
Finite Elements in Analysis and Design 225 (2023) 104017

A
0

T
c
G
S

A

K
T
T
T
L
N

1

s
o
f
t
p
t
o
s
T
T

i
n
c
o
d
i

h
R

Contents lists available at ScienceDirect

Finite Elements in Analysis & Design

journal homepage: www.elsevier.com/locate/finel

opology optimization for transient two-phase fluid systems with
ontinuous behavior
il Ho Yoon ∗, Min Ku Kim

chool of Mechanical Engineering, Hanyang University, Seoul, South Korea

R T I C L E I N F O

eywords:
opology optimization
ransient two-phase fluid
ransient sensitivity analysis
evel-set method
avier–Stokes equation

A B S T R A C T

This study introduces a novel topology optimization method for transient two-phase fluid
problem with continuous behavior, which remains a challenging task despite advances in
computing capabilities. The application of gradient-based optimizer to continuous two-phase
fluid systems is complicated because it requires some modifications of the governing equations
to reflect changes in the interface between two fluids and the transient sensitivity analysis.
To overcome these difficulties, this study develops a new topology optimization method
for continuous two-phase fluid that models the interface using the level-set approach and
formulates the transient sensitivity analysis. The study presents several optimization examples
to demonstrate the validity and applicability of this approach.

. Introduction

An extension to topology optimization method for continuous transient two-phase fluid problem is newly developed in the present
tudy. Two-phase flow denotes a combination of two distinct phase fluids. Some typical examples are the combination of gas–liquid
r liquid–liquid which can be observed in many scientific and engineering applications. For an example, Fig. 1(a) and (b) show the
igures of the concept of two-phase fluid and the ink dispersion in water which require the complicated theories and simulation of the
wo-phase fluid. As the intricate physical phenomena between two fluids are considered, it is challenging to underline the involved
hysics and topologically optimize a structure for transient two-phase fluid despite increased computing capabilities. In addition,
he application of a gradient based optimizer toward the two-phase fluid system is intricate as it may require the modifications
f the governing equations to reflect the change of the interface between two fluids and the transient sensitivity analysis. In this
tudy, to cope with these difficulties, a new topology optimization method for two-phase fluid is presented as shown in Fig. 1(c).
he interface between two fluids is modeled with the level-set based approach and the transient sensitivity analysis is formulated.
o show the validity and applicability of the present approach, several numerical examples are solved.

The large range of scientific and engineering applications for two-phase flow of immiscible fluids exist. Among others, these
ncludes water–air sloshing in tank, cavitation, air-rising phenomenon and various microfluidic applications. Recently, the accurate
umerical modeling of two-phase flow becomes challenging for the applications of polymer electrolyte membrane (PEM) fuel cell,
hemical process and nuclear industry and many schemes have been developed and implemented for analysis [2–5]. In the simulation
f two-phase or multiple phase fluid, the surface or interface force model is crucial and important [5]. In relevant researches with
ifferent numerical schemes for two-phase fluid, the constant surface model introduced by Brackbill for modeling surface tension
s prevail and one of the troubling artifact of the CSF method is the parasitic current.

∗ Corresponding author.
E-mail address: ghy@hanyang.ac.kr (G.H. Yoon).
vailable online 17 August 2023
168-874X/© 2023 Published by Elsevier B.V.

ttps://doi.org/10.1016/j.finel.2023.104017
eceived 22 May 2023; Received in revised form 1 August 2023; Accepted 3 August 2023

https://www.elsevier.com/locate/finel
http://www.elsevier.com/locate/finel
mailto:ghy@hanyang.ac.kr
https://doi.org/10.1016/j.finel.2023.104017
http://crossmark.crossref.org/dialog/?doi=10.1016/j.finel.2023.104017&domain=pdf
https://doi.org/10.1016/j.finel.2023.104017


Finite Elements in Analysis & Design 225 (2023) 104017G.H. Yoon and M.K. Kim
Fig. 1. Topology optimization of transient two-phase fluid. (a) Two-phase fluid examples (left: rising bubble flow, right: sloshing example), (b) Rayleigh–Taylor
instability (gravity-induced shape transition in fluids [1]) and (c) the concept of topology optimization for two-phase fluid.

From a topology optimization point of view, many researches exist for fluid related problem. In [6], the Darcy force whose
magnitude is proportional to the fluid velocity is added to the Navier–Stokes equation for topology optimization. With the large
Darcy’s force, the velocity becomes zero. Therefore, the parameterization of the Darcy’s force and the optimal distribution of the
Darcy’s force are possible for the fluid topology optimization. Based on the concept of the novel Darcy’s force, several innovative
researches have been carried out [7–9]. In [10,11], the transient fluid is considered in topology optimization with the analytical
sensitivity. In [12], the aerodynamic performance is optimized by topology optimization in the framework of OpenFoam. In these
relevant researches, the performance of fluid is mainly considered. Then, the conjugate heat transfer system and fluid structure
interaction system were considered in topology optimization. It is impossible to review and cite all relevant researches. See [13–19]
and reference therein. In [13,14], the forced convection is considered in topology optimization. In [20], the natural convection is
considered in topology optimization. In [21], the topology optimization with heat sink in turbulent natural convection using a RANS
model is adopted. The optimized results are analyzed from a theoretical point of view using the representative number, i.e. Reynolds
number and Grashof number. In [22], the TOBS method is developed for turbulent flow. Researches can be found with a variety of
strategies for simultaneously considering geometric performance and manufacturability [23]. The topology optimization with two
fluid heat exchange is performed in [24] which considers the separated fluids between pseudo rigid domain. In addition to these,
researchers have developed a variety of strategies for simultaneously considering various physics and performances. Compared with
the many structural problems (compliance minimization problem or compliant mechanism problem), few researches optimizing the
usage of two-phase fluid exist.

This study presents a topology optimization scheme for transient two-phase fluid with continuous behavior. The Navier–Stokes
equation with the level-set function is coupled with the VOF (Volume Of Fluid) method. In the Navier–Stokes equation, the Darcy
force is then assigned for the modeling of pseudo-rigid domain for topology optimization. In the pseudo-rigid domain with a larger
Darcy force, the fluid velocities becomes near zeros. The phase change in the level-set function is not allowed in the pseudo-
rigid domain as the convective term, 𝐮∇𝜙, in the pseudo-rigid domain becomes zero or almost zero too. With the developed
approach, a gradient-based optimizer can be successfully incorporated. To prove the concept of the fluid topology optimization
of two-phase fluid, several examples including dam-break example and Rayleigh–Taylor’s instability are considered. The effect of
the mass constraint is also investigated.

The remainder of this paper is organized as follows. Section 2 provides the mathematical formula pertaining to the two-phase
analysis and the development of the sensitivity analysis. Several topology optimization examples for two-phase fluid are presented
in Section 3. Section 4 presents the conclusions of the study and provides suggestions for future research.
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2. Topology optimization formulation for two-phase fluid

Many innovative approaches exist for the simulating steady-state or transient two-phase incompressible fluid flow with surface
ension [2–5]. One of the main difficulties for the numerical simulation of surface tension dominated flow is the representation of
he strong pressure discontinuity across the interface boundary between multiple fluids. In addition, the accurate representation of
he interface boundary is one of the important factors to describe the evolution of the interface boundary. Several moving mesh
lgorithms with moving mesh exist for the numerical simulation of two-phase fluid [25,26]. This aspect becomes challenges in
onnection to the topology optimization with fixed mesh for two-phase fluid. To address this aspect, this research employs the
evel-set based modeling with the surface tension modeling [2–5]. As it is complicate to consider complex interface with the level-set
ethod, this research limits simpler boundary shapes in the considered optimization problems.

.1. Two-phase fluid simulation

Complying with the continuum condition, the transient fluid flow is governed by the momentum conservation equation with the
ravity force, 𝜌𝐠, and the surface tension force, 𝐅st .

𝜌 𝜕𝐮
𝜕𝑡

+ 𝜌(𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 𝜇∇ ⋅
(

∇𝐮 + ∇𝐮T
)

⋅ 𝐮 + 𝜌𝐠 + 𝐅st ,𝐮 = 𝐮(𝐱, 𝑡) (1)

The velocities and pressure of fluid are denoted by 𝐮 and 𝑝, respectively. The coordinate of a material point is denoted by 𝐱 and
he time is denoted by 𝑡. The viscosity and the density are denoted by 𝜇 and 𝜌, respectively. The gravity constant in vector form is
iven as 𝐠 and the surface tension force which can be formulated as the body force is denoted by 𝐅st . This force is defined along the
nterface boundary 𝛤 . In the simulation of two-phase fluid, the formulation and numerical simulation of the surface tension force
iffer from that of one-phase fluid simulation. The mass conservation equation is defined as follows:

𝜕𝜌
𝜕𝑥

+ ▿ ⋅ (𝜌𝐮) = 0 (2)

In case of incompressible homogeneous fluid: ∇ ⋅ 𝐮 = 0 (3)

The above equations are subject to the initial conditions 𝐮|𝑡=0 = 𝐮0 where the initial velocity is denoted by 𝐮0. The boundary
conditions are set as follows:

No − slip b.c. ∶𝐮 = 𝟎 on 𝛤𝑢0
Inf low∕outf low b.c. ∶𝐮 = 𝐮∗ on 𝛤𝑢∗
Pressure b.c. ∶

[

−𝑝𝐈 + 𝜇(∇𝐮 + ∇𝐮T)
]

⋅ 𝐧 = 𝑝𝑝𝐧 on 𝛤𝑝∗
(4)

The no-slip boundary condition is defined along 𝛤𝑢0 , and the inflow/outflow boundary condition is defined as 𝐮∗ along the 𝛤𝑢∗ .
Along 𝛤𝑝∗ , the pressure boundary condition is imposed. The normal vector along the boundary is denoted by 𝐧.

In order to take it to account the evolution of two-phase fluid within fixed Eulerian mesh, the level-set (or the phase field) based
approach can be employed. By employing the continuous function 𝜙, the domains of two fluids as well as the interface boundary
can be determined as follows:

𝜙(𝐱, 𝑡) =
⎧

⎪

⎨

⎪

⎩

0 if 𝐱 ∈ Fluid 1
Otherwise if 𝐱 ∈ Interface boundary Γ
1 if 𝐱 ∈ Fluid 2

(5)

where the interface boundary condition is defined by 𝛤 inside the analysis domain. The original level-set variable determines the
kind of fluid and the interface boundary with the following equation.

𝜕𝜙
𝜕𝑡

+ 𝐮 ⋅ ∇𝜙 = 0 (6)

To improve the convergence and impose the regulation, it is known that the re-initialization process is necessary [27]. In the present
study, the following modification on the level-set function is made with the reinitialization factor [28].

𝜕𝜙
𝜕𝑡

+ 𝐮 ⋅ ∇𝜙 − 𝛾𝐿∇ ⋅
(

𝜀∇𝜙 + 𝜙(1 − 𝜙)
∇𝜙
|∇𝜙|

)

= 0 (7)

where the parameter for interface thickness is denoted by 𝜀 and the re-initialization parameter is denoted by 𝛾𝐿. With this approach,
the breakup or coalescence of bubble and droplet can be simulated as the level-set value can be merged or separated. The no-flow
boundary condition is defined as follows:

𝐧 ⋅
(

𝐮𝜙 − 𝛾𝐿𝜀∇𝜙 + 𝛾𝐿𝜙(1 − 𝜙)
∇𝜙
|∇𝜙|

)

= 0 (8)

Being dealing with flow with more than one fluid, it is necessary to take the surface tension along the fluid interface into account.
The calculation of the free surface profile between fluids is a key factor in the accurate simulation of two-phase fluid. The surface
tension can be modeled as a body force defined along the interface by employing the Continuum Surface Force model [5,29]. With
the above level-set parameter, it is possible to define the surface tension force, 𝐅st , as follows:

𝐅 = ∇ ⋅ [𝜎(𝐈 − 𝐧 𝐧T )𝛿 ] (9)
3
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where the normal direction vector of the interface boundary is 𝐧int =
∇𝜙
|∇𝜙| and 𝛿int is defined as 6 |𝜙(1 − 𝜙)| |∇𝜙|. The surface tension

oefficient is denoted by 𝜎. The density and the viscosity are then interpolated with respect to the normalized level-set variable, 𝜙n.

𝜙n = min(max(𝜙, 0), 1) (10)

𝜌 = 𝜌1 + (𝜌2 − 𝜌1)𝜙n (11)

𝜇 = 𝜇1 + (𝜇2 − 𝜇1)𝜙n (12)

here the density values of the first fluid and the second fluid are 𝜌1 and 𝜌2, respectively. The viscosity values of the first fluid and
he second fluid are 𝜇1 and 𝜇2, respectively. The above equations are able to be solved with the finite element procedure. During the
imulation, it is challenging to capture the pressure difference and track the evolution of the interface boundary condition stably.
s the fluid velocity is different depending on the kind of fluid, the CFL number (Courant–Friedrichs–Lewy Number, 𝑢 𝛥𝑡𝛥𝑥 with 𝑢 for

fluid velocity, 𝛥𝑡 for time step, and 𝛥𝑥 for mesh size) is one of the parameters in the simulation [30]. In this study, the maximum
FL value is limited less than 0.5.

.2. Topology optimization formulation for two-phase fluid

The purpose of the fluid topology optimization is to design pseudo rigid domain in two-phase fluid to optimize or modify fluid
otion as intended. For topology optimization, the above equations should be modified in order to take it to account the change

f the design variable. As the level-set variable determines the kind of fluid, it is necessary to introduce another state in topology
ptimization.

To model the pseudo rigid domain in the Navier–Stokes equation, the Darcy’s force, −𝛼𝐮, is added into the moment equation.
The 𝛼 term is spatially varied with respect to the design variable, 𝛾, as follows:

𝛼 = 𝛼𝐹max𝛾
𝑛 (13)

where the maximum Darcy’s force is denoted by 𝛼𝐹max and the spatial design variables are denoted by 𝛾 and the penalization of the
SIMP method is 𝑛. The fluid equation is modified by adding this force term.

𝜌 𝜕𝐮
𝜕𝑡

+ 𝜌(𝐮 ⋅ ∇)𝐮 = −∇𝑝 + 𝜇∇ ⋅
(

∇𝐮 + ∇𝐮T
)

⋅ 𝐮 + 𝜌𝐠 + 𝐅st − 𝛼𝐮 (14)

−∇ ⋅ 𝐮 = 0 (15)

It is also necessary to consider the necessity of the modification of the properties of the level-set equation or the transportation
quation. Here note that the value of 𝜙 is set to arbitrary value when 𝛾 = 1 to represent the rigid domain. It is noticed that the fluid
elocity basically determines the evolution of the level-set function, i.e., 𝐮 ⋅∇𝜙. Therefore, the fluid penalization can be sufficient to
odel the rigid domain in the level-set approach. However, to improve the convergence, it is also possible to modify the level-set

quation.
We should emphasize that in principle, the two-phase fluid can be analyzed but, this approach and the above modifications

an cause some numerical unconvergence and error in the VOF method. To our best knowledge, the numerical errors of the VOF
pproach are unavoidable when the distance of interface is on the order of a few grid cells due to the spurious modes. Thus, it is
ntricate to determine whether such evolution are physical or due to this numerical error. As the numerical error can be significant
ith the above artifact modification, this research chooses the numerical examples without separation or significant evolution.

For the topology optimization, the transient sensitivity analysis should be calculated. For the present study, the objective function,
, is defined as follows:

𝐽 (𝐮,∇𝐮, 𝜙; 𝛾) = ∫𝛺0

𝑓 (𝐮,∇𝐮, 𝜙; 𝛾)𝑑𝛺
|

|

|

|

|𝑡=𝑡𝑓
(16)

here the final simulation time is 𝑡𝑓 and the objective function is defined as the integration of a function 𝑓 defined at the analysis
omain 𝛺0. The Lagrange function, , then can be defined with the Lagrange multipliers, 𝐮𝑎, 𝑝𝑎, 𝜙𝑎, as follows:

(𝐮, 𝑝, 𝛾) = 𝐽 (𝐮,∇𝐮, 𝜙; 𝛾)

+ ∫

𝑡𝑓

0 ∫𝛺0

(𝐮𝑎, 𝑝𝑎, 𝜙𝑎)𝐄𝐐(𝐮,∇𝐮, 𝑝,∇𝑝, 𝜙,∇𝜙, 𝛾)𝑑𝛺𝑑𝑡
(17)

here the column set of monolithic equations for the fluid and solid is denoted by 𝐄𝐐. The objective function is denoted as
(𝐮,∇𝐮, 𝜙; 𝛾). The calculus of variation is applied as follows:

𝛿 = 𝟎 (18)

𝛿 = 𝜕
𝜕𝐮

⋅ 𝛿𝐮 + 𝜕
𝜕∇𝐮

∶ ∇𝛿𝐮 + 𝜕
𝜕𝑝

⋅ 𝛿𝑝 + 𝜕
𝜕∇𝑝

∶ ∇𝛿𝑝

+ 𝜕
⋅ 𝛿𝜙 + 𝜕 ∶ ∇𝛿𝜙 + 𝜕

⋅ 𝛿𝛾 = 𝟎
(19)
4
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Fig. 2. Separated fluid example (𝛾𝐿 = 1, 𝜖𝑙𝑠 = 0.001, mesh = 100 by 100, fluid: 𝜌2 = 997.92 kg∕m3, 𝜇2 = 10−3 kg∕ms, air: 𝜌1 = 1.3387 kg∕m3, 𝜇1 = 1.8140−5 kg∕ms,
simulation time: 0.03 s, Incremental time (dt) = 0.001 s, 𝑛 = 3, 𝜎 = 0.07269 N∕m, Objective domain: 𝛺𝑂).

Fig. 3. Sensitivity analysis example (Objective: ∫𝛺0
|𝐮| 𝑑𝛺|𝑡=𝑡𝑓 , 𝛺0: a circle with 0.01 m radius centered at (0.08 m, 0.08 m)).
5
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Fig. 4. Vertical two-phase problem (30 percent mass constraint, Objective: 6.9383 × 10−6 m3∕s, void design 7.0252 × 10−6 m3∕s, solid design : 6.0543 × 10−6 m3∕s).
(a) The optimized layout, (b) the evolution of phase and (c) the fluid velocity.

The adjoint equations can be derived by setting the terms associated with the primal variables to zeros and with proper boundary
conditions (see [31] and references therein) as follows:

𝜕
𝜕𝐮

⋅ 𝛿𝐮 + 𝜕
𝜕∇𝐮

∶ ∇𝛿𝐮 = 𝟎 (20)

𝜕
𝜕𝑝

⋅ 𝛿𝑝 + 𝜕
𝜕∇𝑝

∶ ∇𝛿𝑝 = 𝟎 (21)

𝜕
𝜕𝜙

⋅ 𝛿𝜙 + 𝜕
𝜕∇𝜙

∶ ∇𝛿𝜙 = 𝟎 (22)

The final sensitivity is shorten as the last term of the equation of (19) and the term of the dependency of the porosity term in the
Navier–Stokes equation appears. To numerically test the above implementation, the analysis problem in Fig. 2 is considered. The
right half side is filled with water and the left side is filled with air. Due to the gravity, the water eventually drops and fills the left
side. For topology optimization, an optimized layout at the design domain 𝛺𝑑 is pursuit to maximize the norm of the fluid velocity
in the objective domain, 𝛺0. The simulation time is set to 0.03 s. The phase change and the sensitivity analysis are presented in
Fig. 3. As shown, it is possible to simulate the fluid drop and obtain the accurate sensitivity. In our simulation, the Newton–Raphson
solver and the BDF time-dependent solver are employed. The sensitivity analysis assumes that the residual of the nonlinear equation
is set to zero but in the numerical simulation, some tolerances exist.

3. Optimization examples

Several structures are topologically optimized in this section. The elucidated monolithic design approach for two-phase fluid
system is analyzed utilizing the finite element method. Subsequent to obtaining the primary variables, the adjoint equations are
6
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Fig. 5. Problem definition with a circle hole (𝛾𝐿 = 1, 𝜖𝑙𝑠 = 0.001, mesh = 100 by 100, fluid: 𝜌2 = 997.92 kg∕m3, 𝜇2 = 10−3 kg∕ms, air: 𝜌1 = 1.3387 kg∕m3,
𝜇1 = 1.8140−5 kg∕ms, simulation time: 0.03 s, Incremental time (dt) = 0.001 s, 𝑛 = 3).

Fig. 6. Vertical two-phase problem with a hole (a) The optimized layout (Objective: 5.8451 × 10−6 m3∕s, solid design: 3.0672 × 10−6 m3∕s, void design:
5.5601 × 10−6 m3∕s), (b) the evolution of phase and (c) the fluid velocity.

solved to determine the sensitivity values. The calculated sensitivity values are then employed to update the design variables using
the method of moving asymptotes (MMA) [32]. For the convergence, the optimization algorithm is terminated when the convergence
of the objective function falls below a specified threshold within one hundred iterations.
7
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Fig. 7. Rayleigh–Taylor instability. (a) The linearized solution of Rayleigh–Taylor instability (𝜇1 = 1.8140 × 10−5 Pa s 𝜇2 = 10−3 Pa s, 𝜌1 = 1.3387 Pa s kg∕m3,
𝜌2 = 997.92 kg∕m3 , 𝜎 = 0.07 N∕m, 𝑔 = 9.81 m∕s2, 𝑘 = 𝜋∕2∕0.02, 𝛿 = 0.001 m, Simulation time: 0.1 s, time increment = 4 × 10−4 s), and (b) the definition of
optimization problem.

3.1. Example 1: vertically separated two-phase fluid problem

For the first optimization example, the situation with initially separated two-phase fluid is considered in Fig. 3. Due to the gravity,
the fluid initially located at the right side drops. A rectangular design domain is posed in the middle of the analysis domain. The
following optimization formulation is set with the norm of the fluid velocity as the objective function.

Min
𝛾

𝐽 = − ∫0𝛺 |𝐮|𝑡=𝑡𝑓 dΩ

Subject to
𝑁𝑒
∑

𝑒=1
𝛾𝑒v𝑒 ≥ mass0

𝛾 = [𝛾1, 𝛾2,… , 𝛾𝑁𝑒 ], 𝛾min ⩽ 𝛾 ⩽ 1, 𝛾min = 0.001

(23)

Note that the norm of the velocity at the circular shaped target domain is set to the objective value with the mass constraint. By
solving this optimization problem, one may anticipate an optimized layout with leading a notable reduction in resistance encountered
during flow. The volume and the design variable of the 𝑒th element are denoted by 𝑣𝑒 and 𝛾𝑒, respectively. The total number
of the design variables is denoted by 𝑁𝑒 and the allowable mass is denoted by mass0. The lower bound of the design variable
is denoted by 𝛾min. It can be postulated that no-structure or void structure without any blocking force can be one of possible
optimal designs. Therefore, not presented here but the less than constraint provides the void design maximizing the velocity at
the objective domain. Therefore, rather than imposing a less-than mass constraint, a larger-than mass constraint is imposed in this
research. In some relevant studies, the resistance Darcy force is modeled as a monotonically decreasing function, and a monotonically
decreasing mass constraint is imposed for fluid-related topology optimization. However, this research adopts the SIMP function,
which is monotonically increasing with respect to the design variable. In short, to obtain a meaningful design, the objective is to
maximize the fluid velocity subject to the ‘‘larger than or equal to’’ mass constraint in the objective domain. Fig. 4(a) illustrates the
8

optimized layout, while Fig. 4(b) and (c) depict the evolution plots of the phase change and fluid velocity, respectively. Owing to
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Fig. 8. (a) An optimized result (𝑥1 = 0.002 m, 𝑥2 = 0.008 m, 𝑦1 = 𝑦2 = 0.011 m, 𝜎 = 2.5 × 10−4 N/m), (b) and (c) the phase plot and the corresponding fluid
velocity.

the gravitational force, water initially located within the objective domain descends, and the structure in the inclined design domain
redirects the fluid velocity, resulting in an enhanced objective function, namely the fluid velocity at the objective domain. In addition,
a comparison of the objective functions of the void structure, the solid structure, and the optimized layout is presented. From a
critical standpoint, there are some limitations to address in this study concerning the optimization process. One major constraint
lies in the potential abrupt and substantial changes that can occur in the objective function due to the significant variations in fluid
velocity and phase; for an example, when fluid hits the right wall, some droplets can be generated and merged. These alterations
cannot be adequately accounted for using the gradient-based optimization method. It is essential to emphasize that the simulation
of the two-phase fluid does accommodate these significant and non-differentiable variations. For instance, in this example, when
the fluid collides with the wall, water will separate and merge over time. The current state-of-the-art simulation technique aims
to capture these phenomena qualitatively rather than quantitatively. As a result, conducting topology optimization based on such
stochastic and qualitative analyses may encounter convergence issue.

As an extension of the first example, the circle hole is posed in the middle of the right domain as shown in Fig. 5. By posing
the circle hole, the water movement is inherently resisted. Therefore, the objective domain is partially blocked and the purpose of
this optimization problem is to design the rim of the circle hole to maximize the objective function or the fluid velocity. Fig. 6(a)
shows an optimized layout with the above optimization formulation. The upper and the bottom structures appear to guide the fluid
motion or maximize the fluid velocity. Fig. 6(b) and (c) show the phase change and the fluid motions as time goes by. This example
demonstrates that the proposed scheme can be employed to control fluid motion, and the mass constraint should be determined
based on the characteristics of the optimization problem under consideration.

3.2. Example 2: Maximizing fluid velocity considering Rayleigh–Taylor instability

For the next example, this subsection considers the topology optimization maximizing the norm of fluid induced by the Rayleigh–
9

Taylor instability [1]. The Rayleigh–Taylor instability is observed between multiple fluids of different densities as shown in Figs. 1(b)
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Fig. 9. (a) an optimized result (𝑥1 = 0.002 m, 𝑥2 = 0.008 m, 𝑦1 = 𝑦2 = 0.0150 m, 𝜎 = 2.5×10−4), (b) and (c) the phase plot and the corresponding fluid velocity.

and 7(a). This Rayleigh–Taylor instability is widely observed from daily life, i.e., milk or ink drop above water, to gigantic natural
phenomena such as volcanic eruption, numerical explosion and supernova explosion. This interesting phenomenon starts from the
formulation of small perturbation amplitudes which allows us to obtain the linearized governing equation [1]. This also generates
the sinusoidal shaped-surface and then causes exponential instability growth as follows:.

𝜉 = 𝜉0 cosh(𝛾𝑡) +
𝜉̇0
𝛾 sinh(𝛾𝑡)

𝛾 =
√

𝐴𝑇 𝑘𝑔 −
𝜎𝑘3
𝜌2+𝜌1

, 𝐴𝑇 = 𝜌2−𝜌1
𝜌2+𝜌1

(24)

where the perturbation height and the initial perturbation height are denoted by 𝜉 and 𝜉0 and the initial velocity is denoted by
𝜉̇0. The wavenumber of the initial shape of fluid is denoted by 𝑘. In this linearized formulation, it can be known that the initial
fluid motion is mainly dominated by the densities of fluids and the surface tension coefficient and importantly is not related to
the fluid above; in fact, the effect of the fluid above is small and not reflected in this linearized equation. The consideration of this
phenomenon in topology optimization is challenging as the joint or separation of fluid during the breakup and merging of two phase
domains should be considered and the contact to solid surface should be considered too from not only a simulation point of view
but also an optimization point of view.

To simulate and optimize this phenomenon, this research considers the topology optimization problem in Fig. 7(b). With the
initially set sinusoidal shaped water, water will drop obeying the Rayleigh–Taylor instability. Then by the developed topology
optimization, it is intended to design a bottom structure in order to detuor the dropping fluid and concentrate the fluid dynamic
energy to specified areas. For the topology optimization with two-phase fluid, it is one of the challenging aspects that the fluid phase
should be fixed in the pseudo-rigid domain. In other words, the design domain modeled as the pseudo-rigid domain should not be
fluid and therefore, the fluid velocities should be modeled as zeros. From an optimization point of view, it is difficult to obtain
numerically stable solutions and capture this singularity with a fixed time step. In addition to this, it is also found that the form of
the objective function can be modified in the form with the circle domains defined by the centers and the distribution parameters.
With the integration of fluid velocity at the circle domain, the objective function becomes suddenly vanish at the outsides of the
10
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Fig. 10. (a) Response comparison of Fig. 8 and (b) response comparison of Fig. 9. (Domain 1: Objective domain 1 with 𝑥1 = 0.002 m, 𝑥2 = 0.008 m, 𝑦1 = 𝑦2 = 0.011
m, Domain 2: Objective domain 2 with 𝑥1 = 0.002 m, 𝑥2 = 0.008 m, 𝑦1 = 𝑦2 = 0.050 m).

objective domains that can be the sources of the discontinuous sources at the adjoint equations. After considering all, the following
objective functions embedding the functions similar to the normal distributions.

𝜓1 = 𝑒

(

− 1
2

(

(

𝑥−𝑥1𝑐
𝜎

)2
+
(

𝑦−𝑦1𝑐
𝜎

)2))

, 𝜓2 = 𝑒

(

− 1
2

(

(

𝑥−𝑥2𝑐
𝜎

)2
+
(

𝑦−𝑦2𝑐
𝜎

)2))

(25)

where the standard deviation is denoted by 𝜎 and the centers of the distributions are denoted by (𝑥1𝑐 , 𝑦
1
𝑐 ) and (𝑥2𝑐 , 𝑦

2
𝑐 ). The benefit of

the above function is that the source terms of the adjoint equation become smoothly changed and it can help the convergence of
the adjoint solver and varying the value of the 𝜎, the area of consideration can be indirectly controlled. With the above functions,
the objective function with the norm of the velocity is defined as follows:

𝐽 = −∫0𝛺
|𝐮|𝑡=𝑡𝑓 × (𝜓1 + 𝜓2)dΩ (26)

With this, it is beneficial to change the normal distribution parameters to enlarge or small the effective areas of the objective
domain.
11
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Fig. 11. Dam breaking example (𝜇1 = 1 Pa s 𝜇2 = 1 Pa s, 𝜌1 = 1 kg∕m3, 𝜌2 = 1000 kg∕m3 , 𝜎 = 0.07 N∕m, Simulation time: 0.3 s, time increment: 0.01 s).

Fig. 12. (a) An optimized result (Objective domain: 0.05 m radius circle at (0.3 m,0.2 m)), (b) and (c) the phase plot and the corresponding fluid velocity.

Fig. 8(a) shows the optimized layout with the parameters. The objective of this problem is to maximize the fluid velocity at
the target domain at 0.1 s. To obtain this design, the symmetricity condition is imposed along the center line as an asymmetric
design can be obtained due to the nonlinear solver in fluid. Several structures are distributed and no structure appear near to the
12
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Fig. 13. (a) An optimized result (Objective domain: 0.05 m radius circle at (0.4 m,0.2 m)), (b) and (c) the phase plot and the corresponding fluid velocity.

objective domain. And the small structure appear at the bottom line. Fig. 8(b) shows the motion of the level-set variable. The domain
rendered with red color is water and the domain rendered with blue color is air. At 0 s, the non-zero fluid velocity near the interface
boundary is observed. At 0.025 s, the water is dropping and the slight motion of the water causes the motion of air (Fig. 8(c)). At
0.05 s, water drops further down and the air motion is circulating and it maximizes the air motion at the target domains. Due to
the complex motions of air flow, some oscillations in the objective function exist.

Fig. 9(a) shows an optimized layout with the different objective domain. The center is moved. As in the first example, it is
intended to find out an optimized layout moving air and maximizing the air velocity caused by the two fluid interaction at 0.1 s.
Fig. 9(b) and (c) show the levelset value and the air velocity. The investigation of these plots reveals that the design concentrates
the air velocity at the designated domain successfully (see Fig. 10).

3.3. Example 3: Dam-break problem

For the next example, the dam-break problem is considered in Fig. 11. After the dam breaks, water at the left side flows to the
right side while the right small rectangular box blocks the fluid motion causing some stochastic movements of fluid. In this example,
it is aimed to control the fluid motion by the present topology optimization scheme. The optimization formulation with the fluid
velocity objective and the less-than constraint condition is set as follows:

Min
𝛾

𝐽 = − ∫0𝛺 |𝐮 × 𝜙|𝑡=𝑡𝑓 dΩ

Subject to
𝑁𝑒
∑

𝑒=1
𝛾𝑒v𝑒 ≤ mass0

𝛾 = [𝛾1, 𝛾2,… , 𝛾𝑁𝑒 ], 𝛾min ⩽ 𝛾 ⩽ 1, 𝛾min = 0.001

(27)

For the simulation, the time simulation and the time increment are set to 0.3 s and 0.01 s,respectively. In this optimization, the
circular objective domain is considered and moved for the present numerical examples.

For the first optimization, the circular objective domain marked in Fig. 12(a) is set and the fin-shape optimized layout in Fig. 12
can be obtained. By blocking the fluid motion, the fluid can be directed toward the objective domain. Note that the fluid motion
13
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Fig. 14. (a) an optimized result (Objective domain: 0.05 m radius circle at (0.35,0.2)), (b) and (c) the phase plot and the corresponding fluid velocity.

toward the right side is effectively blocked by the fin-shape optimized layout. Fig. 12(b) and (c) show the fluid motion at some
represent times. By changing the position of the objective domain, it is possible to obtain some different layouts. In Figs. 13 and
14, some different designs with the different objective domains are presented. This example also suggests that the present scheme
can be applied for topology optimization with two-phase fluid.

4. Conclusions

A novel two-phase fluid topology optimization scheme is devised, wherein the laminar Navier–Stokes equation and the levelset
function for two-phase fluid simulation are seamlessly integrated using the VOF approach. The adjoint sensitivity is derived
employing the calculus of variation and subsequently incorporated into the finite element method framework. Additionally, to
accurately capture the evolution of the interfacing, the model takes into account the surface tension phenomenon between the fluids.
Based on the results of the presented examples, the followings are found. First of all, this research reveals that the fluid topology
optimization finding out the pseudo-rigid domain is possible to control the smooth motion of two-phase fluids. By optimizing the
pseudo-rigid domain, the transient motions of fluids can be controlled. Secondly, depending on the fluid motion and the simulation
conditions, the nature of the present topology optimization formulation becomes different compared with the structure topology
optimization. This characteristics can be found by investigating the form of the mass constraint which is merely introduced to
enhance the convergence of the optimization process. When the fluid resistance has a positive effect to the objective function, it
is better to use solid as much as possible and the less-than mass constraint is considered. On the other hand, the larger-than mass
constraint can be considered. Thirdly, the transient or stochastic motion of multi-phase fluid necessitates meticulous consideration
from the perspective of topology optimization. This arises from the fact that minor disparities in initial conditions, such as the
initial fluid velocity, initial fluid distribution, and simulation conditions, can lead to substantial divergences in the final outcomes.
Consequently, doubts arise concerning the feasibility of achieving a sufficiently smooth response that encompasses fluid behaviors
capable of providing the smooth sensitivity required for optimization. In short, the present study develops a new optimization
scheme considering two-phase fluid. One limitation of this research is that the numerical difficulties of two-phase fluid simulation
prevent consideration of complex-shaped interfaces between two fluids. In future research, the present study can be extended for
the mixing device. The extension to 3 dimensional problem is also possible.
14
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