∗
N ·le− j 2πFLn

N ·l

= 1
N·FL ·

1−e j 2πFL
N f ∗

1−e j 2π
N f ∗
·

1−e− j 2πFL
N n

1−e− j 2π
N n
·

N/FL−1∑
l=0

e− j 2πFL(n− f ∗)
N ·l

= 1
N·FL ·

1−e j 2πFL
N f ∗

1−e j 2π
N f ∗
·

1−e− j 2πFL
N n

1−e− j 2π
N n
·

N/FL−1∑
l=0

rl, (r = e− j 2πFL(n− f ∗)
N )

(29)

Therefore, the Fourier transform of the filtered signal is given by Equations (25)–(28):

Ỹn =


1

FL2
1−e j 2πFL

N f ∗

1−e j 2π
N f ∗

1−e− j 2πFL
N n

1−e− j 2π
N n

(r = 1)

0 (r , 1)
. (30)

The condition for r = e− j 2πFL(n− f ∗)
N = 1 can be simplified using Equation (27) as follows:

FL
N

(n− f ∗) = m, (31)

n =
N
FL

m + f ∗, (32)
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where m represents an arbitrary integer. The integer domain can be transformed to the discrete
frequency domain by multiplying the frequency step, f0, as follows:

f0 · n = f0 · N
FL m + f0 · f ∗

=
fs

FL m + f
(33)

The frequency components, f0 · n, generated by the RFM can be simply denoted by f̃ , as in (23).

With yk = sin
(
k 2π f ∗

N

)
= sin

(
k 2π f

fs

)
= e

jk
2π f

fs −e
− jk

2π f
fs

2 j , ( f ∗ = f / f0, N = fs/ f0), the DFT for this example

can be expressed as follows:

Yn =



1
2 j

1
FL2

1−e
jFL

2π f
fs

1−e
j
2π f

fs

1−e
− jFL

2π f̃
fs

1−e
− j 2π

fs

(
f̃ = fs

FL m + f )

1
2 j

1
FL2

1−e
jFL

2π f
fs

1−e
j
2π f

fs

1−e
− jFL

2π f̃
fs

1−e
− j 2π

fs

(
f̃ = fs

FL m− f )

0 (otherwise)

(34)

�

The range of (33) corresponds exactly to Theorem 1. Therefore, Theorem 1 is mathematically validated.
The locations of the newly created frequency components can be predicted using the sampling

frequency (or sampling time), filtering length, and original frequency component with (23). For instance,
a sampling frequency of 1000 Hz is used for the example in Figure 6. Therefore, the generated frequency
components with respect to the filtering length can be calculated as summarized in Table 3. It is verified
that Theorem 1 predicts the newly generated frequency components with the RFM in Figure 6 and
Table 3.

Table 3. Generated frequencies predicted using Theorem 1: 0 ≤ f̃ ≤ fs
2 (N = 100, T0 = 0.1 s,

fs = N
T0

= 1000 Hz).

Filtering Length (FL) Generated Frequencies (̃f)

1 50 Hz
2 50 Hz, 450 Hz
4 50 Hz, 200 Hz, 300 Hz, 450 Hz
5 50 Hz, 150 Hz, 250 Hz, 350 Hz, 450 Hz

Based on the above consideration, we revisit the previous example in Figure 2 with Fourier
transformation. The time domain mechanical stress response at x = 9.75 in is transformed to frequency
domain by DFT (the time domain response is calculated by Newmark’s method with ∆t = 4.0× 10−7 s).
As shown in Figure 7, when the RFM is not applied, only the low-frequency components can be
obtained. However, with the current RFM, several high-frequency components, which only can be
obtained by piecewise constant components (red line) are generated. In addition, RFM, with a filtering
ratio of 2% showing significant performance in previous time domain analyses, creates additional new
frequency components that can cover all frequency ranges.
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4. Numerical Examples

This section illustrates examples to demonstrate the benefits of the RFM in terms of accuracy as
well as its limitations.
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Example 1. Bar with three different segments

For the first example, a one-dimensional bar with different cross-section areas is considered. The
problem geometry is composed of three different segments, as shown in Figure 8a, and each segment
has a different cross-sectional area:0.5 × 1, 1.5 × 1, and 0.5 × 1 in2, respectively. A step axial load of
100 psi in the x-direction is applied on the left side of the bar, and the example structure is discretized
using 0.5 in× 0.5 in Q4 element meshes. The detailed geometry, boundary conditions, and material
properties are illustrated in Figure 8.
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Figure 8. Geometric parameters of Example 1 (a) The problem definition (L1 = 8 in, L2 = 3 in, L3 = 9 in,
h1 = 0.5 in, h2 = 1.5 in, h3 = 0.5 in, and Thickness = 1 in), and (b) the force condition.

Different from the previous benchmark example, the impedance mismatches at x = 8 and 11 in
cause the occurrence of reflection and transmission waves owing to the change in the cross-sectional
area. It should be noted that when a wave that propagates through a medium encounters the boundary
of another medium having a different impedance, it produces reflection and transmission waves,
as shown in Figure 9 [27].
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Figure 9. Transmission wave (subscript t) and reflection wave (subscript r) of an incident wave
(subscript i) perpendicular to the boundary between two media.

The wave propagation impedance, Z, transmission coefficient, T, and reflection coefficient, R, can be
defined by the following equations:

Z =
p
v

, (35)

T =
2Z2

Z2 + Z1
=

2
1 + Z1/Z2

, (36)

R =
Z2 −Z1

Z2 + Z1
=

1−Z1/Z2

1 + Z1/Z2
, (37)

where p and v denote the pressure (stress) and velocity vectors of the wave propagation, respectively.
The transmission coefficient, T, and reflection coefficient, R, have the following relationship:

1 + R = T. (38)
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Based on Equations (35)–(38), the values for each coefficient can be obtained in this example. First,
the impedance of Domain 1 and Domain 3 is three times greater than that of Domain 2. The transmission
coefficients of the (+) x dir wave are 1/2 and 3/2 at x = 8 in and x = 11 in, respectively, and the reflection
coefficient can be obtained from (37) accordingly (Rx=8 in = −1/2, Rx=11 in = 1/2). In the same way,
the transmission and reflection coefficients for the (−)xdir wave can also be obtained. The analytical
stress value at x = 9.75 in can be obtained through a step-by-step procedure, as shown in Figure 10.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 22 
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Figure 10. Schematic diagram of the analytical solution.

Figure 11a shows the differences between the numerical solution and the analytical solution before
applying the RFM, while Figure 11b–d shows the shape of the filtered numerical solution as the filtering
length of the RFM changes. The shape of the filtered numerical solution changes according to the
size of the filtering length of the RFM. The filtered numerical solution gradually becomes increasingly
similar to the analytical solution as the filtering length increases. In addition, it can be confirmed that,
in this example, the oscillation of the numerical solution decreases or disappears with the application of
the RFM. However, the larger filtering length does not always guarantee better accuracy improvement
(see Table 4). It should be noted that the RFM also plays an important role in the frequency domain.
To explain this, the frequency components of the numerical solution without the RFM and analytical
solution are presented in Figure 12.

Figure 12 shows that there is an enormous difference between the frequency components of
the analytical solution and the numerical solution without the RFM. In particular, the analytical
solution contains all of the frequency components, whereas the numerical solutions contain only the
low-frequency components. Generally, a finer sampling time is required to consider higher frequencies,
thereby increasing the computational cost. However, even finer sampling does not always guarantee
inclusion of the higher-frequency components that appear in the analytical solution, as shown in
Figure 12. In this study, however, it was discovered that a higher frequency range can be covered by
using the RFM without modification of the sampling time.
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Figure 11. Changes before and after filtering with different filtering lengths and comparison with
the analytical solution for Example 1: (a) without filtering, (b) with FR = 0.5%, (c) with FR = 1%,
and (d) with FR = 2%.

Table 4. Accuracy improvement of the RFM with varying filtering length in Example 1.

Newmark’s Method

Filtering ratio (%) w/o RFM 0.5 1 1.5 2 2.5 3 3.5
Error indicator ξ(×10−3) 2.5622 2.5463 2.4712 2.3883 2.3330 2.0453 2.0096 2.0617

Number of over (under) shoots 40 40 40 34 28 22 22 22
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Figure 12. Decomposition of the analytical solution and the numerical solutions without RFM in the
frequency domain for Example 1.

As shown in Figure 13a, when the RFM is not applied, only the low-frequency components are
present (black line). However, with the current RFM, several high-frequency components are generated
(red line). In addition, increasing the filtering length creates additional new frequency components
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(see Figure 13b), and if the filtering length is greater than a certain length (in this example, greater than
8), the filtered numerical solutions can expand to cover all the frequency components (see Figure 13c).
Note that the frequency components of the filtered numerical solution are changed without changing
the sampling time. In general, the frequency components of the numerical solution are affected by the
sampling time in a discrete system. In other words, with a chosen sampling time, the higher-frequency
component is also determined. Applying the RFM can increase the higher frequency, which cannot be
obtained by changing the sampling time.
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As the second example, Figure 14 considers a structure with many branches. Each bar has the
same material properties as the previous problems: E = 30× 106 psi, ρ = 7.4× 10−4 lb-s2/in4, ν = 0.
A force is applied at the right arm, and the other arms are clamped. The stress at the center of the
analysis domain is computed with and without the RFM.
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Figure 14. Example 2: problem geometry, boundary conditions, and force condition
(L1 = 21.5 in, L2 = 7.5 in, L3 = 4.5 in, W1 = 1.5 in, W2 = W3 = 1 in, thickness = 1 in).

Figure 14 shows the detailed shape of the complex beam structure with three types of rectangular
beams. The example structure is discretized using 0.5 in× 0.5 in Q4 elements. It is not clear whether
exact solution to this problem can be calculated. At least, we can find the shape of the wave propagation
by the numerical method in Figure 15. The numerical solution and the results of applying the RFM
to the numerical solution (∆t = 4.0 × 10−7 s) are shown in Figure 16. As in the previous examples,
spurious oscillation of the numerical solution is observed.

This time, the effect of the RFM with different filtering length, FL (not FR), is describe in
Figure 16; Figure 17 to investigate feature of the RFM with respect to FL. In the frequency domain,
the increase in the frequency components can be predicted by Theorem 1. For example, the noticeable
frequency component of numerical (FEM) solution is distributed from 0 to 4 × 105 Hz, and we can
expect an additional frequency component by RFM (FL = 2) as 8× 105 to 12× 105 Hz by Theorem 1:
f̃ = fs

FL ·m± f= 25×105

2 · 1± 4× 105. Without the RFM, the frequency components in the low-frequency
region are dominant, whereas high-frequency components are generated with the RFM. This example
shows that the RFM can work well even if the geometry of a structure is complex.
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Figure 15. Shape of wave propagation viewed through the von Mises stress and deformation for
Example 2 (Ansys 19.0 stress contour package). The illustration of wave propagation is shown at (a)
t = 1.85× 10−5 and (b) t = 1.4× 10−4 s.
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5. Conclusions

For future research, it is necessary to conduct a theoretical study to reveal a reasonable filtering
ratio as well as a reasonable filtering length.

In numerical integration, the transient solutions of Newton’s second law obtained through
either the implicit or explicit method inevitably exhibit undershooting or overshooting phenomena.
Although both the stability and accuracy of the numerical methods are important, it is rare to investigate
the accuracy of the time integration scheme compared with the stability issue. Thus, these numerical
discrepancies are often neglected through the safety factor in mechanical or civil engineering. As a
remedy for these discrepancies, this study develops an RFM for averaging the mechanical stress
values in the time domain that improves the accuracy of the numerical solution. The RFM is a
simple post-process averaging method to filter out the oscillations observed in the numerical solution
and makes piecewise constant solutions of wave propagation problems. The performance of the
present RFM was tested in both space and time with both the explicit and the implicit integration
method. It was empirically found that a filtering ratio, FR, around 2% can improve the accuracy of
numerical solutions. In addition, the frequency response functions for stress values before and after
RFM application show that higher-frequency signals are added after filtering by generating piecewise
constant responses. These higher frequency signals are essential to represent ramp phenomena in time
domain. Though some benchmark problems, these higher-frequency components were investigated.
One of the limitations of the present study is that it cannot provide the optimum filtering length for
generalized wave propagation problems by a rigorous mathematical verification. In the same way, if
the FR is too small it would not get rid of the oscillations, while if too large it would give big chunks of
the solution into constant. By adopting a proper filtering ratio (around 2%) for the averaging operator
in the RFM, it was observed that the averaged stress values converge toward the analytical stress
values. For future research, it is necessary to conduct a theoretical study to reveal a reasonable filtering
ratio as well as a reasonable filtering length.
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