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Abstract
Purpose – Body forces are always applied to structures in the form of the weight of materials. In some
cases, they can be neglected in comparison with other applied forces. Nevertheless, there is a wide range of
structures in civil and mechanical engineering in which weight or other types of body forces are the main
portions of the applied loads. The optimal topology of these structures is investigated in this study.
Design/methodology/approach – Topology optimization plays an increasingly important role in
structural design. In this study, the topological derivative under body forces is used in a level-set-based
topology optimization method. Instability during the optimization process is addressed, and a heuristic
solution is proposed to overcome the challenge. Moreover, body forces in combination with thermal loading
are investigated in this study.
Findings – Body forces are design-dependent loads that usually add complexity to the optimization process.
Some problems have already been addressed in density-based topology optimization methods. In the present
study, the body forces in a topological level-set approach are investigated. This paper finds that the used
topological derivative is a flat field that causes some instabilities in the optimization process. The main
novelty of this study is a technique used to overcome this challenge by using a weighted combination.
Originality/value – There is a lack of studies on level-set approaches that account for design-dependent
body forces and the proposed method helps to understand the challenges posed in such methods. A powerful
level-set-based approach is used for this purpose. Several examples are provided to illustrate the efficiency of
this method. Moreover, the results show the effect of body forces and thermal loading on the optimal layout of
the structures.

Keywords Topology optimization, Body forces, Pareto method, Topological derivative,
Thermal loading

Paper type Research paper

1. Introduction
There are wide ranges of structures in which body forces comprise the main portion of the
applied load. For instance, Plate 1 shows a bridge in which self-weight is significantly
greater than other types of applied loads such as vehicle loading. Centrifugal force and
electromagnetic and inertial forces are other common types of body forces. However,
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structural optimization under body forces is a design-dependent problem. These types of
problems are usually more difficult to solve than structural optimization under fixed loads.
Although body forces are considered in a few studies, for most studies on topology
optimization, these forces are neglected. This study uses a level-set approach to find the
optimal topology of structures under body forces. The difficulties and solutions are
investigated.

In topology optimization, one attempts to find the best material distribution of the
continuum structures for the given objective functions and constraints in a predefined
design domain. Today, this branch lies at the frontier of studies in the field of structural
optimization. The application of topology optimization has expanded rapidly. Additive
manufacturing has greatly contributed to this expansion. Moreover, various branches of
physics and engineering are used for topology optimization. Since 1988 (Bendsoe and
Kikuchi, 1988), several methods have been developed for topology optimization. There are
numerous appropriate studies that review topology optimization methods (Sigmund and
Maute, 2013; Eschenauer and Olhoff, 2001; Zhu et al., 2020) such as the homogenization
method (Hassani and Hinton, 1998a, Hassani and Hinton, 1998b), solid isotropic material
and penalization (SIMP) (Bendsoe and Sigmund, 2013; Rozvany, 2001), evolutionary
structural optimization (ESO), bidirectional ESO (BESO) (Huang and Xie, 2010) and level-set
methods (van Dijk et al., 2013). Another novel approach in topology optimization is the
moving morphable component method (MMC) (Zhang et al., 2016; Guo et al., 2016), which
uses the position and the shape of the components to define the structural layout. Moreover,
this method is improved to use topological derivative (Takalloozadeh and Yoon, 2017b),
therefore, the used topological derivative in this study can implement in the MMC method.
Here, we restrict our attention to studies that consider body forces in topology optimization.

The first comprehensive study in which topology optimization problems, including self-
weight, were investigated was conducted in 2005 by Bruyneel and Duysinx (2005).

Plate 1.
A steel bridge in
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They used the SIMP density-based method, and several difficulties were addressed in the
study. The first issue is the non-monotonic behavior of compliance as the objective function.
The density dependence of the loads in the SIMP method causes this non-uniformity with
respect to some design variables. The second issue in including density-dependent loads is
the inactive volume constraint. This problem has also been pointed out in Turteltaub and
Washabaugh (1999). The third difficulty concerns using the SIMP method, which leads to
parasitic effects in low-density regions. The guided weighted method used in the SIMP
method and the rational approximation of material properties (RAMP) model were used to
overcome these difficulties in 2013 (Xu et al., 2013). They obtained clearer topologies using
the RAMP model. To overcome the parasitic effects, another study developed a closed B-
splines-based method (Zhang et al., 2017). In this method, design variables are defined by
control parameters in B-spline and are unattached to the finite element model. The minimum
compliance structural topology for the loading resulting from the worst possible
acceleration of the structure was obtained by Holmberg et al. (2015). Their study shows how
the min-max problem can be formulated as a nonlinear semidefinite programming problem.
In one of the latest studies in which body forces were considered (Zhang et al., 2020), the
authors improved the SIMP method by using the auxiliary sweep method, which is applied
to the penalty factor to avoid the parasitic effect. The proposed method maintains the
activeness of the prescribed volume constraint and avoids gray elements in the design
domain. To consider additive manufacturing constraints such as overhang, self-weight
should be involved. The porous structural pattern is produced in the contact region by easy
removal of support-structures (Zhou et al., 2020). In combination with the additive
manufacturing filtering technique, the authors proposed a multi-field structural
parameterization.

In the ESO-based method, Ansola et al. (2006) showed that traditional sensitivity, which
had been used, does not work properly when self-weight is added. They proposed a new
relation to calculate smoothing iterations during the optimization process that can overcome
numerical instabilities in the traditional ESO. In another study on evolutionary methods,
soft and hard kill in the BESO method was developed to account for self-weight (Huang and
Xie, 2011). To find the optimum topology of trusses under the self-weight load, mixed-
integer second-order cone programming was used by Kanno and Yamada (2017). The
proposed approach can be readily applied to problems with discrete design variables.

A recent study investigated the optimum topology for steady and unsteady
incompressible Navier-Stokes flows, including body forces (Deng et al., 2018). The power-
law approach was used to penalize physical body forces in the Navier-Stokes equations.
Moreover, the problem was solved by level-set-based topology optimization, and the
topological sensitivity was calculated using shape sensitivity based on the asymptotic
analysis. Some numerical examples, such as the mass distribution of the flow local velocity
with body forces, were solved. Similarly, a power-law function was used to update the
element density in the topology optimization of the internal structure of an aircraft wing
under a self-weight load (Félix et al., 2019). An optimization framework was developed by
three design fields to simultaneously find the optimal material, shape and topology
(Fernandez et al., 2020). By solving a dam problem, the authors showed the method can
consider design-dependent loads such as self-weight.

As can be seen, few studies have addressed body forces in level-set-based topology
optimization. In this study, a level-set-based method called “Pareto” is used to consider self-
weight. The used method does not have the limitations of the density-based-methods.
However, there is a numerical instability, and a weighted combination is used to overcome
it. The Pareto method is based on a topological derivative. Topological derivatives are
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powerful tools in topology optimization that allow topological changes, such as creating new
holes in the domain during the optimization process (van Dijk et al., 2013). This concept was
proposed by Eschenauer et al. (1994) and has been extended later and used in topology
optimization (Novotny et al., 2005; Turevsky et al., 2009; Suresh, 2010; Suresh, 2013). For
example, a fictitious domain method was proposed in Norato et al. (2007) by using the
topological derivative to find the optimal layout. The proposed method is efficient even
when relatively coarse finite element grids mesh is used.

The following section, Section 2, defines the problem, the Pareto method and the
topological derivative. Section 3 describes the implementation of a topological derivative
including body forces and addresses the challenges. In Section 4, some examples are
provided to validate the proposed method. The conclusion is presented in Section 5.

2. Problem definition
In Pareto topology optimization (PTO), one finds the optimum topology of multi-objective
topology optimization. It can be formulated as follows (Suresh, 2010).

MinX�D J ; jXjf g
subject to
jXj ¼ jXj*ð
X
r uð Þ : e gð Þ dX ¼

ð
CN

q � g dCþ
ð
X
b � u dX

(1)

where the strain tensor, Cauchy stress tensor and displacement field vector are denoted by«
(u),r(u) and u, respectively. The virtual displacement field g requires to satisfy the essential
boundary conditions, that is, the Dirichlet boundary on CD. Here, b stands for body forces.
The total region of computation, the topology that must be computed and its volume are
denoted by D, X and jXj*, respectively. The external force q is defined at the Neumann
boundary (CN) and the prescribed displacement u is defined at the Dirichlet boundary (CD)
u ¼ u on CD;r uð Þ � n¼q on CNð Þ. Moreover, half of the compliance J is defined as

J uð Þ ¼ 1
2

ð
X
r uð Þ : e uð Þ dX �

ð
CN

q � udC�
ð
X
b � udX (2)

The Pareto method traces the Pareto frontier by using the topological derivative (T) as a
level-set function. The algorithm starts from the solid domain and moves on the Pareto
frontier to reach the desired volume (jXj*) (Figure 1). In each step of the optimization
process, the optimum domain is defined by Suresh (2010).

X ¼ xjT xð Þ > l
� �

; jXj ¼ V ; (3)

where l is a scalar value that defines a cutting plane. The parts of the computation region (D)
that have topological sensitivity greater than l and total volume V are defined as the
optimum domain (X) in that step. This means that the domain X is the set of all regions
where the topological field exceeds l. The value for the cutting plane (l) can be chosen such
that a certain percentage of the volume is eliminated. In other words, the portions of the
domain that are least critical for the stiffness of the structure (when the objective function is
compliance) have been removed. By using this method, a pseudo-optimal domain has been
constructed directly from the topological sensitivity field (Suresh and Takalloozadeh, 2013).
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To find l, a fixed-point iteration is used, and it usually converges in three to five iterations.
To learn more about the proofs and the Pareto level-set-based method, see the original paper
(Suresh, 2010).

2.1 Topological derivative considering body forces
Because the Pareto method uses a topological derivative as a level-set function to find the
optimal domain, a brief introduction to the topological derivative is given in this section.
Assume that X is a smooth domain of R2, in which C is its boundary. By inserting a small
circular hole (Bd ) at the center, x̂, with a radius d , X is changed into a new domain,
Xd ¼ X� Bd , as shown in Figure 2. Mathematically, the inserted circular hole and the
boundary of the inserted hole are denoted by Bd ¼ Bd [ @Bd and @Bd , respectively
(Novotny et al., 2003; Novotny et al., 2007).

The d index for each parameter represents that the parameter in the new domain
contains a hole with radius d . Then, the topological sensitivity can be defined as the first-
order effect of this inserted hole on an objective function.

The topological derivativeDTc for the objective function c can be defined as follows:

DTc ¼ lim
d!0

c Xdð Þ � c Xð Þ
f dð Þ (4)

A smoothed area of a hole, f (d ), is assumed and it monotonically approaches zero when d
decreases. Equation (4) can be rewritten as (Novotny et al., 2007).

DTc ¼ 1
f 0 dð Þ limd!0

d
dt

c Xtð Þ
�����
t¼0

; (5)

Figure 2.
Topological change
resulting from
insertion of a circular
hole

Figure 1.
PTO algorithm
including body forces
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where

Xt ¼ xt 2 R2 : xt ¼ xþ tv;x 2 Xd

� �
;

v¼� n on @Bd

v¼0 on @Xd

�
(6)

Note that Xt becomes Xd with t = 0. The Index t represents that the parameter is in the
domainXt . The unit vector n is shown in Figure 2.

For a change in the total strain energy (equation (2)) with only an external load in a two-
dimensional structure, the topological sensitivity can be derived as follows (Turevsky and
Suresh, 2007).

T ¼ 4
1þ �

r uð Þ : e uð Þ � 1� 3�
1� �2

trr uð Þtre uð Þ (7)

where v is Poisson’s ratio. The strain tensor is defined as follows (Feng and Shi, 2013).

e uð Þ ¼ 1
2

ruþruTð Þ (8)

The topological derivative in the elastic structures under body forces can be derived
similarly. The calculation is given in the Appendix. The final result is similar to that in
equation (7) but with an extra term that accounts for body forces (Novotny and Sokołowski,
2013):

) T ¼ 4
1þ �

r uð Þ : e uð Þ � 1� 3�
1� �2

trr uð Þtre uð Þ þ 2b � u (9)

It should be noted that the absolute values of the derivative in the design domain are not
important and only the relative values are required to use in the Pareto method. Obviously,
in the absence of body forces, equations 7 and 9 are similar. When gravity is applied to the
structure in the opposite direction of ŷ (the unit vector), the body force is defined as

b ¼ �rgŷ (10)

where r is the density and g is the ground gravitational acceleration.

3. Implementation in Pareto topology optimization and instability
Assume a rectangular domain with joint and hinge supports on its edges (Figure 3). The
topological derivative field under the self-weight obtained by equation (9) is shown in
Figure 4.

This is an almost smooth field in most parts of the domain. Because of this, the PTO
algorithm cannot find the appropriate cutting plane to define the optimum layout in some
steps. Recall equation (3), where the optimal domain is defined as a set of all points and
regions in which the topological field exceeds the value l. Hence, it is a challenge to find the
appropriate value for l such that a certain percentage of volume is placed above it. The same
problem has been pointed out in applying PTO in stress-constrained topology optimization
(Suresh and Takalloozadeh, 2013). To overcome this challenge and to avoid oscillation and
divergence, we propose in this paper to add topological sensitivity to another desirable field
when the algorithm cannot converge:
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Tapplied ¼ w� Tcalculated þ 1� wð Þ � kTcalculatedk
kwk � w (11)

where k·k stands for the Euclidean norm, and the value of w is equal to 1 at the beginning of
the optimization and dynamically changes between 0 and 1 during the optimization process.
It is updated by the coefficient c < 1 when the algorithm cannot converge to the desired
volume fraction so wnew = cw (Figure 1). Moreover, after finding the optimal layout for the
desired volume fraction, the value w is reset to one for the next step. Here, because the
topological derivative has a field similar to the stress field in general, we use the von Mises
stress field as an artificial field (Lopes and Novotny, 2016):

w ¼ s vonMises (12)

Assume a beam-like structure with material properties E =1N/m2, v = 0.33 and a unit vector
load (F = 1N) at the top middle (Figure 5). The optimum layout obtained by PTO using the
topological derivative is shown in Figure 6(a). Moreover, the optimum layout obtained via
the von Mises stress field is depicted in Figure 6(b). The layouts are generally the same,
although the one obtained by using the topological derivative leads to less final compliance.

Therefore, by using the von Mises field in the weighted combination with the topological
derivative field, a priority is produced during steps in which the algorithm does not
converge. When the topological sensitivity cannot distinguish between regions of similar

Figure 4.
Topological
sensitivity in the
domain under self-
weight

Figure 3.
Rectangular domain
under self-weight

Figure 5.
Geometry and
boundary conditions
for the beam example
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sensitivity (smooth regions), the von Mises stress field induces a preference by eliminating
the region with low vonMises stress.

Figure 7 depicts the compliance history when the PTO tries to solve the problem shown
in Figure 3. The goal is to find the optimal layout with 40% volume of the initial volume.
However, when the volume fraction is about 81%, the algorithm cannot converge to find the
optimal layout, hence, it stops. Note that by reducing the volume, the compliance is
decreased. This is because a reduction in volume leads to a decrease in the applied body
force, and therefore, in the stored strain energy in the structure. The optimal layout using
the proposedmethod is given in Figure 8 (cr = 1, cF= 0) and discussed in Section 4.

Figure 6.
Optimum layout

under concentrated
force obtained by

using the (a)
topological derivative
(J= 45.4454 N ·m) and

(b) vonMises field
(J= 46.767 N ·m)

Figure 7.
Compliance history
and the final layout
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4. Results and discussion
Several examples are provided to demonstrate the efficiency of the proposed method. The
material properties of the structures in the following examples are taken as, E =1, v = 0.33
and r = 1� 10–2. Moreover, the coefficient c used to decrease the weight w in equation (11),
is equal to 0.9.

4.1 Messerschmitt–Bolkow-Blohm beam
The optimal designs of a plane and beam-like structure under different ratios between density and
concentrated force are obtained. A vertical point load is applied at the middle point of the upper
side, and the domain is discretized by 10,000 elements. The final desired volume in all optimum
designs is 40% of the initial one. Moreover, the maximum applied load on the center top is F = 1.
The optimum topologies for the different cases are shown in Figure 8. To determine the effect of
the body force on the optimum topology, the applied force and density are defined as follows:

rapplied ¼ cr r
Fapplied ¼ cFF

(13)

The optimum layout is not dependent on either the absolute values of the concentrated force
(Fapplied) or the density (rapplied) but on the ratio between them. By decreasing the
concentrated load, the two bars in the middle of the beam disappeared. As can be seen,
the optimum layout under self-weight is similar to an arch shape (Figure 8: cr = 1, cF = 0).
The compliance values for the optimal layouts are given in Table 1-third column.

Figure 8.
Optimum topology
under different
loading ratios

Table 1.
Compliance values in
the optimum layouts

cp CF Compliance (N · m) Compliance for the first optimum layout (N · m)

0 1 45.4454 45.4454
1 1 47.6457 47.7705
1 0.1 0.71306 0.7199
1 0 0.024574 0.0366
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Assume the optimum layout obtained under the concentrated force (Figure 8: cr = 0, cF = 1)
is still the optimal layout when we add body forces. If it is true, the compliance when
the layout is reanalyzed under body forces should be less than our obtained values. The
compliance values are computed and listed in the fourth column of Table 1. As expected, the
optimum layouts obtained by the modified PTO have lower compliance values.

The last row in Figure 8 depicts the optimal layout when in addition to concentrated
load, self-weight is applied in the opposite direction. The final compliance is obtained
42.31 N · m, which is less than 47.65 N · m, compliance for the optimal layout when
gravity and concentrated load are in the same direction (Figure 8: cr = 1, cF = 1). When
the applied loads are in the same direction, total deformation and total stored strain
energy are more.

4.2 Square beam
The second example is that of a square plane with supports at its corners (Figure 9). The
optimal design with 40% of the initial volume and just under self-weight is shown in
Figure 10. The optimum layout is two arch shapes with some connection bars between them.
It is interesting that the arch shape is a common optimum shape that appears in different
structural optimization problems.

4.3 Body forces and thermal effects
Thermal effects are considered in topology optimization as heat transfer (Bruns, 2007; Iga
et al., 2009; Zhou et al., 2016) or thermal stress in addition to mechanical stress (Gao and
Zhang, 2010). Both are design dependent problems. For the next application, we add
topological sensitivity under body forces to the thermal topological sensitivity. The
calculations can be found in Giusti et al. (2013) and the final relation for uniform thermal
change is as follows (Takalloozadeh and Yoon, 2017a):

T ¼ 4
1þ �

r uð Þ : e uð Þ � 1� 3�
1� �2

trr uð Þtre uð Þ � 2au
1� �

trr uð Þ � 2Ea2u 2

1� �
þ 2b � u

(14)

where a is the thermal expansion coefficient and u is the thermal change. Assume a
clamped beam (Figure 11) with the same material properties as in the previous examples

Figure 9.
Design domain
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and a = 1� 10–2. The optimum layouts for this domain with uniform increasing and
decreasing temperatures of 10° and�10° are shown in Figures 12(a) and 12(b), respectively.
The obtained topology and compliance value for both elevated and decreased temperatures
are the same (J= 0.017734 N · m).

Figure 10.
Optimum layout

Figure 11.
Clamped beam
problem

Figure 12.
Optimum topology of
the clamped beam
under only thermal
load: (a) u = 10°;
(b) u =�10°
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A unit concentrated force is applied at the center of the beam, and the optimum layouts under
temperature changes are obtained again (Figure 13). Both layouts have the same compliance
(J= 4.6355 N · m), but with an inverse shape. The optimum topologies under the same temperature
changes and self-weight are shown in Figure 14. As can be seen in Figures 13 and 14, the optimum
layouts have an arch with downward and upward curvature for the elevated and decreased
temperatures, respectively. This shape leads to less compliance when a downward load (self-weight
or concentrated force) is applied to the beam.

4.4 Three-dimensional topology optimization
The topological derivative for three-dimensional linear problems can be obtained by using
(Novotny et al., 2007):

Figure 13.
Optimum topology of

the clamped beam
under concentrated

force F= 1 and
thermal load: (a) u =

10°; (b) u =�10°

Figure 14.
Optimum topology of

the clamped beam
under the body force
and thermal load: (a)
u = 10°; (b) u =�10°

Figure 15.
Initial domain
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T ¼ 3
4
1� �

7� 5�
10r uð Þ : e uð Þ � 1� 5�

1� 2�
trr uð Þtre uð Þ

� �
(15)

This formula is modified underbody forces by an extra term:

TBodyForce ¼ T � b � u (16)

An initial cubic model (2 m3� 2 m3� 1m3) with material properties E = 1N/m2 and v = 0.33
and a unit vector load (F = 1N) at the top middle is assumed (Figure 15). The final volume is
set to 20% of the initial volume. Figure 16 shows the optimum layouts under a concentrated
force with coarse and finer meshes. The results under the body force and using equation (16)
are shown in Figure 17. Once again, the obtained layout under self-weight consists of several
arches.

5. Conclusion
Body forces are considered in topology optimization by using a powerful level-set-
based method called Pareto. For this purpose, a topological derivative is used to solve
the multi-objective compliance-volume minimization problem. However, the topological
derivative field considering body forces usually flattens out far away from regions of

Figure 16.
Optimum layouts
under concentrated
force (for different
element sizes)

Figure 17.
Optimum layout
under self-weight
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high sensitivity. This poses a numerical instability during level-set extraction. To
overcome this challenge in a few steps, a new field is used by combining the topological
sensitivity field and the von Mises stress field. By means of a weighted combination, a
priority is produced during steps in which the algorithm does not converge. When the
topological derivative cannot distinguish between regions of similar sensitivity (flat
regions), the von Mises stress field induces a preference by eliminating the region with
low von Mises stress. Several two- and three-dimensional examples were solved, and
the results proved the ability of the proposed method. It should be noted that the final
layout may depend somewhat on the selected weight in the proposed heuristic
combination. The obtained layouts demonstrate the efficiency of the weighted
combination to overcome the instability issue. Moreover, the simultaneous effects of
body forces and thermal loads can be considered by using the proposed method. As a
repetitive design, an arch shape typically appeared in the optimum layouts of the
structures under self-weight loads. Future work will focus on including hydrostatic
pressure as a design-dependent load by using a topological derivative.
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Appendix
The weak form of the mechanical equilibrium equation is as follows:ð

X
r uð Þ : e gð Þ dX ¼

ð
CN

q � g dCþ
ð
X
b � u dX u ¼ u on CD;r uð Þ � n¼q on CNð Þ

(17)

The above equation is valid on the domain with a hole, Xd , as well as on the domain with an
expanded hole, Xt and the associated boundaries. The Cauchy stress is expressed as follows:

r uð Þ¼Ce uð Þ (18)
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where the elastic coefficient tensor is C = CT. With body forces, the equilibrium equation can be
rewritten as:

div r uð Þ þ b ¼ 0 in X; Xd ; and X t (19)

The weak form of equation (19) in the domain Xd with a hole with radius d is written as follows:ð
Xd

r udð Þ : e gdð ÞdX ¼
ð
CN

q � gd dCþ
ð
Xd

b � ud dX (20)

The total potential energy (c (Xt) = J (ut)), can be determined as follows:

J utð Þ ¼ 1
2

ð
Xt

Ce utð Þ : e utð Þ dX �
ð
CN

q � utdC�
ð
Xt

b � utdX

(using equation (18))(21)
From the Reynolds transport theorem, the derivative J (ut) with respect to time can be

summarized as follows:

d
dt

J utð Þ
�����
t¼0

¼ 1
2

ð
@Xd

r udð Þ : e udð Þð Þ v � nð Þ dCþ 1
2

ð
Xt

@

@t
r utð Þ : e utð Þð Þ

�����
t¼0

dX

�
ð
CN

q � _ud dC�
ð
@Xd

b � udð Þ v � nð Þ dC�
ð
Xt

@

@t
b � utð Þ

�����
t¼0

dX

(22)

The relation between _ud and u0
d can be expressed as follows:

_ud ¼ d
dt

ud ¼ @

@t
ud þ @ud

@xt

@xt

@t
¼ u0

d þ rudð Þv ¼ u0
d þwd (23)

Therefore, the derivative in the second term on the right side of equation (22) can be written as:

@

@t
r utð Þ : e utð Þð Þ

�����
t¼0

¼ 2r udð Þ : e _ud Þ�2r udð Þ : e wdð Þ�
(24)

_ud can be considered as an arbitrary displacement field (gd) in equation (20) by substituting the
above relation into equation (22):

d
dt

J utð Þ
�����
t¼0

¼ 1
2

ð
@Xd

r udð Þ : e udð Þ � b � ud

� 	
v � nð ÞdC�

ð
Xd

r udð Þ : e wdð Þ

�
ð
Xd

b �wd dX

(25)

By considering the shape change velocity field (v) as defined in equation (6), as well as r(ud ) n = 0 on
@Bd , the summation of the second and third terms on the right side of equation (25) is zero:
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ð
Xd

r udð Þ : e wdð ÞdXþ
ð
Xd

b �wd dX ¼
ð
@Xd

r udð Þwd � n�
ð
Xd

div r udð Þð Þ �wd

þ
ð
Xd

b �wd dX ¼
ð
@Xd

r udð Þwd � n ¼
ð
@Xd

r udð Þ rudð Þv � n ¼
ð
@Bd

r udð Þ rudð Þv � ndC

¼ 0

(26)

Therefore,

d
dt

J utð Þjt¼0 ¼ � 1
2

ð
@Bd

r udð Þ : e udð Þ � 2b � ud

� 	
dC (27)

Finally, the required derivative in equation (5) is obtained as follows:

DTc ¼ lim
d!0

1
f 0 dð Þ � 1

2

ð
@Bd

r udð Þ : e udð Þ � b � ud

� 	 !
(28)

By using the inverse of the tensor of the elastic coefficient C�1 ¼ 1
E 1þ �ð ÞII� � I� Ið Þ
 �� 


to define
the strain tensor in terms of the stress tensor, the following expression can be obtained:

DTc ¼ lim
d!0

1
f 0 dð Þ � 1

2

ð
@Bd

1
E

1þ �ð Þr udð Þ : r udð Þ � � trr udð Þð Þ2
h i� �

dC

 !

(29)

Note that the identity matrix is I, II is the fourth-order identity tensor and the symbol � indicates the
tensor product. To calculate the above integration on boundary @Bd , the stress tensor needs to be
decomposed as:

r udð Þj@Bd
¼ snn

d n� nð Þ þ s tn
d t� nð Þ þ snt

d n� tð Þ þ s tt
d t� tð Þ (30)

where n and t are normal and tangential vectors on the boundary, respectively, and @Bd and s ij are
the related stresses in these directions. The boundary conditions on @Bd are as follows:

r udð Þn ¼ snn
d nþ s tn

d t ¼ 0 ) s nn
d ¼ s tn

d ¼ 0 on @Bd (31)

Therefore,

DTc ¼ lim
d!0

1
f 0 dð Þ � 1

2E

ð
@Bd

s tt
d

� 	2� 

dC

0
@

1
A (32)

Using elasticity equations for the asymptotic expansion of s tt
d on @Bd gives the resultant of the above

integration (Parkus, 2012):
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DTc ¼ 1
2E

s 1 þ s 2ð Þ2 þ 2 s 1 � s 2ð Þ2 þ b � u
h i

(33)

where s 1 and s 2 are the principal stresses at x̂ and can be calculated as follows.

s 1;2 ¼ 1
2

trr uð Þ6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2rD uð Þ : rD uð Þ

q� �
; rD uð Þ ¼ r uð Þ � 1

2
trr uð Þð ÞI (34)

Substituting the above relation into equation (33) yields:

DTc ¼ 1
2E

trr uð Þð Þ2 þ 2 2rD uð Þ : rD uð Þ
� 	2 þ b � u

h i

¼ 1
2E

trr uð Þð Þ2 þ 4 r uð Þ � 1
2

trr uð Þð ÞI
� �

: r uð Þ � 1
2

trr uð Þð ÞI
� �

þ b � u
� �

) DTc ¼ 1
2E

4r uð Þ : r uð Þ � trr uð Þð Þ2 þ b � u
h i

(35)

Finally, after some simplifications, we get:

) DTc ¼ T ¼ 4
1þ �

r uð Þ : e uð Þ � 1� 3�
1� �2

trr uð Þtre uð Þ þ 2b � u (36)
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