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ABSTRACT
One of the effects of creep phenomena in structures is stress relaxation.
Owing to this effect, the stiffness of each point is inversely related to the
stress at that point, which causes a stress redistribution, a reduction of the
maximum stress, and an increment in the displacement field. By contrast,
for structural optimization, it is a practical and challenging problem to con-
sider the maximum stress as a failure criterion or objective function. In the
present study, the stress relaxation effect was investigated in stress-based
topology optimization. The so-called solid isotropic material with penaliza-
tion method and a nonlinear finite element analysis are utilized for this
purpose. The maximum von Mises stress and the total volume of the struc-
ture are selected as the objective function and constraint, respectively. The
main novelty of this research is to find the optimized topology with the
least maximum stress by developing and implementing a time-dependent
adjoint method for sensitivity analysis. Implementing the calculated sensitiv-
ity for stress-based problems in a gradient-based optimization method,
such as the optimality criteria, is quite challenging, and some numerical
instabilities in the optimization process are addressed. Several examples are
solved with and without considering the stress relaxation effect. The results
reveal that the influence of stress relaxation in the reduction of stress con-
centration makes the optimized layout more similar to the optimized layout
obtained by minimizing the compliance for the linear structures.
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1. Introduction

The real behaviors of various structures under different types of loading are almost nonlinear.
However, they are mostly modeled with a linear relationship between stress and strain owing to
their simplicity. In some cases, it is not possible to neglect the nonlinear behavior, which has a
significant effect on the final result. Figure 1 presents the von Mises stress distribution in a sam-
ple 2D L-bracket structure with and without considering the nonlinear stress relaxation effect. As
can be observed, owing to the stress relaxation, the maximum von Mises stress is reduced, and
the stress field in the structure is redistributed. In this case, it is vital to consider the nonlinear
effect. When the aim is to find the optimized layout using the maximum stress as a failure criter-
ion or objective function, considering the aforementioned nonlinear behavior is more essential.
This is the motivation for the present study.

Here, the nonlinearity is due to the nonlinear behavior of the material, which includes any
inelastic behavior. Geometrical nonlinearity, which is a variation in the stiffness owing to large
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deformation, is another source of nonlinearity. Moreover, the nonlinearity can be due to the con-
tact between different parts of the structures.

Creep, viscoelasticity, viscoplasticity, and fatigue are classified as rate-dependent material non-
linearities (Doghri 2013). This means that a nonlinear behavior is a function of the load history.
By contrast, plasticity, nonlinear elasticity, and buckling are rate-independent nonlinear behaviors.
In this study, the effect of stress relaxation owing to the presence of creep is investigated on the
optimized layout of a structure. Stress relaxation is discussed in more detail in Section 2.1.

1.1. Stress-based topology optimization

Finding the best material distribution within the design domain is the aim of topology optimiza-
tion. This field is expanding rapidly and has become the frontier of studies in structural

Figure 1. Von Mises stress field: (a) linear analysis and (b) nonlinear analysis under stress relaxation effect.
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optimization. Furthermore, topology optimization is employed in various problems in physics
and other engineering branches (Kook 2019). Since 1988 (Bendsoe and Kikuchi 1988), several
methods have been applied different approaches in topology optimization (Eschenauer and
Olhoff 2001, Maute and Sigmund 2013) the first of which is the homogenization method
(Hassani and Hinton 1998b, Hassani and Hinton 1998a). This method was improved using one
of the most popular approaches, solid isotropic material with penalization (SIMP) (Bendsøe 1989,
Rozvany, Zhou, and Birker 1992) which uses the densities of the elements as design variables
(Bendsoe and Sigmund 2013, Rozvany 2001). Level-set-based methods are another strategy in
which the structural domain is defined by a level-set function (Allaire, Jouve, and Toader 2002,
van Dijk et al. 2013).

The objective of most studies in structural topology optimization has been to find the opti-
mized layout of a given volume fraction with the least compliance, which is called the compliance
minimization problem. From an engineering perspective, stress plays an important role in the
safety of structures. Therefore, stress-based topology optimization, in which the objective is to
find the optimized layout of a given volume fraction with the least maximum stress, is more prac-
tical. However, solving these types of problems is difficult. In one of the earliest studies on this
topic, Yang and Chen (Yang and Chen 1996) addressed two main problems. The first is a local
quantity of stress that tends to have a large number of constraints. The P-norm method (Le et al.
2010) is an efficient and popular way to overcome this drawback and has been used in the pre-
sent study. The second is instability owing to the high nonlinearity of stress with respect to the
design variables. Another problem is in the SIMP method, which is called a singularity and has
been discussed in numerous studies (Kirsch 1989, 1990, Cheng and Guo 1997, Guo, Cheng, and
Yamazaki 2001, Bruggi 2008). A singularity is associated with zero-density elements that still have
a strain leading to non-zero stress and occasionally significant when the level of stress should
actually be zero (Holmberg, Torstenfelt, and Klarbring 2013). Gradient-based algorithms cannot
find the global optimum for this non-convex problem. To remedy this situation, the stress con-
straints can be relaxed using several schemes such as E-relaxation (Cheng and Guo 1997) or qp-
relaxation (Bruggi 2008). Low-density elements cause an ill-conditioning of the stiffness matrixes,
which may require more steps in the iterative solver and high computational costs (Wang,
Sturler, and Paulino 2007).

Topology optimization considering stress constraints has also been employed in the level-set
approach (Allaire and Jouve 2008, Amstutz and Novotny 2010) and has been utilized to find the
optimized layout of a stress-based multi-material compliant mechanism problem (Chu, Gao,
Xiao, Luo, and Li 2018). Because the stress constraint is applied only to the solid phase, there is
no singularity problem in the level-set-based method. However, some other issues have been
addressed (Guo et al. 2011, Suresh and Takalloozadeh 2013). For instance, the topological sensi-
tivity typically flattens out far away from regions of high sensitivity that pose a numerical chal-
lenge during level-set extraction (Suresh and Takalloozadeh 2013). To have better control on the
local stress, another research utilized an adaptive adjusting scheme of the stress penalty factor in
the parametric level-set method and a new method is proposed based on stress penalty and adap-
tive volume constraint (Chu, Gao, Xiao, Luo, and Li 2018).

1.2. Nonlinearity in stress-based topology optimization

Topology optimization is being developed rapidly to evaluate the nonlinearity aspects of various
problems. In structural topology optimization, most studies have focused on geometrical nonli-
nearity, particularly in mechanism problems, because the displacements are intrinsically large
(Sigmund 1997, Kawamoto 2009). Stiffness maximization (compliance minimization) is the aim
of most studies (Buhl, Pedersen, and Sigmund 2000). Earlier studies demonstrated that the opti-
mized topology considering nonlinear effects can be significantly different from the topology for
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minimal linear compliance (Swan and Kosaka 1997, Jung and Gea 2004). In addition to common
difficulties in topology optimization for linear structures, several instabilities have been reported,
mostly in a geometrical or nonlinear material analysis (Buhl, Pedersen, and Sigmund 2000, Lee
and Park 2012). Moreover, in a sensitivity analysis for the SIMP method, Buhl et al. (Buhl,
Pedersen, and Sigmund 2000) reported an indefinite or even negative definite tangent stiffness
matrix in low-density elements owing to a large displacement. Several methods such as an equiva-
lent static load, the removal of low-density elements, and a relaxation of the convergence criteria
have been proposed to overcome these problems (Bruns and Tortorelli 2003, Buhl, Pedersen, and
Sigmund 2000, Lee and Park 2012, Ahmad et al. 2017). Multi-scale topology optimization is
another novel approach in nonlinear structural design (Nakshatrala, Tortorelli, and Nakshatrala
2013, Xia and Breitkopf 2014, Xia and Breitkopf 2016). Layering and islanding are other effects of
void elements, and they were investigated by Luo et al. (Luo and Tong 2016). In a different
approach, to remove spurious members in truss lattice topology optimization, a discrete filtering
scheme was utilized (Zhang, Ramos, and Paulino 2017). Mesh distortion causes a divergence in
the optimization process, which is an obstacle owing to the presence of low-density elements.
The element connectivity parameterization (ECP) approach has proven to be efficient in over-
coming this drawback (Yoon and Kim 2005, 2007).

Despite the aforementioned studies on compliance minimization, a few researchers have inves-
tigated nonlinearity in stress-based topology optimization. Here, the challenges of stress-based
problems are added to the difficulties owing to nonlinearity. To achieve stress-based topology
optimization for geometrically nonlinear structures using the ECP approach, the qp-relaxation
method was developed (Moon and Yoon 2013). The ECP approach employs the link stiffness val-
ues for the connectivity among finite elements. Hence, it is powerful in solving topology opti-
mization for geometrically nonlinear structures. Unified aggregation and relaxation methods were
used to deal with stress constraints in the problem of a compliant mechanism (Capasso et al.
2020). Hyperelastic Neo-Hookean materials were adopted for nonlinear analysis. In another study,
the stiffness of geometrically nonlinear structures was maximized, subject to the volume fraction
and maximum von Mises stress constraints, by extending the bi-directional evolutionary struc-
tural optimization (Xu, Han, and Zhao 2020). This approach is based on adding and removing
elements (discrete variables) and can effectively avoid the singularity problem in density-based
methods. The filtering of topological variables has been used to stabilize the optimization process
and highly nonlinear stress behaviors. Chi et al. incorporated material nonlinearity through tail-
ored hyperelastic formulation, and topology optimization was conducted for the plane stress and
plane strain conditions (Chi et al. 2019). Numerical examples have demonstrated the influence of
various material behaviors. In addition to manufacturing uncertainty, geometric nonlinearity and
stress constraints have been considered in compliant mechanism topology optimization (da Silva,
Beck, and Sigmund 2020). To handle a large number of constraints, an augmented Lagrangian
method is applied, and to overcome divergence issues owing to a large deformation in void
regions, an energy interpolation scheme was employed.

Viscoelasticity as rate-dependent material nonlinearity has been studied sporadically, mostly as
viscoelastic damping in topology optimization (Chen and Liu 2014). One of the common phe-
nomena in rate-dependent material nonlinearity, particularly at high-temperature conditions, is
creep. The theory of creep for different materials has been well developed (Betten 2008).
However, there is a significant lack of studies when such effects as stress relaxation are considered
in topology optimization. A linear viscoelastic model was utilized by James and Waisman (James
and Waisman 2015) to obtain the optimized layout under viscoelastic creep deformation. The
SIMP method and an adjoint method based on the Prony series function were used to define
Young’s modulus in a sensitivity analysis. A new approach for material nonlinearity based on the
classical elastoplasticity model was utilized to avoid imposing a very large number of local stress
constraints (Amir 2017). The author used the sensitivity analysis suggested by Michaleris
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(Michaleris, Tortorelli, and Vidal 1994). The obtained layouts can sustain significantly higher
loads than the layouts obtained from minimum compliance. In addition, creep is a complex func-
tion of stress, time, and temperature, and stress relaxation is one of the consequences of the
dependency of stiffness on the stress owing to the creep phenomena. This effect was recently
investigated in compliance minimization topology optimization (Takalloozadeh and Yoon 2019).
The authors used the ECP approach and demonstrated the influence of stress relaxation on the
optimized layouts.

In the present study, we investigate the effect of creep stress relaxation in a stress-constrained
topology optimization problem. Alleviation of the maximum stress and an increase in the dis-
placement field are calculated using a nonlinear finite element analysis, which is described in
Section 2. In Section 3, the optimization formulation is given, and sensitivity analysis using a
time-dependent adjoint method is derived. Section 4 deals with instabilities and solution methods.
The results and discussion are presented in Section 5. Finally, some concluding remarks are given
in Section 6.

2. Stress relaxation and nonlinear analysis

The theory of stress relaxation used in this study is presented in this section. The formulation is
almost the same as the formulation which was provided in (Takalloozadeh and Yoon 2019). A
nonlinear finite element analysis for considering the stress relaxation is then described.

2.1. Stress relaxation formulation

In general, the stress-strain relation owing to creep is time-dependent, and the strain is a function
of stress, time, and temperature (Hetnarski, Reza Eslami, and Gladwell 2009). The behavior of the
structures under creep can be split into three stages: primary (or transient), secondary, and ter-
tiary. Most of the life of a structure is during the steady-state secondary stage, where the rate of
strain (_e) occurring as a result of creep can be expressed as a function of stress (r):

_ecreep ¼ f ðrÞ: (1)

The above relation leads to an effect called stress relaxation, which has been investigated by
many researchers. For metals and alloys, the rate of strain can be written as a power relation
(Weertman 1955, Hetnarski, Reza Eslami, and Gladwell 2009):

_ecreep ¼ arz: (2)

Here, parameters .a: and z are stress-independent material constant where the typical range
for z in the annealed metals is between 1 and 7 (Tegart and Sherby 1958, Hetnarski, Reza Eslami,
and Gladwell 2009). We used such a relationship in this study; however, other relations such as

a e
r
r0 � 1ð Þ and aðsinhð rr0ÞÞ

z(Penny and Marriott 2012) can be used with no effect on the generality

of the proposed optimization method. Here, r0 is a material constant independent of stress, but
temperature-dependent. Based on a summation of the elastic and inelastic strains, the total strain
at an arbitrary time (t ¼ tf ) during the secondary stage of creep can be calculated as follows:

e ¼ r
E0

þ arztf ¼ r
1
E0

þ arz�1tf

� �
) r

e
¼ E0

1þ atf E0rz�1
) E ¼ E0

1þ lrm
: (3)

Here, E0 is the initial Young’s modulus. For convenience in the calculations, z � 1 is replaced
by m, and the coefficient of stress relaxation (a), E0, and the desired time for the design (tf ) are
combined in a constant parameter l: Eq. (3) states that points with higher stress have a lower
stiffness, which tends to redistribute the displacement and stress field. Although Eq. (3) is
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obtained from the uniaxial test, it can be generalized for multi-axial stress states (Hayhurst 1972).
The concept of the yield criterion, such as the von Mises criterion, can be used for the equivalent
effects of multi-axial stress systems (Penny and Marriott 2012). It is worth mentioning that any
relation between the stress and stiffness (not just the stress relaxation owing to creep) can be
used instead of Eq. (3) with no effect on the generality of the rest of this study.

2.2. Nonlinear finite element implementation

Figure 2 presents a schematic diagram of the nonlinear finite element analysis to obtain the dis-
placement (U) and stress field. As shown, the applied force (F) is gradually increased, and at each
step, Young’s modulus vector (E) associated with the elements is updated using Eq. (3). The
index s represents the number of steps in which displacement Us is calculated, and the total num-
ber of steps is N: The stiffness matrix of each element (Ke

s) while applying the SIMP method and
considering the stress relaxation effect is obtained as follows:

Figure 2. The schematic diagram for the nonlinear analysis algorithm.
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Ke
s ¼ qeð ÞpEes

ð
Beð ÞTDBedXe , Ees ¼

E0
1þ l res�1ð Þm : (4)

Here, D is the material tensor, B represents the gradient matrix, and .qe: is the density of element
number e, which is penalized by power p: For simplicity, in the rest of this paper, res is used for
the von Mises stress in the middle of the element e in step s: In 2D problems, the von Mises
stress can be written in the form of the stress components (rij):

re ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2xx þ r2yy � rxxryy þ 3r2xy

q
: (5)

Using the aforementioned algorithm, an L-bracket structure (Figure 3) under a unit concen-
trated load is analyzed. The initial Young’s modulus E0 ¼ 103 N=m2, and � ¼ 0:3 is selected for
the Poisson ratio, and the number of steps (N) in the nonlinear finite element is 10. Moreover,
l ¼ 0:01 and m ¼ 2 are chosen to update Young’s modulus. The von Mises stress distribution
after the linear and nonlinear analyses is shown in Figure 1. Considering the stress relaxation
effect, the maximum stress is reduced from rmax ¼ 73:37N=m2 to rmax ¼ 30:63N=m2, and
regions with high stress are extended. Moreover, the displacement under the load point is
increased from umax ¼ 0:1182m to umax ¼ 0:1900m, which is an increment of more than 60%.
Despite this increment in the displacement field, we still can use the assumption of small dis-
placement to calculate the strain.

3. Problem definition and sensitivity analysis

The optimization problem in the present study can be mathematically formulated as follows:

Find q

Min max reN
� �

Subject to :

jXj ¼ jXj�
Ks q,Esð ÞDUs ¼ DFs s ¼ 1, 2, :::,N

(6)

Here, X is a topology that must be computed within the design domain and jXj� is the final
volume fraction. In the following calculation, the subscripts denote the number of steps in the
nonlinear finite element analysis, and the superscripts represent the number of elements.

Figure 3. L-bracket problem.
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3.1. Sensitivity analysis using the time-dependent adjoint method

To conduct a sensitivity analysis, the objective function, which is the maximum von Mises stress
at the final step (maxreN), is added with the summation of the equilibrium equation at all steps
multiplied by an arbitrary adjoint vector (ks). Therefore, the objective function can be written as
follows:

w ¼ maxreN þ
XN
s¼1

kTs KsDUs � DFsð Þ: (7)

The P-norm function is used to make a differentiable function from the maximum von Mises
stress (Le et al. 2010):

w ¼
Xne
e¼1

reN
� �P !1

P

þ
XN
s¼1

kTs KsDUs � DFsð Þ: (8)

Here, ne is the total number of elements, and P in the P-norm relation should not be confused
with power p in the SIMP method (Eq. (4)). Now, the sensitivity of the maximum von Mises
stress with respect to the density of the j-th element (qj) can be written as follows:

dw
dqj

¼
X
e

reN
� �P� �1

P�1X
e

reN
� �P�1 dreN

dqj
þ
X
s

kTs
dKs

dqj
DUs þ Ks

dDUs

dqj

� �
: (9)

The first term in the above relation can be written in vector form, for which the following is
more convenient:

X
e

reN
� �P� �1

P�1X
e

reN
� �P�1 dreN

dqj
¼ A

dr1N
dqj

, :::,
dreN
dqj

, :::,
drneN
dqj

� �T

¼ A
drN
dqj

: (10)

where rN is a vector of size ne� 1, representing von Mises values in the structural elements at
step N, and vector A with the size of 1� ne is the following:

A ¼
X
e

reN
� �p� �1

p�1
r1N
� �p�1

, ::: , reN
� �p�1, ::: , rneN

� �p�1
n o

: (11)

The von Mises stress at the step s in each element is obtained from the stress components
(rexx, s,r

e
yy, s, r

e
xy, s) given in Eq. (5), and its differential can be expressed as follows:

dres ¼
1
2

res
� ��1

2 rexx, s
� �

drexx, s þ 2 reyy, s
� �

dreyy, s
�d rexx, s
� �

reyy, s
� �� rexx, s

� �
d reyy, s
� �þ 6 rexy, s

� �
drexy, s

" #

¼ 1
2

res
� ��1 2rexx, s � reyy, s, 2r

e
yy, s � rexx, s, 6r

e
xy, s

	 
 drexx, s
dreyy, s
drexy, s

8>><
>>:

9>>=
>>; ¼ Ies

drexx, s
dreyy, s
drexy, s

8>><
>>:

9>>=
>>;:

(12)

We introduced a new vector (Ies) with a size of 1� 3: The stress components are related to the
nodal displacement (Ue

s) as follows:

rexx, s reyy, s rexy, s
n oT

¼ qeð ÞqEesDBeUe
s : (13)

Here, we use different powers (q) for penalizing the density, which is proposed in the qp-
relaxation method (Bruggi 2008). This issue is explained in more detail in Section 4. Hence, we
obtain the following:
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drexx, s
dreyy, s
drexy, s

8>><
>>:

9>>=
>>; ¼ q qeð Þq�1 dqeð ÞEesDBeUe

s þ qeð ÞqdEe
sDBeUe

s þ qeð ÞqEesDBedUe
s : (14)

In summary,

dreN
dqj

¼ @reN
@qj

þ @reN
@EeN

dEeN
dqj

þ @reN
@Ue

N

dUe
N

dqj
¼ beN þ geN

dEeN
dqj

þ heN
dUe

N

dqj
(15)

In Eq. (15), some new parameters were used to simplify the rest of the calculations:

@res
@qj

¼ bes ¼ 0if j 6¼ e

@res
@qj

¼ bes ¼ Iesq qeð Þq�1EesDBeUe
s if j ¼ e

(16)

and

@res
@Ue

s
¼ Ies qeð ÞqEesDBe ¼ hes (17)

@res
@Ees

¼ Ies qeð ÞqDBeUe
s ¼ hesU

e
s ¼ ges : (18)

Four-node quadrilateral elements were employed in this study; therefore, the number of degrees
of freedom in each element is equal to eight, and the size of the vector hes is 1� 8: The Young’s
modulus in step s is the function of stress in the previous step, s� 1; hence, the derivative of EeN
in the second term in Eq. (15) is expressed as follows:

dEeN
dqj

¼ dEe
N

dreN�1

dreN�1

dqj
¼ dEeN

dreN�1
beN�1 þ heN�1

dUe
N�1

dqj
þ geN�1

dEeN�1

dqj

� �
: (19)

Inserting Eq. (15) in Eq. (10) yields the following:

A
drN
dqj

¼ aN þ G
dEN

dqj
þH

dUN

dqj
¼ aN þ G

dEN

dqj
þH

XN
r¼1

dDUr

dqj

 !
: (20)

Here, the scalar aN is a multiple of A in a vector, the elements of which are defined by beN ,
the first term of Eq. (15), and H ¼ AhN , where the elements of each vector in the matrix hN are
defined by Eq. (17). Finally, G ¼ A� gN , where the e-th element of gN is defined using Eq. (18)
and � indicates the Hadamard product. As described in Section 2, the displacement vector in

step s is obtained by Us ¼
Ps

r¼1 DUr ) dUs
dqj ¼

Ps
r¼1

dDUr
dqj : For the last step (s ¼ N) and in vector

and matrix forms, we obtain the following:

dEN

dqj
¼ aN þ bN

dUN�1

dqj

� �
þ cN � dEN�1

dqj
¼ aN þ bN

XN�1

r¼1

dDUr

dqj

 !" #
þ cN � dEN�1

dqj
: (21)

The e-th element of the newly defined vector, aN , is
dEeN
dreN�1

� beN�1, and, therefore,

EeN ¼ 1
1þ l reN�1ð Þm ) dEe

N

dreN�1
¼ �ml reN�1ð Þm�1

1þ l reN�1ð Þm� �2 : (22)

In addition, bN is a matrix where the elements of its column are defined as dEeN
dreN�1

heN�1:

Therefore, the number of rows is ne, and the number of columns is the number of degrees of
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freedom. Moreover, cN is equal to bN
PN�1

r¼1
dDUr
dqj


 �
: When the stress relaxation effect is used, the

stiffness matrix is a function of both the densities of the elements and Young’s modulus vector.
Applying the chain rule, we obtain the following:

Ks ¼ Ks qe,Ees
� �) dKs

dqj
¼ @Ks

@qj
þ
Xne
e¼1

@Ks

@Ees

dEes
dqj

¼ @Ks

@qj
þ
Xne
e¼1

@Ks

@Ees

dEe
s

dres�1

dres�1

dqj
: (23)

Inserting Eq. (19) into the above relation results in the following:

dKs

dqj
¼ @Ks

@qj
þ
X
e

@Ks

@Ees

dEes
dres�1

bes�1 þ hes�1
dUe

s�1

dqj
þ ges�1

dEes�1

dqj

� �
, (24)

Substituting Eq. (9) yields the following:

dw
dqj

¼ aN þ G aN þ bN
XN�1

r¼1

dDUr

dqj

 !" #
þ cN � dEN�1

dqj

" #
þH

XN
r¼1

dDUr

dqj

 !

þ
XN
s¼1

kTs
@Ks

@qj
DUs þ kTs

X
e

@Ks

@Ees

dEes
dqj

� �
DUs þ kTs Ks

dDUs

dqj

 !
:

(25)

To avoid calculating dDUN
dqj , the adjoint vector (kN) should satisfy the following linear equation sys-

tem:

kTNKN þH ¼ 0: (26)

According to the assembly equation, which yields a global stiffness matrix Ks, we obtain @Ks
@Ees

¼
kes
Ees
: Moreover, by defining gs as

P
e kTs

@Ks
@Ees

DUs


 �
dEes
dqj ¼ gs

dEs
dqj , after calculating kN , Eq. (25) can be

written as follows:

dw
dqj

¼ aN þ G aN þ bN
XN�1

r¼1

dDUr

dqj

 ! !
þ cN � dEN�1

dqj

" #
þH

XN�1

r¼1

dDUr

dqj

 !

þ
XN
s¼1

kTs
@Ks

@qj
DUs þ gs

dEs

dqj

� �
þ
XN�1

s¼1

kTs Ks
dDUs

dqj
:

(27)

After simple calculations,

dw
dqj

¼ aN þ GaN þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �
þ GbN

XN�1

r¼1

dDUr

dqj

 ! !
þH

XN�1

r¼1

dDUr

dqj

 !

þ GcN � dEN�1

dqj
þ
XN
s¼1

gs
dEs

dqj

� �
þ
XN�1

s¼1

kTs Ks
dDUs

dqj
,

(28)

where dEs
dqj can be calculated using Eq. (21) by replacing N with s, which is a recurrence relation,

and, therefore,
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dw
dqj

¼ aN þ GaN þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �
þ GbN

XN�1

r¼1

dDUr

dqj

 ! !
þH

XN�1

r¼1

dDUr

dqj

 !

þ GcN � dEN�1

dqj
þ gN aN þ bN

XN�1

r¼1

dDUr

dqj

 !
þ cN � dEN�1

dqj

 !

þ
XN�1

s¼1

gi
dEi

dqj

� �
þ
XN�1

s¼1

kTs Ks
dDUs

dqj

(29)

Finally,

dw
dqj

¼ aN þ GaN þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �
þ GbN

XN�1

r¼1

dDUr

dqj

 ! !
þH

XN�1

r¼1

dDUr

dqj

 !

þ Gþ gNð ÞcN � dEN�1

dqj
þ gN aN þ bN

XN�1

r¼1

dDUr

dqj

 ! !
þ
XN�1

s¼1

gs
dEs

dqj

� �
þ
XN�1

s¼1

kTs Ks
dDUs

dqj

(30)

To eliminate the terms with coefficient dDUN�1
dqj , the following relation must be established:

kTN�1KN�1 þ Gþ gNð ÞbN þH ¼ 0: (31)

Then, the rest of Eq. (30) will be as follows:

dw
dqj

¼ aN þ Gþ gNð ÞaN þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �
þ Gþ gNð ÞbN þHð Þ

XN�2

r¼1

dDUr

dqj

 !

þ Gþ gNð Þ cN � dEN�1

dqj

� �
þ gN�1

dEN�1

dqj
þ
XN�2

s¼1

gs
dEs

dqj

� �
þ
XN�2

s¼1

kTs Ks
dDUs

dqj

(32)

One can continue these steps to calculate kN�2 as follows:

dw
dqj

¼ aN þ Gþ gNð ÞaN þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �
þ Gþ gNð ÞbN þHð Þ

XN�2

r¼1

dDUr

dqj

 !

þ Gþ gNð Þ cN � aN�1 þ bN�1

XN�2

r¼1

dDUr

dqj

 !
þ cN�1 �

dEN�2

dqj

 ! !

þ gN�1 aN�1 þ bN�1

XN�2

r¼1

dDUr

dqj

 !
þ cN�1 �

dEN�2

dqj

 !
þ
XN�2

s¼1

gs
dEs

dqj

� �
þ
XN�2

s¼1

kTs Ks
dDUs

dqj

(33)

The summation of terms with dDUN�2
dqj is set to zero, and thus,

) Gþ gNð ÞbN þHð Þ dDUN�2

dqj

� �
þ Gþ gNð Þ cN � bN�1

dDUN�2

dqj

� �� �� �

þ gN�1 bN�1
dDUN�2

dqj

� �� �
þ kTN�2KN�2

dDUN�2

dqj
¼ 0

(34)

Therefore,

) kTN�2KN�2 þ Gþ gNð Þ � cTN þ gN�1

� �
bN�1 þ Gþ gNð ÞbN þH ¼ 0: (35)
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The rest of the relation will be as follows:

dw
dqj

¼ aN þ Gþ gNð Þ aN þ cN � aN�1ð Þ þ gN�1aN�1 þ
XN
s¼1

kTs
@Ks

@qj
DUs

� �

þ Gþ gNð Þ bN þ cN � bN�1ð Þ þ gN�1bN�1 þH
� � XN�3

r¼1

dDUr

dqj

 !

þ Gþ gNð Þ cN � cN�1 �
dEN�2

dqj

� �
þ gN�1 cN�1 �

dEN�2

dqj

� �
þ
XN�2

s¼1

gs
dEs

dqj

� �
þ
XN�3

i¼1

kTs Ks
dDUs

dqj

(36)

We can continue the calculation by computing kN�3 into k1, which is written as a loop in the
programming code. After obtaining all adjoint vectors (ks), one can calculate the desired deriva-
tive (Eq. (9)) by using the final relation that remains after the vanishing terms, including the

derivative of the displacement (dDUs
dqj ). Moreover, the partial derivative of the global stiffness matrix

can be easily obtained as follows:

@Ks

@qj
¼ p qj
� �p�1

Kj
s: (37)

3.2. Verification using the finite difference method

Before utilizing the computed sensitivity in topology optimization, it is essential to verify it with
the numerical results calculated using the finite difference method. The following central finite
difference equation is used to compute the numerical derivative of the maximum von Mises stress
(maxreN) with respect to the design variable qj :

d
dqj

max reN � max reN qj þ Dqj
� �

�maxreN qj � Dqj
� �

2Dqj
: (38)

The perturbation value of Dqj ¼ 10�5 is used herein. A simple cantilever beam, shown in
Figure 4 is discretized by 15 elements. The numbers of elements are given as well. The adopted
material properties are E ¼ 103 N=m2, � ¼ 0:3, m ¼ 2, and l ¼ 0:01:

Table 1 presents the results for the analytical and finite difference methods. A typical agree-
ment of up to seven significant digits of precision is obtained, which proves the validity of the
presented sensitivity analysis.

Figure 4. Cantilever beam with 15 elements.
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4. Convergence and stability of the optimization process

Assume a simple plate under tension, which is discretized into two elements (Figure 5-a). Under
the given boundary conditions, the desired volume fraction equals 50% of the total volume, and
the optimized layout for both linear and nonlinear structures is expected as shown in Figure 5-b.
This means that two design variables should be obtained q1 ¼ 1, q2 ¼ 0: However, if we use the
same penalization to compute the element stiffness matrix (Eq. (4)) and the stress in the elements
(Eq. (13)), which means q ¼ p ¼ 3, the 2D optimization space will be as shown in Figure 6-a.
Here, l ¼ 0:01, and the Poisson ratio is zero. The vertical axis depicts the normalized maximum
von Mises stress, and the horizontal axes are design variables. As can be observed, the gradient-
based optimization methods do not converge to the desired optimum point. To overcome this
difficulty, a different penalization can be used such that q < p, which changes the optimization
space, as displayed in Figure 6-b (q ¼ 2) and Figure 6-c (q ¼ 0:5). The greater slope obtained
using q ¼ 0:5 tends to achieve faster convergence during the optimization process. This technique
which is called qp-relaxation was pointed in several studies for linear cases such as (Le et al.
2010). There is a similar problem for the nonlinear effects.

Another point that should be noted is the consideration of stress relaxation during the initial
steps of the optimization process. With the SIMP method, the process initiates with a layout in
which the densities are defined as follows: qe ¼ jXj� e ¼ 1, 2, :::, ne, and these values are raised to
power p, which makes them even smaller. This means that the stiffness of the elements is low
during the initial steps. In addition, considering that the stress relaxation decreases the stiffness
in most elements, during the initial steps, we might have instability in the nonlinear finite elem-
ent analysis. Therefore, one can start with l ¼ 0 and increase the parameter l during the first
steps of optimization to the determined value. Here, we use a linear increment.

Table 1. Analytical sensitivity analysis and finite-difference results.

Element Number Analytical Finite difference

1 �4.735029714 �4.735029721
2 �0.687423538 �0.687423531
3 �0.911231758 �0.911231742
4 �0.82212429 �0.82212429
5 �0.095798682 �0.095798689
6 �0.305417047 �0.305417041
7 �0.062559274 �0.062559309
8 0.043764972 0.043764978
9 �0.028950754 �0.028950733
10 �0.018952006 �0.018951995
11 0.010596935 0.010596952
12 0.008785843 0.008785857
13 �0.005654223 �0.005654241
14 0.005924445 0.005924468
15 0.002581854 0.002581903

Figure 5. (a) Simple two element structure and (b) the expected optimum layout.
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After calculating the required sensitivity, the direct Lagrange multiplier method (Kumar and
Suresh 2021) is utilized to find the new design variables in the next step of the optimization pro-
cess. This is faster than the bisection method with smoother convergence. The next technique
that is used here is the selection of the movement parameter while applying the optimal criteria
method, which should be smaller than the value that is usually used for linear problems. This is
due to the greater complexity in the shape of the optimization space for nonlinear stress mini-
mization problems.

To ensure the manufacturability and prevent numerical instabilities such as a checkerboard
and mesh dependency, a modified filter with a Heaviside function is applied by modifying the
densities of elements (Sigmund 2007):

~qe ¼ e�b 1��qeð Þ � 1� �qeð Þe�b, (39)

where �qe is the density filter introduced by Bourdin (Bourdin 2001) using elements in the neigh-
borhood of element e (Ne):

Figure 6. (a) Optimization space for q ¼ 3, (b) q ¼ 2, and (c) q ¼ 0:5:
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�qe ¼
P

i2Ne w
iAiqiP

i2Ne wiAi
: (40)

Here, wi is the weighting function that depends on the distance of elements i and e, and Ai is
the volume of element i: The value of b is set to a small number and increases gradually during
the optimization iteration. After using the filter for the element density, the element of the sensi-
tivity vector should be modified as follows:

dw
d~qe ¼

dw
dqe

dqe

d~qe : (41)

where dqe

d~qe is the inverse of the derivative of Eq. (40).

Figure 7. Optimized layouts and stress distribution in the optimum layouts for the L-bracket.
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5. Results

Three examples have been considered to investigate the effect of stress relaxation on stress-based
topology optimization. Without a loss of generality, Young’s modulus and Poisson ratio were
chosen to be E ¼ 103 N=m2 and � ¼ 0:3, respectively. Moreover, the number of steps in the
nonlinear FE analysis (N) is adopted as 10, and m ¼ 2 in Eq. (3).

5.1. Example 1

The first example is the L-bracket structure illustrated in Figure 3 where the top of the structure
is fixed, and a unit load is applied in the middle of the right side. This is one of the benchmark
problems in stress-constrained topology optimization. Here, the design domain was discretized
into 5000 elements, the mass limit was set to 40% of the total domain, and P ¼ 18 in the P-norm
relation (Eq. (8)). For linear structures and under compliance minimization, the optimized layout
has a sharp corner with stress concentration, as shown in the first row of Figure 7 where the
maximum von Mises stress is rmax ¼ 90:05N=m2: An efficient stress minimization algorithm will
lead to the optimized topology shown in the second row of Figure 7 which has the same volume
and less maximum stress (rmax ¼ 46:05N=m2) and lacks a sharp corner.

The optimized layout of the L-bracket problem considering a stress relaxation (l ¼ 0:01) and
using the proposed method is obtained and displayed in the third row of Figure 7. For compari-
son, the optimum design obtained for the linear case (Figure 7, second row) is reanalyzed under
the stress relaxation effect (l ¼ 0:01), and the objective function (Eq. (8)) is obtained, where w ¼
29:73N=m2, which is more than that in the optimized layout obtained by the proposed method
(w ¼ 28:39N=m2). This proves the efficiency of the algorithm to find the optimized layout con-
sidering the stress relaxation effect. It should be noted that the P-norm relation used in Eq. (8) is
an approximation of the maximum stress. When stress values from which the maximum is calcu-
lated are more uniform, the P-norm value is less accurate and farther from the maximum value.
Therefore, in the stress relaxation case, the difference between the objective function and the
maximum von Mises stress is more than that in the linear case.

For the L-bracket structure, considering that stress relaxation reduces the stress concentration
in the corner, the optimized layout (Figure 7, third row) is somewhat between the layout obtained
during compliance minimization (Figure 7, first row) and stress minimization (Figure 7, second

Figure 8. Von Mises stress in elements.
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row). The right vertical bar is completely located in the right part of the design domain (similar
to Figure 7, first row), but there is no sharp corner (similar to Figure 7, second row). The differ-
ence between the linear and nonlinear cases is insignificant; nevertheless, the thickness and curva-
ture of the bars are different.

The von Mises stress values in the elements are sorted and plotted for stress minimization layouts
(Figure 7, second and third rows), as shown in Figure 8. In the nonlinear case, the stress values in
the low-stress elements are more than those in the linear case and are less in high-stress elements,
which makes the stress distribution more uniform in the optimized layout for the nonlinear case.

5.2. Example 2

In the second example, the optimized topology of a cantilever beam (Figure 9) is obtained. The
beam is discretized into 100� 50 elements, and a unit load is applied to the right side. Stress

Figure 9. Cantilever beam problem.

Figure 10. Optimized layouts and stress distribution in the optimum layouts for the cantilever beam.
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relaxation is considered using l ¼ 0:05, where the volume fraction is 50%, and P ¼ 10 for the P-
norm relation. More values for P-norm mean more accuracy in calculating the maximum stress;
however, it will lead to instability in the optimization process.

The optimized layouts for the different cases are shown in Figure 10. Similar to the last example,
owing to the alleviation of stress under material nonlinearity behavior, the optimum layout for stress
minimization (nonlinear case) is somewhat between compliance and stress minimization for the lin-
ear case. The stress field is more uniform, and the value of the maximum von Mises stress is less
than the expected linear case. Considering a stress relaxation in compliance with the minimization
for the cantilever problem led to an optimized layout with more structural bars than the optimized
layout for the linear case (Takalloozadeh and Yoon 2019). However, this effect is not observed in
the stress minimization design, and the number of structural elements is almost the same.

The principal stresses in the elements of optimized layouts are plotted on a 2D von Mises yield
surface (Figure 11), where the yield surface in each graph is the maximum von Mises stress in
the final layout. For the optimized layout in compliance minimization (Figure 11-a), the von
Mises stresses in most elements are far from the maximum, which shows the stress concentration
in a few elements. Utilizing the stress minimization algorithm for both linear and nonlinear cases
gives layouts in which the stresses are distributed more uniformly and with fewer values for the
maximum von Mises stress (Figure 11-b and c).

5.3. Example 3

The last example is another cantilever beam with extra pin support on the bottom-right side
(Figure 12). A unit concentrated force is applied at the bottom middle of the beam, and the value
for l in the nonlinear case is selected as 0.01.

Figure 11. Principal stresses and 2D von Mises surface: (a) compliance minimization, linear case, (b) stress minimization, linear
case, and (c) stress minimization, nonlinear case.

Figure 12. Cantilever beam with a support.
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The optimized layouts for compliance and stress minimization with and without considering
the stress relaxation are shown in Figure 13. Here, the volume fraction is 30% of the design
domain. In this example, the differences between linear and nonlinear optimized layouts are
more significant. The optimized topology for the nonlinear case (Figure 13, last row) is more
similar to a compliance minimization than a linear stress minimization.

Analyzing the optimized layout for the linear case (Figure 13, second row) under stress relax-
ation (l ¼ 0:01) would give a maximum von Mises equal to 14:47N=m2: In comparison, the
maximum von Mises stress for the layout obtained by the proposed method (Figure 13, third

Figure 13. Optimized layouts and stress distribution in the optimum layouts for the cantilever beam with extra pin support.

Figure 14. Optimized layouts using different techniques for the P-norm value.
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row) is 13:15N=m2: Moreover, the value of the compliance for the optimum layout using compli-
ance minimization is 14:0� 10�3 J and for the stress minimization (linear case) is 35:4� 10�3 J:
This was expected since the objective function in the second problem is not compliance. For the
stress minimization (nonlinear case), the compliance value is between two previous numbers and
is equal to 21:0� 10�3 J:

To obtain the optimized layout for stress minimization problems (Figure 13, second and third
rows), the value of the P-norm is initially set to 9 and increases gradually to 18 during the first
optimization steps (e.g., 100 steps). This technique led to better results. The comparison between
optimized layouts using constant and dynamic P-norm values is given in the second column in
Figure 14 and the third column in Figure 14, respectively. For both cases, using the dynamic
technique in increasing P-norm gives layouts with less maximum von Mises stress. However, the
effectiveness of the technique and choosing the appropriate range for the P-norm in the other
problems for linear and nonlinear cases should be further investigated.

6. Conclusion

In this study, the effects of stress relaxation on the optimized topology of the structures were
investigated. The optimized layouts were obtained by minimizing the maximum von Mises stress,
whereas a nonlinear analysis considering the stress relaxation was conducted. The time-dependent
adjoint method was used to calculate the sensitivity of the maximum von Mises stress with
respect to the element density.

In comparison to the effect of stress relaxation in compliance minimization problems, the
results show that the influence of stress relaxation on the optimized layout in stress minimization
problems was less. This could be due to the stress alleviation in the structures. Stress relaxation
decreases the stress concentration and the maximum von Mises stress. Therefore, the optimized
layout for the stress minimization problem under the nonlinear stress relaxation effect is almost a
layout between the optimized layout obtained in linear stress minimization and the optimized lay-
out obtained in linear compliance minimization. However, there are differences in the thickness
and curvature of the layouts. One of the common layouts in optimized topologies considering
material nonlinearity is the existence of more structural bars in comparison with linear structures.
This is not observed in the stress-based design under the stress relaxation effect, and the number
of structural elements is almost the same.

To obtain the optimized layout and avoid several instabilities and non-optimal layouts, several
methods were employed. In addition to common methods such as qp-relaxation and a density fil-
ter, in particular, the effect of nonlinearity is increased gradually in the first steps of the optimiza-
tion process. Moreover, we found that the same technique for increasing the P-norm value will
lead to better results in most stress-based problems.

Replication of results

For the replication of the results, details have been provided in Sections 2, 3, and 4, including
sensitivity analysis and numerical techniques to overcome instabilities. Besides, the boundary con-
ditions and the number of elements for the examples are provided in Section 5.

Moreover, the authors have provided the codes for the sensitivity analysis (in content-
obscured, executable files) so that the readership can replicate the result in Table 1 and also use
them to solve different problems with different geometry, boundary conditions, and material
properties. However, if the provided information is not enough, we sincerely welcome you to
contact us for further explanation.
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