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We propose a new topology optimization approach based on the moving morphable components (MMC)
framework with an explicitly described a layout through a finite number of components. The position and shape
values of each component were defined as design variables. In this study, a method was developed by utilizing
topological derivative. Instead of performing a discrete sensitivity analysis based on finite element methods, a
topological derivative was used to calculate the first derivative of an objective function with respect to the shape
and position of the components. The obtained derivative was validated via discrete sensitivity analysis. The

topological derivative formulation has been well developed in recent years for different structural and non-
structural problems. Utilizing this powerful tool enabled the MMC approach to easily solve various types of
topology optimization problems. Herein, the presented method is illustrated through several topology
optimization problems such as stress-based and thermo-mechanical topology optimization.

1. Introduction

The objective of this work is to develop a moving morphable
components (MMC) framework approach based on the topological
derivative concept. The MMC approach utilized a finite number of
movable and deformable components to define the layout of a
structure. By moving or changing the shape of these components
during the optimization process, some empty spaces were either
created in the design domain or were filled with materials (Fig. 1).
On the other hand, a topological derivative is defined as the effect of an
infinitesimal change in topology with regard to the quantity of an
objective function. This topological change could be the insertion of a
small hole in the domain or the addition of a small amount of material
to the structure layout. Therefore, the concept of a topological
derivative could be utilized in the MMC approach if we were to
calculate the topological derivative during changes in position or shape
of the components.

1.1. Topology optimization methods

Topology optimization (TO) is one of the most popular methods
used for structural optimization, having rapidly extended from aca-
demic research to industrial applications [1]. The TO method funda-
mentally optimizes the geometry over arbitrary domains. This method
was introduced via the Homogenization approach [2], in which varying
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material properties in space are described by composite materials.
Later, TO was developed via two popular strategies, the solid isotropic
material with penalization (SIMP) method [3] and topology optimiza-
tion based on the level-set method [4-6]. There are also new
alternative approaches with regard to TO [7,8].

In the SIMP method, the values of pseudo-densities assigned to
elements were found to minimize the objective function [9]. The
objective function in the majority of structural optimization studies
was compliance [10], but other practical cost functions such as stress,
displacement, and natural frequency were considered by the SIMP
method. The SIMP method was relatively easy to implement [11] and
well-developed, being utilized to solve structural and non-structural
multi-physics systems [12—-16].

As the SIMP method uses the pseudo-density in each element of the
finite element method, the obtained layout possessed jagged shapes at
the boundaries. By contrast, in the level-set based method, the design
domain was specified by a surface defined by a level-set function;
therefore, smooth boundaries could be obtained [5,17,18]. Indeed, the
interface between material phases was defined implicitly by iso-
contours of the scalar level-set function at all times, so the domain
was well defined and singularity problems did not arise [19]. There
were also many formulations and implementations of the level-set
based method [20].

Several common problems in engineering have been considered in
the TO. For example, one important problem involved a consideration
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Fig. 1. Movement of a component in the design domain and background mesh.

of stress constraints in the design process [10]. SIMP and level-set
based methods were well investigated with regard to solving stress
constrained TO problems [21-23]. After the earliest work by Yang and
Chen [24], several problems were addressed in the stress constrained
TO. These issues could be categorized as singularity issues, highly
nonlinear behaviors, and the local behavior of stress constraints [25].
Several methods such as epsilon-relaxation [26], qp-relaxation [27],
relaxed stress indicators [28], Kreisselmeier—Steinhauser functions
[29], and p-norms [27,30] were utilized to overcome the aforemen-
tioned problems.

Another common type of engineering problem considered in TO is
thermo-mechanical problems. The earliest works in this field date back
to 1995 [31]. The authors of [31] addressed the strong dependency of
optimum design on temperature differentials. Xia and Wang [32] used
the level-set based method to consider thermal effects with regard to
structural optimization. In their study, the mean compliance was
minimized and a geometric energy term was introduced to obtain a
smooth boundary. Despite an easy implementation of the SIMP
method in thermo-mechanical problems, zero density in elements
required careful treatment such as the epsilon-method [26] due to
singularity issues. Deaton et al. [33] demonstrated that typical com-
pliance minimization in thermo-elastic problems may not generate
favorable design, the reason being due to the design-dependency of the
thermal load, which was subject to thermo-elastic effects during
topology optimization. Moreover, compliant mechanism problems
were solved by considering thermal effects in [34].

In both the SIMP and the level-set based method, an implicit
definition of the boundary was obtained, which yielded some difficul-
ties. For example, it is important to possess shape feature control
during manufacturing [35,36], which is difficult in implicit ways due to
special techniques that are necessary for length scale control.
Moreover, the structural geometry needed in computer-aided design
(CAD) is different from what is represented by implicit ways. This made
it difficult to establish a link between CAD and the obtained layout
during the optimization process [37]. Another drawback of implicitly
defining the layout is the large number of required design variables,
especially in 3D problems. By contrast to common methods in TO such
as the SIMP and the level-set based methods, there is a new approach
referred to as the moving morphable components (MMC) method, in
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which boundaries are explicitly defined by a polynomial function [8].
This method is described in the following sections and in Section 2.1.

1.2. MMC approach

A novel and practical approach in TO, referred to as the moving
morphable components method, utilizes morphable components that
can move and reshape to find the optimum layout of a structure under
the given boundary conditions [8,38—41]. Indeed, this approach could
be a bridge between size, shape, and topology optimization. The shapes
of components were defined by an explicit boundary, which were
functions of a finite number of variables [8]. These variables for all
components in addition to the positions of the components were design
variables during the optimization process. For example, one could use
some bars with a constant thickness as components to define a 2D
layout within the design domain (D). This design domain is presented
as a dashed line in Fig. 2. In this example, the layout was explicitly
defined by four bars and the number of design variables for each
component was five: the x and y coordinates of the bar center and the
length (L), thickness (¢), and angle of the bar with a horizontal axis ().
The total number of design variables for this example was 4 x 5 = 20.
This requirement to lower the number of design variables defining a
layout was another advantage of the MMC approach. Obviously, one
could use components with different shapes and design variables, but
the boundary of the layout was still explicitly defined. Additional
parameters to define the shapes of components led to more flexible
shapes for the components, but would increase computational costs.

1.3. Sensitivity analysis and topological derivative

Design sensitivity analysis is a crucial issue in the field of topology
optimization. This analysis is used to compute the rate of change of a
cost function, such as a change in strain energy or stress, with respect
to changes in the design variables. Sensitivity analysis guided the
optimization algorithms (i.e., SLP, MMA) to redistribute material
within the design domain to determine the optimum layout. There
are three approaches in the design sensitivity analysis: the approxima-
tion, discrete, and continuum approaches [42]. The approximation
approach utilized finite difference methods to calculate design sensi-
tivity. In the discrete approach, discrete FEM governing equations are
used to obtain derivatives. In this approach, taking the derivative of the
stiffness matrix is always necessary. This approach is widely used
during topology optimization, particularly in the SIMP method. The
continuum approach in design sensitivity analysis took the design
derivative of the variational equation before it was discretized. One of
the most powerful methods in this approach is the topological
derivative.

The topological derivative concept was proposed in [43] and was
later developed in several studies [44,45]. It possessed several applica-
tions with regard to shape and topology optimization, image proces-
sing, and mechanical modeling [46]. This concept expressed changes in

Fig. 2. Defining the layout of a structure with bars.
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Fig. 3. Component shape and design variables.

the objective function with respect to infinitesimal changes in topology.
Topological changes are defined by adding or removing material to the
structural domain. There are two major methods to obtain a topological
derivative: (i) asymptotic expansion of an objective functional [47] and
(ii) the shape derivative of a very small hole [48]. Topological derivative
concepts were previously used in the level-set based method to obtain
the optimum topology [6]. In that approach, topological derivatives
were utilized as a guide to introduce holes into an auxiliary level-set. By
using this concept, the optimal layout was independent of the number
of holes in the initial domain [20]. Another approach directly used the
topological derivative as a level-set [49,50]. The optimum topology in
this approach was extracted by using a cutting-plane on the topological
sensitivity field.

In the present study, a new alternative approach using topological
derivatives in TO was proposed. A novel MMC method was developed
by utilizing a topological derivative. The topological derivative for-
mulation has been fully developed for lots of common problems in
structural and non-structural problems. These problems include any
relevant physics and engineering problems modeled by partial differ-
ential equations. For instance, the derivative formulation for the stress
constrained of ductile material was proposed in [22,51] and for brittle
materials by Amstutz et al. [52]. The compliant mechanism problem is
solved by topological derivative [53,54]. The derivative for the steady-
state heat diffusion problems is obtained in [55]. Moreover, multi load
case and multi constrained formulation are derived in [19,56].
Topological derivative is applied to find the optimum configuration
for the antenna [57] and it is also used in optimum designing of
inductors in electromagnetic casting [58]. Thermo-mechanical formu-
lation is presented in [59,60]. Topological derivative of the total
potential energy of an elastic cracked body is calculated in [61,62].
Fluid flow channel is designed by applying topological derivative [63].
Topological derivative for acoustic problems is used in sound scattering
problems [64]. The reader can find more formulations in [46].
Developing MMC approach by topological sensitivity concept enables
this approach to solve the mentioned problems easily.

Details and calculations of the topological derivative in the MMC
approach are provided in the next section. The results of both
sensitivity analyses, using finite elements and the topological deriva-
tive, were compared for compliance minimization problems. Section 3
introduces the topological derivative for several popular types of TO
problems and several examples are provided to show the ability and
efficiency of the MMC approach based on topological derivatives.
Finally, Section 4 concludes this study.

2. Discrete and continuum sensitivity analysis
2.1. Formulation of the MMC framework approach

In the MMC framework approach, structure topology is described
by the topology description function (TDF, ¢), as follows [8]:

$p(x) >0 ifxe Q
$p(x) =0 ifx €9

$x) <0 ifx e D/Q €))

Here, Q2 is a topology that must be computed within domain D and
position vector is denoted by x. If the number of components is N and
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¢; = ¢,(x) is the topology description function of the i — th component,
then:

¢ X) = max(¢y, ... P> .. Py) 2

The TDF of each component (¢,) defines the region occupied by the
following component:

¢ (x) >0 ifx e
¢,x) =0 ifx € 02;
¢ (x) <0 ifx € D/IQ; 3)

For each component, the TDF can be described in different ways
based on the shape of the component. More complex shapes possess
additional design variables, leading to greater computation costs, but
having more flexibility when defining layouts. With regard to 2D
problems, one can use a bar with quadratic changes in thickness as a
component (Fig. 3) [40]:

B ) = ()" + (ﬁl») !

t+12-213

Foy =1

x| _|cos® sin@ |fx
Y[ |-sin@ cos@|]” 4)

Here, 1, 1, and t; are the component thickness values in three
sections which are shown in Fig. 3; L is the length of the component.
Angle 6 is measured from the horizontal axis from the anti-clockwise
direction. In the equation above, value m is a large even integer number
to sharpen the edge of the component.

In general, two parameters (x, y) were used to determine the
position of a component and five parameters explicitly described the
shape of each component. The layout was made by all components;
therefore, the boundary and geometry features of the final layout could
be defined by an explicit description [40].

To analyze structures using the MMC approach, an Eulerian mesh
was utilized and the TDF (¢) was calculated at each node. The Young's
modulus (E£¢) for the e-th element was then computed as follows [8]:

-1

”
X+ 2Lx+t3

Eo(Zle (H (4;»4)
4 (5)

In the above equations, ¢ is an integer number selected equal to 2,
E, is the Young's modulus of the element material, and H is the
smoothed Heaviside function:

E°=

1 if e <x
— 3 .
H(x) = Mx(g—%)+1+7” if —e<x<e

3e

a ifx<—e

(6)

The shape of this function with two arbitrary values is depicted in
Fig. 4. A small positive nonzero value (o = 0.001) was selected to avoid

1 T T T T
e=1,a=0.01
0.8 [ 4
0.6 4
04 a
0.2 4
0 | |
-4 -3 -2 -1 0 1 2 3 4
Fig. 4. Smoothed Heaviside function.
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singularity of the global stiffness matrix and € was set to four times the
minimum side of the element. Indeed, a? = 107°N/m? defined the
Young's modulus as a weak material to mimic voids in the design
domain. After obtaining the Young's modulus for each element, the
stiffness matrix of the e-th element (k¢) was computed as follows:

k¢ = E°k’ (7)

Here, k* is the stiffness matrix of the elements regardless of
component occupation. Obviously, if a uniform mesh was used, this
matrix was the same for all elements.

2.2. Calculation and implementation of the topological derivative

A compliance (C) minimization problem using the MMC approach
could be formulated as follows:

Find DV = {DV,, DV,, ... . DV, ... . DVy}
Min C=U"F
QcDh
Subject to:
12| = |

KU =F ®

The global stiffness matrix, nodal displacements, and global load
vector were denoted by K, U, and F, respectively. The final volume |2[*
is the only constraint during the optimization process. DV; is the design
variable vector of the i-th component, which defines the shape and
position of the following component (Fig. 3):

DV, = {x,y, L, 4, tr, t3, 0}; 9)

Thus, the total number of design variables is 7 x N. To solve the
above problem using MMC, the sensitivity of compliance with respect
to each design variable (a) is required [40]. Utilizing the finite element
method to analyze the structure, possessing the stiffness matrix (K)
and nodal displacement (U) values, we could write the following:

T
C=U'KU > us = ﬂKU + UT%U+ UTKﬂ
da da da da (10)
On the other hand, from the equilibrium equation:
F=kv=>2L By kU U _ g oKy,
oa da da da da da 1n

Thus, we could rewrite the derivative of compliance as follows:

T
o = K’IE - K’I%U KU + UT%U + UK K’lﬁ - K’I%U
da da da da a da
=> o = ZUTE - UT%U
da da da
(12)

In the absence of the design dependent force, the above relation can
be simplified:
ac 0K

=-U"—U
da

oa (13)

By substituting Egs. (5) and (7), the derivative of the stiffness
matrix in Eq. (13) could be written as follows:

-1

NE ( 4 9
ZH (¢ |k
da

q
P DNIGLOR))

e=1 \i=1

oK NE
i)

e=1

O E
da 4 (14)

Here, NE is the number of elements. The above calculation was
based on discretizing the domain to its finite elements, referred to as
discrete structural sensitivity analysis. Another approach to calculate
the sensitivity of compliance with respect to design variables involved
utilizing the topological derivative. To introduce this concept, a
structural domain was assumed with some small inserted holes
(Fig. 5). The topological derivative, Dy, for the objective function y
could be defined as follows:
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w(2) -y ()
A=YA

Here, 2 and Q' are domains prior to and after topological changes,
respectively, and A; is the area of the i-th small hole. If one were to
consider the total strain energy as an objective function (y = C), for a
2D structure under a mechanical load, the topological derivative field
(T) introduced in Eq. (15) could be obtained as follows [44,65]:

Dy = lim
A—0

(15)

T =

1 v
Tt Uc(u). e(n) — T tro (u) tre (u)

(16)

Here, the Cauchy stress tensor, strain tensor, displacement field
vector, and Poisson's ratio are denoted by o(u), £(u), u, and v,
respectively. Stress and strain values were calculated at the point
where a small hole was inserted.

By moving or changing the shape of the components, some void
regions arose in the design domain and some void regions were filled
with material as well. This state is presented schematically by moving a
typical component in Fig. 6. Therefore, the derivative of compliance
with respect to design variables (%) could be calculated via the
topological derivative concept if the total topological derivative changes
were calculated during changes in the design variables. For this
purpose, one should calculate a summation of the topological changes
due to component shape or positional changes:

% _ f TdA
da Q

The above integration could be rewritten in the summation form as
follows:

a7)

aC

NE
= Y TedA

e=1

(18)

Having the TDF at all nodes, the area of the e-th element was
calculated to be:

— Z?:l H((]Sle)Ae
B 4 (19)

Here, A is the area of the element regardless of component
occupation. Moving or reshaping a component could yield a typical
change in the TDF of each node as seen in Fig. 7. The filled part of the
element depicted the parts of the element covered by a component.
Obviously, the value of H for the structural domain nodes was one. By
substituting Eq. (19) with Eq. (18), we finally yielded a change in
compliance with respect to design variables:

NE 4 e
9 Af

Tf X —H () x —=

Z[ TEX 5, @) %

e=1

At’

ac _

da (20)

i=

Since ¢ (x) is an explicit function, the value of %H (@) could be
calculated easily. Note that 77 is the function of stress and strain at the
i-th node of the e-th element. By calculating the topological derivative
at each node, the required sensitivity of compliance for the MMC
approach could be achieved. It should be mentioned that as the Young's
modulus was calculated from Eq. (5) by assuming C to be the elastic
coefficient tensor, the stress at each element (6¢¢) could be obtained as
follows:

L L@
c¢ = — 7 x Ce 1)

Here, ¢ is the strain tensor for the e-th element.

2.3. Numerical validation

A rectangular design domain with clamped right and left edges was
considered to be an example to compare the results from Egs. (13) and
(20) (Fig. 8). A downward unit point load was applied at the bottom
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Fig. 5. Topological changes in the structural domain.

Created void region

Fig. 6. Topological changes during the movement of a component.

center of the domain. The domain is discretized to 5000 elements and
16 components are used to define the layout; thus the total number of
design variables are 112. The obtained derivatives are normalized by
dividing all sensitivity values (C; = 0C/da;) to the maximum of absolute
values: C; = C/max(|C;|). The normalized derivative of compliance with
respect to the design variables was computed once by Eq. (13) and once
again by Eq. (20), the results of which can be seen in Fig. 9(a).
Moreover, the difference between the two results can be seen in
Fig. 9(b). The results of the two approaches were in fair agreement
and the maximum absolute difference between the two was 0.049.
Moreover, Fig. 10 depicts the optimum layout for this example
obtained via discrete compliance sensitivity using FEM (Fig. 10(a)) and
the optimum topology obtained via topological derivative methods
(Fig. 10(b)), in which the final mass was set to 40% of the initial mass.
The history of compliance during optimization is shown in Fig. 10(c).
As can be seen, the final layouts from both approaches were almost the
same. It is worth mentioning that no filters were applied with regard to
the topological derivative field. These results show the accuracy and
efficiency of the obtained formula (Eq. (20)) and can be utilized in the
MMC approach instead of calculating a discrete sensitivity analysis.

2.4. Calculating the TDF at the centers of elements

To compute the topological derivative at any point, the stress must
be known at the point of interest (Egs. (16 and 20)). In the finite
element method, stress values were calculated at the Gaussian points
(here, the centers of elements). On the other hand, to calculate
sensitivity in the MMC approach, we needed to calculate the topological

H(g)=1

H(g5)=0

1 e

—_
S
~—~
Il

H(g)=1

)

2m

R

Fig. 8. The design domain and boundary conditions (E = IN/m?, v = 0.33 and F = I N).

derivative at each node (7). Thus, after obtaining the topological
derivative at the centers of the elements, we could obtain the
topological derivative at nodes via linear interpolation. Instead, one
might be interested in calculating the TDF at the centers of elements to
avoid this interpolation. In this case, the Young's modulus of each
element was easily obtained as follows:

E® = Ey(H ()1 (22)

Note that the TDF and Heaviside functions were calculated for each
element as opposed to each node, and the derivative of compliance was
obtained as follows:

NE
¢ _ Z (Te x iH(qye) XASE]
oa da 23)

e=1

The optimal layout for the problem introduced in Fig. 8 was
obtained by calculating the TDF at the centers of the elements
H(g)=1 H(g5)=0

R E

Fig. 7. Changes in the e-th element during component movement or reshaping.
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Fig. 9. (a) Sensitivity analysis results from discrete sensitivity analysis and topological derivative analysis, and (b) the difference between the topological sensitivity values and the

discrete sensitivity.

(Fig. 11). As can be seen, the layout was almost the same as the result
obtained in Fig. 10. Here, the computational cost was a little less but
the final compliance was a little more.

For the rest of the examples, we calculated the topological
derivative at nodes by using Eq. 20. Now, one could exploit this
formula to solve other types of TO problems, a description of which is
provided in the next section.

3. Numerical examples

In this section, several benchmark examples are provided to
demonstrate the efficiency of the presented approach to solve common
structural problems in TO. These examples contain thermo-mechanical
and stress-based TO problems. Mathematical formulations and topo-
logical sensitivity formulas for each problem are also illustrated.
Without loss of generality, the following material properties were
chosen for the Young's modulus, Poisson ratio, and coefficient of
thermal expansion: E = IN/m>v = 0.33 and «, = 1 x 102K-!. Before

Fig. 11. Optimal layout by calculating the TDF at the centers of the elements
(C=5.7851).

solving the benchmark examples, there is a discussion on the effects of
component shape with regard to achieving optimum results.

3.1. Effects of component shape

A bar with a quadratic change in thickness was utilized by Guo,

(2)

16

(b)

-
»

-
N

Change in compliance (J)
® >

Topological derivative

— — — Discrete sensitivity

0 20 40

60 80
Step

(©)

100

Fig. 10. Optimal layout (2* = 0.4 |2|inirier) using: (a) discrete sensitivity analysis (C = 5.758J), (b) the topological derivative (C = 5.738J) and (c) history of the objective function.
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Fig. 12. Shapes of components: (a) (g(y') =4), (b) (g(y) =4+ 1 x|y']), and (c) (g(uy) =4 — 1 x |[y']).

et al. [40] The shape of this bar for a uniform thickness case can be
seen in Fig. 12(a). The value of m in Eq. (4) was selected to be 6. The
shapes of the lines along the bar were second order polynomial, but at
the start and end of the bar there were two straight lines perpendicular
to the direction of the bar. A new design variable () was added to the
TDF to change the shape of these parts (Eq. (24)).

X m y, m
o =|——| + -1
P ) (g(y’)) (f(x’))
g() =L +nly|

24

The shapes for components utilizing different values for 5 are
presented in Figs. 12(b) and 12(c). Using new components with this
extra design variable (8 design variables per component), the optimum
topology for a cantilever beam (Fig. 13(a)) with a 50% mass constraint
was obtained. The optimum layouts using both 7 and 8 design variables
for each component can be seen in Figs. 13(b) and 13(c), respectively.
The start and end points of the bars usually overlapped with each other
but new design variables could slightly reduce the compliance. The
layout was almost the same in both Figs. 13(b) and 13(c). The extra
design variable obviously led to an increase in computational costs.

3.2. Thermo-mechanical example

In addition to the stress and strain due to mechanical loads, there
may be stress and strain within structures due to thermal expansion

and contraction. These types of problems with both mechanical and
thermal loads are referred to as thermo-mechanical problems.
Mathematical formulations of the thermo-mechanical optimization
problem were similar to Eq. (8), and the applied force was the sum
of the mechanical and thermal loads:

KU = Foechanicat + Fnermat (25)

The thermal load (Fj.,.y) is a design dependent load; therefore,
values of the load vector changed during the optimization process:

Fthermal = Z thermal ’ Fethermal = [2@ BTD(pTatTdQe (26)

Here, changes in temperature and thermal expansion coefficient are
denoted by r=7(x) and «;, respectively. Moreover, D represents
material tensor, B stands for gradient matrix and for 2D, ¢ is the
following vector:

@=1[11 0] 27)

By calculating the shape derivative of a very small hole in a thermo-
elastic structure, the following topological derivative can be obtained
[66]:
2Ealrt?

1-v

tre (u) tre(u) — 12(1,1

c(u): e(u) — 1= 3

T=
1+v 1 -2

tro (u) —
—-v

(28)
The difference between Egs. (16) and (28) can be seen in the

1m

ANNNNNNNNNANNN

(b)

(a)

22

(©)

Fig. 13. The cantilever beam; (a) its initial domain and optimum layout with (b) 7 design variables (C = 60.687J) and (c) 8 design variables (C = 60.4737J).
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Temperature Layout Stress distribution (N/m”)
variation
8
6
4
7=0°
2
C=5.738]
T=175°
C=8237]
7 =150°
C=10.081J

Fig. 14. Optimization results with some different temperature distributions (temperature in degrees centigrade).

2.2
following extra terms: — 12"” “tro (u) — 2?1_,7 Here, the stress field should

be calculated under both mechanical loadings and temperature
changes:

Ea,t I
1-v (29)

where I is the identity matrix. The optimum layouts for the problem
previously introduced in Fig. 8 were obtained under different uniform
temperature changes. Again, the mass limit was set to 40%. The
optimum topologies and von Mises stress distributions can be seen in
Fig. 14. By increasing the temperature, the optimal layout was changed
from two bars with tension loads (near downward arc) to an upward
arc and the apex of the arch shape design under the present boundary
conditions moved in a direction opposite to that of the curvature due to
thermal strain. On the other hand, displacement of the apex under an
applied mechanical load was in the direction of the load. Hence, if these
two movements were in opposite directions, then the total strain
energy would be less. This explained the change in the optimal layout
during an elevation in temperature.

o(u) = Ce(u) —

3.3. Stress minimization examples

Although compliance minimization is more popular in TO due to its
simplicity, stress based TO is more practical with regard to engineering
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although more difficult in implementation [10,24]. Stress-based TO
problems considered stress as an objective function or a constraint,
which could be written in a mathematical form using the MMC
approach as follows:

Find DV = {DV,, DV,, ..., DV, ..., DVy}

Min Maximum Stress = pmax
Qcb
Subject to:
|2 = |2
KU=F (30)

This optimization formulation was intended to minimize the
maximum stress inside the design domain. The topological derivative
at any point of the domain for the formulation of this stress constrained
TO problem could be obtained from the following equation [22]:

T=—% s e0) - L= weytren)
1+v 1 -2

(31)

Here, £(A) is the strain tensor computed from the adjoint field,

calculated by [42]:
K\ = —Vyy (32)

The maximum stress inside the design domain was approximated
by the p-norm approach as follows [30]:
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(@)

(b)

(c)

(d)

Fig. 15. Optimum layout for the cantilever beam problem (2 = 0.5|Qfiniiar). (2) Compliance minimization (C = 60.687J, omax = 23.031 N/m?) and (b) stress minimization

(C = 67.001J, omax = 19.245 N/m?).

1
Omax 2 W = (Z (69)P)P (33)

Higher values for p will lead to better approximations, but may
create numerical instabilities [22]. As the p-norm is used for the
objective function (not for the constraint), a correction factor is not
necessary. In Eq. (33), ¢¢ is the stress calculated at the center of the
element. If one chooses the von Mises criteria, 6¢ can be expressed via
stress tensor components as follows:

e,

1
o =(f](\/(ﬂn — o) + (622 — 033)* + (033 — 611)> + 6012012 + 6013013 + 6023623)

(34

Therefore, the desired sensitivity of y with respect to a nodal
displacement U (required in Eq. (32)) can be computed as follows:

1 1_ do¢
—Voy = _% =—— 2 (6©)P)P 1[2 p(o_e)p—I%]

p (35)
where:
do¢ ( 1 )
= x
aUu 20°¢
(011 — 622)((DB); . — (DB),,)) + (022 — 033) ((DB),. — (DB)3,)
+(o33 — 011) ((DB); . — (DB), )
+6012(DB)4 . + 6013(DB)s . + 6023 (DB)s ) (36)

By substituting Eq. (36) into Eq. (35), the right side of Eq. (32) will
be obtained. Once the adjoint field from solving the linear equation
system (Eq. (32)) was computed, the stress topological sensitivity field
could be calculated from Eq. (31).

3.3.1. Example 1: Compliance and stress minimization of a cantilever
beam problem

The simple cantilever beam problem (Fig. 13(a)) was solved for
both the compliance and stress minimization formulations (Eq. (8) and
Eq. (30)). The mass limit was set to 50% of the initial mass and the
value p in the p-norm formula (Eq. (33)) was selected to be 10. The
same as the clamped beam example, 5000 elements with 16 compo-
nents were used for FE analysis and TO. The optimum layout for
compliance and stress minimization can be seen in Fig. 15(a) and (c),
respectively. Moreover, the von Mises stress distributions for these
layouts are depicted in Fig. 15(b) and (d). As expected, for the same
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volume, the maximum stress in the layout obtained from the stress
minimization formula (Fig. 15(d)) was less than this value, which was
obtained by compliance minimization formulation (Fig. 15(b)).
Additionally, compliance increased in the layout shown in Fig. 15(c)
compared to the layout represented in Fig. 15(a).

3.3.2. Example 2: L-bracket example

The next example, which was solved by the stress minimization
formula, is an L-bracket example which a unit load was applied at the
top right (Fig. 16(a)). The final mass was set to 50% of the initial value
and the number of design variables were 224. The optimum layout in
the compliance minimization approach had a stress concentration
point at the corner of the bracket. If this problem was solved by the
MMC approach using the compliance minimization formulation, the
same layout would be obtained (Figs. 16(b) and (c)). By utilizing the
topological derivative for the stress minimization problem in the MMC
approach, the desired optimum layout was achieved (Fig. 16(d)). The
von Mises stress distribution for this layout can be seen in Fig. 16(e).
Here, the 90° corner vanished and the maximum stress was less than
this value compared to the optimal compliance minimization layout.

4. Conclusions

This study developed an MMC framework approach based on
continuum structural sensitivity analysis. The first derivative of the
compliance with respect to the component shape and position values
was calculated by the concept of the topological derivative. The
obtained formula was validated via discrete sensitivity analysis, which
was calculated based on the finite element method. The developed
sensitivity was utilized in the MMC framework approach to solve
several types of structural TO problems such as thermo-mechanical
and stress-based TO. The provided examples demonstrated the cap-
ability and efficiency of the developed MMC framework approach. This
approach could be used to solve other types of TO problems with
known topological derivative.
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Fig. 16. The L-bracket; (a) its initial domain and optimal layout, (b), (c) compliance minimization layout and stress distribution (C = 165.295J, omax = 76.192 N/m?), and (d), (e) the
stress minimization layout and stress distribution (C = 208.742J, omax = 51.846 N/m?).
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