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Abstract
This research develops a new acoustic topology optimization scheme with a model order reduction called the Multifrequency
Quasi Static RitzVector (MQSRV)methodwhich effectively reduces the size of the systemmatrix for the calculating responses
as well as sensitivity values in frequency domain. Computing the accurate acoustic responses and sensitivity values with the
finite element (FE) method usually requires a significant amount of computational resources. For an efficient optimization,
this research adopts recent developments in computational model order reduction approach having successfully exploited
advanced mathematical development for calculating accurate solutions of partial differential equation. Among model order
reduction schemes, the present study uses theMQSRVmethodwhich calculates the Ritz vector bases atmultiple frequencies to
minimize the amplitude of sound pressure in objective domain. Through several design examples, the efficiency and reliability
of the MQSRV method for the acoustic topology optimization are verified.

Keywords Model order reduction · Topology optimization · Ritz vector · Acoustic

1 Introduction

This research develops a new acoustic topology optimiza-
tion schemewith theMultifrequencyQuasi StaticRitzVector
(MQSRV) method calculating the Ritz vector bases at multi-
ple frequencies. Computing the accurate acoustic responses
and sensitivity values with the finite element (FE) method
usually requires a significant amount of computation time.
For an efficient optimization, the model order reduction
allowing us to compute the responses and sensitivity val-
ues efficiently has been widely adopted. Among various
model order reduction schemes, the present study adopts the
MQSRVmethod calculating the Ritz vector bases at multiple
frequencies. Through several design examples, the efficiency
and reliability of the MQSRV method for the acoustic topol-
ogy optimization are verified.

Several relevant researches for acoustic topology opti-
mization have been carried out. In the framework of finite ele-
ment method and topology optimization, several researches
for acoustic or vibration topology optimization can be found
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[4,10,11,16,17,19,20,24,26,34]. Before the developments of
acoustic related problems, many relevant researches exist for
structural vibration problems (See [16,17,19,26] and refer-
ences therein). With the help of the topology optimization
for vibrating structure, acoustic topology optimization also
has been researched. In [4], the noise reduction by topol-
ogy optimization was pursued with Helmholtz equation. In
[34], the acoustic-structure interaction phenomena was con-
sidered in topology optimization. In [11], acoustic topology
optimization was applied for noise barrier design. In [10], a
floating projection topology optimization method based on
the mixed displacement/pressure finite element formulation
was proposed. Besides there are still many research for for
acoustic topology optimization.

The model order reduction scheme has been researched
in order to incorporated with the acoustic simulation and
the acoustic topology optimization. As acoustic topology
optimization usually requires a lot of computation time
compared with the topology optimization for static or quasi-
static problem, the model order reduction schemes which
reduce the size of system matrix are regarded as a remedy
for efficient optimization. To our best knowledge, several
model order reduction schemes have been proposed (See
the references [1–3,5–9,12–15,18,21–23,25,27–33,35–37]).
In [32], it is shown that it is possible to use the model order
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reduction in topology optimization and several model reduc-
tion schemes were used to reduce the size of the dynamic
stiffness matrix, to calculate the dynamic responses and sen-
sitivity values with adequate efficiency and accuracy for
topology optimization in frequency domain. In [12], the
multi-substructure multi-frequency quasi-static Ritz vector
(MMQSRV) method generating the reduction bases at mul-
tiple substructures was proposed for an efficient topology
optimization scheme. In [30], the reduced multiscale model
for nonlinear macroscopic structural was presented using
Proper Orthogonal Decomposition (POD). In [37], the effec-
tiveness of the mode displacement method and the mode
accelerationmethod for time-domain response problemswas
investigated to reduce computational cost for the dynamic
response topology optimization problems. In [2], reduced
order model (ROM)-based structure topology optimization
algorithm for that enables a fast design process was pre-
sented. In [8], model order reduction techniques to optimal
design to reduce the transient analysis time was applied for
the application of MEMS design. In [36], interpolated as
surrogate models was used for an optimization procedure.
In [14], a systematic comparative study of some typical
and potential model order reduction for solving the broad
band frequency response optimization problems is provided,
including the Quasi-Static Ritz Vector (QSRV), the Padé
expansion and the second-order Krylov subspace method.
In [18], the computational efficiency was further improved
in each optimization iteration by employing a reduced order
model when designing material micro-structures by using
isogeometric analysis and parameterized level set method.
In short, many relevant researches have tried to use the idea
of the various model order reduction scheme in optimization.

The present study develops a new accelerated acoustic
topology optimization scheme to minimize the amplitude of
sound pressure in the objective domain with the MQSRV
method. Compared with the existing model order reduction
schemes, the MQSRV method computes the Ritz vectors at
multiple center frequencies. The idea with benefit behind
the MQSRV method are that Ritz vectors at one frequency
can be alternative or better bases at different frequencies.
Therefore, by combining the bases generated at multiple
frequencies, a set of Ritz vectors which is effective for
a wide range of frequency domain can be generated. For
example, the inversions of the dynamic stiffness matrix, i.e.,
Stiffnessmatrix − ωc

2Mass matrix (ωc: center frequency),
is computed and the bases at a center frequency can be
combined with the bases at a different center frequency
[12,33,35]. This approach becomes effective for harmonic
analysis whose responses should be computed at a wide fre-
quency domain or separated frequency domains. Thus, in
the present study, the acoustic topology optimization prob-
lems with responses at separated frequency domains are also
solved to show the effectiveness of the present study.

The paper is organized as follows. Sect. 2 provides some
backgrounds to the topology optimization and the MQSRV
method to reduce the system size in acoustic system. In
Sect. 3, several optimization studies in 2D and 3D are pre-
sented. Sect. 4 provides the conclusions and suggestions for
future research topics.

2 Acoustic optimization formulation

2.1 Finite element procedure for linear acoustics

To analyze acoustic propagation in frequency domain, the
following Helmholtz equation is formulated and numerically
solved:

∇ · (ρ−1∇ p) − ω2κ−1 p = 0 on � (κ = ρc2) (1)

where p, ρ, κ , c andω are the pressure in the analysis domain
�, the local density, the bulk modulus, the local speed of
sound, and the angular frequency of sound wave, respec-
tively. In addition, the following boundary conditions are
imposed.

Sound pressure condition : p = psource (2)

Hard wall B.C : n · ∇ p = 0 (3)

Sommerfeld B.C : n · ∇ p + i · ω

c
· p = 2i · ω

c
· pin (4)

where the sound source and the incoming input pressure are
denoted by psource and pin, respectively. The outward unit
normal vector is denoted by n. In the framework of the acous-
tic finite element procedure, the above Helmholtz equations
is discretized as follows:

SP = (K − ω2M + iωFradiation)P = F (5)

where the the system matrix and sound pressure vector are
denoted by S and P, respectively. The stiffness matrix and
the mass matrix are denoted by K and M, respectively. The
radiation matrix and the boundary term, i.e., Fradiation and F
for Sommerfeld boundary condition and the boundary con-
ditions, are formulated and included. In the framework of the
finite element method, the above matrices and the vectors are
formulated as follows:

K = NE
Am
e=1

ke, M = NE
Am
e=1

me,

Fradiation = NE
A v
e=1

f radiatione

ke = ρ−1
e

∫
�e

BTB d�
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me = κ−1
e

∫
�e

NTN d�

f radiatione = (ρece)
−1

∫
�out
e

NTN d�out (6)

where the number of elements isNEand thematrix andvector
assembly operators are denoted by Am and Av, respectively.
The density and the bulk modulus of the e-th element are
denoted by ρe and κe, respectively. The domain of the e-th
element is �e. The boundary for the Sommerfeld boundary
condition is defined along �out

e . The local stiffness matrix,
the local mass matrix and the local damping matrix due
to the Sommerfled boundary condition of the e-th element
are denoted by ke, me and f radiatione , respectively. The shape
function and the strain-displacement matrices are denoted
by N and B, respectively. With out the loss of generality the
above formula can be implemented using MATLAB. The
present study use the Q4 element for the acoustic simulation
in Eqs. (5) and (6).

2.2 Acoustic topology optimization formulation

Compared with the size and shape optimization methods, the
topology optimization method allows us to find out an opti-
mal topology to improve the scientific and performance of
engineering problem without an initial topology in prior. For
the sake of this, the element-wise design variables assigned
to each finite element are defined and they are used to inter-
polate the material properties of the associated governing
equation, i.e., the Helmholtz equation, here. In the acoustic
topology optimization optimizing the distribution of acoustic
pressure, the density and the bulk modulus can be interpo-
lated in order to model psedo rigid body of acoustic domain.
In [4,10,11,19,20,26,34] several interpolation schemes have
been proposed and this research adopts the following recip-
rocal interpolation functions of the material properties as
follows:

1

ρe
= 1

ρa
+ γm

e

(
1

ρr
− 1

ρa

)
(7)

1

κe
= 1

κa
+ γm

e

(
1

κr
− 1

κa

)
(8)

ρr = ρa × 107, κr = κa × 1010 (9)

where the density and the bulk modulus of air domain (void
domain) are denoted by ρa and κa , respectively. Tomodel the
pseudo rigid domain from an engineering point of view, the
pseudo density and the pseudo bulkmodulus for rigid domain
are denoted by ρr and κr , respectively. The design variable of
the e-th element is denoted by γe. For the acoustic topology
optimization, the design variables, γ , are defined at each ele-
ment. The penalization factor is denoted bym which is set to
5 in the present study. Note that rather than the SIMP (Solid

Isotopicmaterialwith penalizaiton) is not used.Themain rea-
son for using the reciprocal interpolation functions instead of
the SIMP method is to reduce the effect of intermediate den-
sity elements in acoustic FE analysis. The gray elements in
the optimization layout using the SIMP method make errors
in acoustic FE analysis. This is because the gray elements
have intermediate densities and bulk modulus between the
rigid domain and the air domain. On the other hand, when
using the reciprocal interpolation function for acoustic topol-
ogy optimization, the gray elements can be treated like air,
thus reducing the error of acoustic FE simulations.

For an optimization formulation, the following optimiza-
tion problem in Eq. (10) is formulated with the integration
of the absolute pressure in the frequency domain from ωs to
ωe at the objective domain, �obj, inside the analysis domain.
The mass constraint is considered to improve the conver-
gence of optimization. Without the mass constraint, many
local optima may exist and a small change of the initial con-
dition or the involved parameters causes a dramatic change
in the acoustic topology optimization.

Min
γ

� = ∫ ωe
ωs

φ dω
(
φ = ∫

�obj
|p| d�

)

Subject to 1∫
�d

1 d�

∫
�d

γ d� ≤ α,

γ = [γ1, γ2, . . . , γNe ], γmin ≤ γ ≤ 1, γmin = 0

(10)

where the objective domain is denoted by �obj for the objec-
tive function�defined as the integration of the absolute value
of the pressure on the frequency domain from ωs to ωe and
the design domain is denoted by �d. The allowed volume
ratio is set to α. In the present study, the design variables are
normalized from 0 to 1.

The sensitivity of the objective function is computed by
considering the conjugate of the acoustic pressure; the sensi-
tivity of the constraint is constant. Although the objective
function in Eq. (10) is defined as the integration of the
response at a frequency domain, without the loss of gen-
erality, the sensitivity analysis for a single frequency is
considered. First of all, the Lagrangian considering the for-
ward analysis and the conjugated forward analysis for a
frequency of interest ω is formulated as follows:

φL(ω) = φ(P, ω, γ ) + λT
1 (SP − F) + λT

2

(
SP − F

)

where φ =
∫

�obj

|p| d� (11)

where the Lagrangian multipliers are λ1 and λ2. By differ-
entiating the Lagrangian equation as shown in Eq. (12).

∂φL

∂γ
= ∂φ

∂γ
+ λT

1

(
∂S
∂γ

P + S
∂P
∂γ

− ∂F
∂γ

)
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+ λT
2

(
∂S
∂γ

P + S
∂P
∂γ

− ∂F
∂γ

)
(12)

The conjugate of the dynamic stiffness matrix is denoted
by S. In order to eliminate the unknown expression involving
∂P/∂γ and ∂P/∂γ , the following adjoint equations, Eq. (13),
can be obtained.

Sλ1 =1

2

(
− ∂φ

∂PRe
+ i

∂φ

∂PIm

)
,

Sλ2 = 1

2

(
− ∂φ

∂PRe
− i

∂φ

∂PIm

)
,

λ1 ≡ λ2 (13)

Note that the real and imaginary parts of the acoustic
pressure are denoted byPRe andPIm, respectively.After sum-
marizing the above formula, the final sensitivity analysis can
be obtained as follows:

∂φL

∂γ
= 2 Re

(
λT
1

∂S
∂γ

P
)

(14)

The objective function in Eq. (10) by defined at the fre-
quency domain ([ωs , ωe]), the above sensitivity analysis can
be integrated at the frequency domain of interest.

∂�

∂γ
=

∫ ωe

ωs

2 Re

(
λT
1

∂S
∂γ

P
)
dω (15)

In the present study, the forward analysis and the sensi-
tivity analysis with and without model order reduction are
implemented in MATLAB framework.

2.3 Themodel order reduction for acoustic
optimization

The frequency response functions requiring the consecutive
finite element simulations, the acoustic topology requires a
huge computational resources. Even a state-of-the art com-
putation, it is still a difficult task to carry out the acoustic
topology optimization for a wide range of frequency domain.
In order to accelerate the computational procedure, themodel
order reduction scheme can be applied.

Let us denote the approximated acoustic pressure for the
original acoustic press asPA andP, respectively. The purpose
of the model order reduction is to reduce the degrees of the
finite element model by employing the reduction bases, �.
The individual bases for� are denoted byϕi , i = 1, . . . , nd .
Thus, the pressure vector is approximated with PA = �Q.
The frequency dependent reduced vector of order nd is
denoted by Q. By introducing the bases whose number is
less than that of the finite element, it is possible to construct

the reduced system.

P︸︷︷︸
n×1

∼= PA︸︷︷︸
n×1

= �︸︷︷︸
n×nd

Q︸︷︷︸
nd×1

(16)

� = [ϕ1, ϕ2, . . . , ϕnd ] (nd � n) (17)

where the total number of degrees of freedom and the number
of the reduced degrees of freedom are denoted by n and nd ,
respectively. Thus after multiplying the bases ,�, the system
matrix can be reduced significantly with a small error as
follows:

{�TS�}︸ ︷︷ ︸
nd×nd

Q︸︷︷︸
nd×1

= �TF︸︷︷︸
nd×1

(18)

{�T[K − ω2M + iωFradiation]�}︸ ︷︷ ︸
nd×nd

Q︸︷︷︸
nd×1

= �TF︸︷︷︸
nd×1

(19)

As stated, several model order reduction schemes exist.
These schemes are classified according to the method of
defining the suitable bases for the system of interest, such
as mode superposition (MS) method, RV method and QSRV
method, etc. (See [1–3,5–9,12–14,18,21–23,27–33,35–37]).
The eigenmodes of a system of interest are employed for
the Mode Superposition method. The basis of the Krylov
subspace composed of external force or system matrix is
employed for the Ritz Vector Method. The QSRV method
complements the RV method by calculating the bases of
dynamic system using the center frequency. All of these
model order reduction schemes reduce the degree of freedom
for computational efficiency. Among several model order
reduction schemes, this research adopts model order reduc-
tionwith theRitz vectors. Especially, to improve the accuracy
at a wide frequency range, the MQSRV method (Multifre-
quencyQuasi-StaticRitz vectormethod) is employed.Unlike
the other model order reduction schemes, this MOR method
computes the reduction bases atmultiple frequencies of inter-
est as follows:

� =
⎡
⎢⎣ϕ1,1 · · · ϕnd,1,1︸ ︷︷ ︸

the 1st domain

· · · ϕ1,n f · · ·ϕnd,n f ,n f︸ ︷︷ ︸
the (n f ) domain

⎤
⎥⎦ (20)

where ϕi, j is the i-th orthonormal basis of the j-th frequency
domain. The total number of the divided frequency domain
and the number of bases of the j-th frequency domain are
denoted by n f and nd, j , respectively.

As stable, The quasi-static Ritz method generates the
reduction bases at a non-zero center frequency of interest
and the multifrequency quasi-static Ritz method generates
and combines the bases of the quasi-static Ritz vectormethod

123



Computational Mechanics (2022) 70:993–1011 997

Algorithm 1 The quasi-static Ritz vector (QSRV) method

1st vector (LU decomposition) : ϕ∗
1 ≡ (K − ω2

cM + iωcFradiation)−1F

Normalization with out the mass : ϕ1 = 1√
ϕ∗T
1 ϕ∗

1

ϕ∗
1

for j = 2, 3, · · · , nd do
j the vector (LU decomposition) :
ϕ∗
j ≡ (K − ω2

cM + iωcFradiation)−1(Mϕ j−1)

Orthogonalization without the mass : ϕ∗∗
j ≡ ϕ∗

j −
j−1∑
k=1

(ϕT
k ϕ∗

j )ϕk

Normalization : ϕ j = 1√
ϕ∗∗T
j ϕ∗∗

j

ϕ∗∗
j

end for

Algorithm 2 The multifrequency quasi-static Ritz vector (MQSRV) method
1st vector of the 1st frequency domain (LU decomposition) :

ϕ∗
1 ≡ (K − ω2

c,1M + iωc,1Fradiation)−1F

Normalization with out the mass : ϕ1,1 = 1√
ϕ∗T
1 ϕ∗

1

ϕ∗
1

for j = 2, 3, · · · , nd,1 do
j th vector of the 1 st frequency domain (LU decomposition) :
ϕ∗
j ≡ (K − ω2

c,1M + iωc,1Fradiation)−1(Mϕ j−1,1)

Orthogonalization without the mass : ϕ∗∗
j ≡ ϕ∗

j −
j−1∑
k=1

(ϕT
k,1ϕ

∗
j )ϕk,1

Normalization without the mass : ϕ j,1 = 1√
ϕ∗∗T
j ϕ∗∗

j

ϕ∗∗
j

end for
for s = 2, 3, · · · , n f do

1st vector of the s th frequency domain (LU decomposition) :
ϕ∗
1 ≡ (K − ω2

c,sM + iωc,sFradiation)−1F

Added orthogonalization : ϕ∗∗
1 ≡ ϕ∗

1 −
s−1∑
p=1

nd,p∑
k=1

(ϕT
k,pϕ

∗
1 )ϕk,p

for j = 2, 3, · · · , nd,s do
j th vector of the s th frequency domain (LU decomposition) :
ϕ∗
j ≡ (K − ω2

c,sM + iωc,sFradiation)−1(Mϕ j−1,s)

Added orthogonalization : ϕ∗∗
j ≡ ϕ∗

j −
s−1∑
p=1

nd,p∑
k=1

(ϕT
k,pϕ

∗
j )ϕk,p

Normalization without the mass : ϕ j,s = 1√
ϕ∗∗∗T
j ϕ∗∗∗

j

ϕ∗∗
j

end for
end for

at multiple center frequencies of interest.

ωc, j = ω j,start + ω j,end

2
, j = 1, . . . , n f (21)

where the starting frequency, the ending frequency, and the
center frequency of the j-th frequency domain are denoted by
ω j,start andω j,end andωc, j , respectively. One of the benefits
of the MQSRV method lies in the fact that the improvement
of the approximation is achieved at the wider frequencies
ranges than the QSRV method specified by the center fre-
quencies. Algorithms 1 and 2 show the algorithms for the

QSRVmethod and theMQSRVmethod. In these algorithms,
the auxiliary variables are denoted by the right upper symbols
*, ** or ***.

2.4 Analysis example

In order to validate and show the characteristics of the
MQSRV method in acoustics, the two dimensional analysis
example in Fig. 1 is analyzed without the loss of generality.
Being a simplified two dimensional domain, 1-D the analyt-
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Fig. 1 Analysis example (1000 by 5 discretization, total NE: 5000,
total DOF: 6006, frequency domain [1 Hz, 1000 Hz] with 
 f = 1
Hz, air speed c = 343 m s−1, density: 1.204 kg m−3, bulk modulus:
ρa × c2 N m−2)

ical pressure can be obtained as follows:

1 − Dimensional Solution :
PAnalytical = p

(
cos

(ω

c
x
)

+ tan
(ω

c
L
)
sin

(ω

c
x
))

(22)

With the consideration of the analytical solution in
Eq. (22), the finite element simulations with the MQSRV
method are carried out in Fig. 1. The three center frequen-
cies are set to 1 Hz, 500 Hz and 1000 Hz and the numbers
of the bases at the each center frequencies are increased by
one. Thus, the total number of the bases gradually increases
from 3 to 12 with 3 interval. Fig. 2a shows the relative error
graph with respect to the number of the bases. The relative
error in Fig. 2a can be obtained as follows:

Relative error = log

(∫ ωe
ωs

|PA − PAnalytical|dω∫ ωe
ωs

|PAnalytical|dω

)
(23)

where the starting frequency and the ending frequency of the
analyzed frequency domain is denoted by ωs and ωe. Note
that by increasing the number of the bases, the discrepancy
between the numerical solution and the analytical solution
is dramatically decreased as shown in Fig. 2a and b. As the
center frequencies are set to 1 Hz, 500 Hz and 1000 Hz, the
difference graphs in Fig. 2b illustrate that the discrepancies
at the center frequencies are almost zero. The discrepancies
at the other frequencies are higher than those near the center
frequencies and by increasing the number of the bases, the
accuracy is gradually improved.
For the next example, the effects of the bases and the center
frequencies are investigated in Fig. 3. The pressure distribu-
tions in Fig. 1 are recalculated and the errors are compared
by varying the center frequencies with the fixed number of
bases at the center frequencies (nd = 2 or nd = 4) in Fig. 3.
Note that the approximations at the center frequencies are
most accurate at the frequency domain of interest. For exam-
ple, with the 0 Hz and 50 Hz center frequencies with nd = 2
(case 1), the responses between the frequencies are accurate.
By increasing the number of bases to nd = 4 (case 3), it

is observed that the prediction is improved. This tendency
is also observed at the other frequency domain, i.e., from
300 Hz to 350 Hz (case 2 and case 4). As shown in the case
5 in Fig. 3, it is one of an important characteristics of the
MQSRV method for acoustics that the Ritz bases generated
at one frequency domain are also improving the accuracy of
the approximated solution at another frequency domain. For
the example in Fig. 3, the two Ritz bases at 300 Hz and 350
Hz are additionally included to the previous existing Ritz
bases at 0 Hz and 50 Hz. Although the Ritz vector at 300 Hz
and 350 Hz are included, it is noticed that the response from
0Hz to 50 Hz are improved; compare the responses of case
1, case 3, and case 5. This phenomena is also observed at
the frequency domain from 300 Hz, to 350 Hz; compare the
responses of cases 2, case 4 and case 5. Then the response at
0 Hz and 50 Hz are improved that suggests that the bases at
other center frequencies also can improve the responses.

3 Topology optimization example

To show the efficiency and effectiveness of the MQSRV
method for the acoustic topology optimization, this section
solves several problems minimizing the acoustic pressure
for a wide frequency domain in Eq. (10). The gradient opti-
mizer of theMethod ofMovingAsymptote is employed [24].
For the initial design, the uniform design variables satisfy-
ing the volume constraint are employed. The computation
times are computed in the same computational environment
CPU: Intel(R) Xeon(R) CPU E5-2699 c3 @2.30GHz(single
thread), RAM: 125GB,OS:RedHat Enterprise Linux release
6.5, MATLAB version: R2020a is used. Fig. 4 shows the
optimization procedures of the acoustic topology optimiza-
tion schemes with and without the model order reduction
scheme. The overall procedures are same except the appli-
cation of the model order reduction scheme in the forward
analysis and the sensitivity analysis. One aspect of to be con-
cerned is that the efficiency of the optimization procedure
with the model order reduction scheme is dependent on the
efficiency of the employed model order reduction scheme.
The forward and the sensitivity analysis procedures being
mainly accelerated, the comparison of the two procedures
in Fig. 4 are made for the sub-procedures, i.e., the forward
analysis , the adjoint analysis and the involved other proce-
dures. Note that the responses are approximated solutions but
they are accurate enough for an optimizer to find out an opti-
mized design. To assert this, the optimized layouts without
the MOR scheme are also obtain and compared.

3.1 Example 1: Rectangular box example

For the first optimization example, the acoustic topology
optimization example for the rectangular domain is consid-
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Fig. 2 Comparison: a The relative error graph with respect to the number of the bases; b the pressure discrepancies at the five different frequencies
(Pressure discrepancies = |PA − PA|)
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Fig. 3 Error comparisons of the
MQSRV method for multiple
frequency domains

(Error = log
( |P−PAnalytical|

|PAnalytical|
)
)

Fig. 4 Optimization process
flowcharts. a An optimization
process without the MOR
scheme and b an optimization
process with the MQSRV
scheme

Table 1 Computation of the full
order model and the model order
reductions for the 1st frequency
domain for the example 1

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 74.0628 344.1 338.7 105,634

QSRV 21 84.2741 / 68.2032 6.1 (56.4×102) 2.4 (141.1×102) 3,457 (30.6×102)

MQSRV 3 87.1215 / 126.3155 1.2 (286.0×102) 0.3 (1,129.0×102) 1,955 (54.0×102)

6 87.0502 / 86.4003 3.2 (107.5×102) 0.8 (423.4×102) 2,334 (45.3×102)

13 74.9962 / 72.9097 4.8 (71.7×102) 1.8 (188.2×102) 2,807 (37.6×102)

21 74.0753 / 74.0965 6.1 (56.4×102) 2.5 (135.5×102) 3,487 (30.4×102)

ered in Fig. 5. The hard wall boundary condition is applied at
the top and the right sides. The radiation condition is defined
along the bottom and left sides. The acoustic field in the
objective domain, �obj, caused by a point source located at
0.3 m and 0.3 m over the analysis domain is optimized by the
topology optimization scheme with the present model order
reduction scheme. A solid rectangular domain rendered by
black is placed at the center and the off-set design domain

rendered by gray in Fig. 5 is assumed. The objective of this
optimization is to design the rim of the solid box to minimize
the integration of the absolute value of pressure at the objec-
tive domain subject to the mass constraint. The inclusion of
the mass constraint is for the improvement of the conver-
gence. The rectangular domain is discretized by 120 × 120
quad elements.
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Fig. 5 Rectangular acoustic optimization problemwith an internal rigid
rectangular domain (�d colored by gray and discretized by 120 × 120
Q4 elements, density of air: 1.204 kg m−3, density of rigid: 1.204 ×
107 kg m−3, bulk modulus of air: 1.417 × 105 N m−2, bulk modulus
of rigid: 1.417 × 1015 N m−2, air speed c : 343 m s−1, m=5, volume
ratio: 25 %)

To check the mesh independence of the numerical exam-
ple, the topologyoptimization layouts and frequency responses
with 3 cases according to the number of elements, i.e. 6400,
10000 and 14400, are shown in Fig. 6. As shown in the fig-
ure, similar layouts and the responses are obtained even if the
number of elements is changed, thus it is determined that the
mesh is independent. To check the effect of intermediate den-
sity elements, Fig. 7 compares the frequency responses and
layouts of optimized design with and without gray elements.
For the layout without gray elements, the design variables
of gray elements greater than 0.8 are set to 1 and the rest
to 0. As shown in the graph, the two cases obtain similar
responses. The topology optimization layouts according to
penalization exponent m are shown in Fig. 8. To obtain the
layouts with fewer gray elements, m is set to 5. During opti-
mization process the penalization exponent is maintained.
Fig. 9 shows the optimization layouts and history with the
100%, 80% and 25%mass constraints. The larger the amount
of mass, the smaller the objective values are obtained. This
is because the higher the mass amount, the more elements
are used to reduce the amplitude of the sound pressure in the
objective domain. From on engineering point of view, the
optimized layouts with the high mass constraint is difficult
to manufacture.

To show the effectiveness of the present approach, the
objective responses are computed and accurately integrated
with a smaller frequency interval andmanymatrix inversions
are then required per an optimization iteration. Therefore,
compared with static optimization problem or dynamic opti-
mization problem with limited matrix inversions, a lot of
computational time is inevitably required to carry out the

Fig. 6 a The optimized layouts by changing the number of elements;
b the frequency responses of the design with 6400, 10000 and 14400
elements (Discretized by 80×80, 100×100 and 120×120Q4 elements)

topology optimization. In the present study, to accelerate
the analysis and optimization processes, the QSRV method
and the MQSRV method are employed [6,12,14,33,35].
Due to the characteristics of the two MOR methods, the
QSRV method shows the accurate prediction very near at
the single center frequency and the MQSRV method utiliz-
ing the combined Ritz vectors at several center frequencies
shows the more accurate prediction at the wide frequency
domain defined by the multiple center frequencies. The
QSRV method sets 150 Hz as a center frequency of the
frequency domain of interests for 21 Ritz vectors. For the
MQSRV method, without the loss of generality, the 21 cen-
ter frequencies with the same interval of 15 Hz from 0 Hz
to 300 Hz; just one base for each center frequencies. As the
number of the Ritz vectors at each frequencies is 1, the total
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Fig. 7 a The optimized layouts with and without intermediate density
elements; b the responses of the design with and without intermediate
densities elements

Fig. 8 The optimized layouts according to the penalization exponent,
i.e. 1, 3 and 5

Fig. 9 The optimized layouts according to the mass constraint, i.e.
100%, 80% and 25%

number of the Ritz vectors becomes 21. As the total num-
ber of degrees of freedom is 14641, the employed bases are
just 0.1434 % (21/14641). The generated Ritz vectors of the
MQSRV method are normalized to each other.

Fig. 10a shows the optimized layouts with and without the
model order reduction. With the 21 bases, we could obtain
the optimized layout similar to the design without the model
order reduction. Without the model order reduction, the opti-
mization for 150 iterations process takes 105,634 seconds
where it takes 3,457 seconds for theQSRVmethod (21 bases)
and 3,487 seconds for the MQSRV method (21 bases); See
Table 1 formore detail. Overall the speed upmore than 30 can
be achieved. Fig. 11a, b, and c plot the recomputed responses
of the standard optimization procedure, the design with the
QSRV method, and the design with the MQSRV method.
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Fig. 10 Example 1: a the
optimized layouts with the full
order model, the QSRV method
(nd= 21 at 150 Hz, 3,457
seconds for 150 iterations) and
the MQSRV method (nd= 21
bases, the center frequencies :[0
Hz: 15 Hz: 300 Hz], 3,487
seconds for 150 iterations) and
their pressure distributions; b
the optimization history (The
objective values of the QSRV
method are lower due to the
erratic computation)

As expected, the response of the QSRV method is accurate
at the center frequency, 150 Hz where the MQSRV method
shows the accurate response for the frequency domain of
interest. Fig. 11c plots the responses of the initial design and
the optimized layouts. Fig. 10b shows the optimization his-
tories of the FOM method and the MOR method with 21 the
bases. Fig. 12 shows the optimized layouts by changing the
number of the bases. With the less bases, the discrepancies
between the design of the FOM analysis and the designs of
the MQSRV method are observed.

The accuracy of the MQSRV method is dependent of the
choice of the center frequencies and the associated number of
bases at the center frequencies. These parameters should be
chosen considering the characteristics of acoustic simulation
of interest. From our computational experiences, it has been
observed that by increasing the number of bases, the predic-
tion accuracy is improved. In addition, it is better to increase
the number of the center frequencies rather than increasing
the number of the bases.

The same problems are solved for the second frequency
domain, i.e., from 500Hz to 800 Hzwith the frequency inter-

val 0.25Hz in Fig. 13. To obtain these designs, 104Ritz bases
are used for the model order reduction scheme, i.e., nd=104.
For the QSRV method, the center frequency is set to 650
Hz which is the middle point of the frequency domain of
interest. For the MQSRV method, the evenly distributed 26
center frequencies, i.e., [500 Hz: 12 Hz : 800 Hz], are set
and 4 Ritz vectors are computed at each center frequencies
(4 × 26 = 104). Note that the optimized layouts and their
associated acoustic pressures are similar to each other. In this
example, the responses at the frequency domain of interest
are evenlyminimized as shown in Fig. 13b. The reductions in
the computation time and the speed up over the optimization
process without the model order reduction are summarized
in Table 2. In the present study, the speed up with the present
model order reduction is about 15.

In Fig. 14, the two frequency domains, i.e., from 50 Hz
to 100 Hz and from 200 Hz to 250 Hz, simultaneously are
considered for the objective function. One of the purposes of
this example is to illustrate that the bases generated at one
frequency domain also can improve the accuracy of the pre-
diction at another frequency domain. For example, the bases
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Fig. 11 Response recalculations: a the responses of the design with
the QSRV method showing the lower accuracy of the QSRV method;
b the responses of the design with the MQSRV method showing the
relatively higher accuracy of the QSRVmethod; c the improvements of
the designs (All responses are computed without the MOR scheme)

at the first frequency domain, from 50 Hz to 100 Hz, can be
used as the bases for the second frequency domain, from 200
Hz to 250Hz. Also the bases of the second frequency domain
can be used to approximate the dynamic system matrix for
the first frequency domain. In this example, 11 bases are gen-
erated for the first frequency domain, 50 Hz to 100 Hz with
5 Hz interval, and another 11 bases are also generated for
the second frequency domain, 200 Hz to 250 Hz with 5 Hz
interval. Thus, the total number of the bases is 22. As shown

in Table 3 the similar layout can be obtained. In this example,
the speed up over 23 can be achievable.

3.2 Example 2: Pipe design

For the next example, the pipe design problem defined in
Fig. 15 is considered. The incoming wave is assumed at the
left side and the radiation condition is applied at the right side.
The two separated design domains are defined at the upper
and the bottom domains. To minimize the integration of the
acoustic pressure at the objective domain�obj, the optimized
structures are obtained in Fig. 16 and in Fig. 17. By investi-
gating the acoustic pressure distributions in Figs. 16 and 17,
it turns out that the half spheres cause the resonances like
Helmholtz resonators and the acoustic propagation towards
the objective domain can be minimized. The responses at
Figs. 16b and 17b show that the responses with the MOR
scheme are very accurate enough for optimization. With the
MQSRV method, the optimized layouts in Fig. 16 can be
obtained. As observed in the previous example, the simi-
lar layouts can be obtained but with a higher speed up (See
Table 4). Depending on the number of the bases, the speed
up can be varied. This example shows that the Ritz vector
based MOR scheme can be applied for the acoustic problem
effectively.

Fig. 17 shows the optimized layout with the two fre-
quency domains of interest. The number of the Ritz vectors
for the first frequency domain is 10 when 15 bases are gen-
erated for the second frequency domain. The Ritz vectors
for the first and second frequency domains are combined
together in the MQSRV method. As the bases for one fre-
quency domain also can be utilized for the bases for the
another frequency domain in the MQSRV method, the pre-
diction of the MOR scheme is accurate with a smaller error
and an optimized layout minimizing the acoustic pressure at
the two frequency domains simultaneously can be obtained.
Table 5 compares the speed up and the objective values.

Fig. 12 The optimized layouts
by changing the number of
bases (The objective values are
recalculated without the MOR
scheme)
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Fig. 13 Optimized layout for
the second frequency domain
([500 Hz: 0.25 Hz: 800 Hz]): a
The optimized layouts with and
without the MOR scheme (104
bases for the QSRV method
with 650 Hz for the center
frequency, 104 bases for the
MQSRV method with 104 bases
at [ 500 Hz: 12 Hz: 800 Hz]); b
the responses of the designs

Table 2 Computation of the full
order model and the model order
reductions for the 2nd frequency
domain for the example 1

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 7.0556 331.4 337.7 153347

QSRV 104 10.3967 / 10.1818 33.4 (9.9×102) 17.8 (19.0×102) 10018 (15.3×102)

MQSRV 104 7.2938 / 7.2938 33.4 (9.9×102) 16.8 (20.1×102) 10210 (15.0×102)

Fig. 14 Optimized layouts with
and without the MOR scheme a
The optimized layouts (The
number of basis for the first and
second frequency domains are
11 and 11 respectively. One
basis at [50 Hz : 5 Hz: 100 Hz]
and one basis at [250 Hz: 5 Hz:
300 Hz])
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Table 3 Computation of the full
order model and the model order
reductions for the two frequency
domains for the example 1

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 15.0044 331.8 367.3 101,920

MQSRV 22 14.7270 / 14.7047 7.8 (42.8×102) 1.9 (194.0×102) 4,336 (23.5×102)

Fig. 15 Pipe design example
(The number of degrees of
freedom: 7421, the design
domain: �d, Frequency domain:
fs = 150 Hz fe =
250 Hz (
 f = 0.05 Hz),
density of air (ρa):
1.204 kg m−3, bulk modulus of
air (κa): ρa × c2 N m−2, density
of rigid (ρr): ρa × 107 kg m−3 ,
bulk modulus of rigid (κr):
κa × 1010 N m−2, m=5, volume
ratio: 25 %)

Fig. 16 Optimized layouts with
the MQSRV method (Center
frequency: [150 Hz:12.5 Hz:
250 Hz], nd : 27): a Optimized
layouts and their pressure
distributions at several
frequencies; b the responses of
the initial design, the optimized
layout without the MOR scheme
and the optimized layout with
the MQSRV method

3.3 Example 3: Rectangular box example with an
enlarged box

For the next example, the optimization problemwith the sim-
ilar design domain discretized by 120 by 120 elements with
14641 degrees of freedom and the boundary conditions is
considered in Fig. 18. Compared with the first example, the
difference lies in the fact that the center domain is set to
the design domain whereas the rim of the domain is set to
the design domain in the first example. It is noticed that the
local optima issue becomes serious in this enlarged domain
for sound source at higher frequency. For a sound source at a
higher frequency, a slight change of the design variables may
affect acoustic responses significantly and the local optima
issue becomes serious. Indeed, in the present example, the
lower frequency domain from 50 Hz to 150 Hz is chosen

for the frequency domain of interest. The initial design vari-
ables are set to 0 for air. Fig. 19 compares the responses
of the designs. The acoustic pressure values are generally
decreased and the responses of the full order model and the
reduced order model are similar. With the present MQSRV
method for this example, the speed up around 17 can be
achievable that shows the efficiency of the QSRV method
and the present MQSRVmethod (See Table 6). In the QSRV
method, 12 bases with 100 Hz for the center frequency are
computed and in the QSRV method, the 12 bases are evenly
generated; two bases at 50 Hz, 70 Hz, 90 Hz, 110 Hz, 130
Hz and 150 Hz. Fig. 19a show the optimized layouts with the
QSRV and the MQSRV method. As stated, the total number
of the degrees of freedom in this discretization is 14641.With
only 12 bases (0.08 %), it is possible to obtain the similar
design of the optimization result with the full order model.
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Fig. 17 a The optimized layout
for the two frequency domains
(the first frequency domain: [60
Hz: 0.05 Hz: 100 Hz] and the
second frequency domain: [160
Hz: 0.05 Hz: 200 Hz], 10 and 15
bases for the first and second
frequency domains, 2 bases at
[60 Hz: 10 Hz: 100 Hz] and 3
bases at [160 Hz: 10 Hz: 200
Hz]); b the responses of the
designs

Table 4 Computation of the full
order model and the model order
reductions for the frequency
domain in Fig. 16

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 8.0593 89.7 89.9 47,653

MQSRV 27 8.1196 / 8.1159 1.9 (47.2×102) 1.6 (56.2×102) 3,514 (13.6×102)

Table 5 Computation of the full
order model and the model order
reductions for the two frequency
domain in Fig. 17

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 4.2450 82.6 74.7 37,985

MQSRV 25 4.3658 / 4.3654 1.7(48.6×102) 1.5(50.0×102) 2464(15.4×102)

Fig. 18 The third acoustic optimization example problem definition
( fs = 50 Hz, fe = 150 Hz, 
 f = 0.08 Hz, the total number of ele-
ment: 14400 and the number of the degrees of freedom: 14641, density
of air(ρa): 1.204 kg m−3, bulk modulus of air (κa): ρa × c2 N m−2,
density of rigid (ρr): ρa × 107 kg m−3 , bulk modulus of rigid (κr):
κa × 1010 N m−2, m=5, volume ratio: 20 %)

In Fig. 20, the two frequency domains, i.e., from 50 Hz
to 100 Hz and from 250 Hz to 300 Hz, simultaneously are
considered for the objective function. One of the purposes of
this example is to illustrate that the bases generated at one
frequency domain also can improve the accuracy of the pre-
diction at another frequency domain. For example, the bases
at the first frequency domain, from 50 Hz to 100 Hz, can be
used as the bases for the second frequency domain, from 250
Hz to 300Hz. Also the bases of the second frequency domain
can be used to approximate the dynamic system matrix for
the first frequency domain. In this example, 11 bases are gen-
erated for the first frequency domain, 50 Hz to 100 Hz with
5 Hz interval, and another 22 bases are also generated for
the second frequency domain, 250 Hz to 300 Hz with 5 Hz
interval. Thus, the total number of the bases is 33. As shown
in Table 7 the similar layout can be obtained. In this example,
the speed up over 15 can be achievable.

As a final example, Figs. 21 and 22 show the boundary
conditions realized the boundary conditions of Fig. 20 in 3
dimension space and an optimized layout in 3 dimension.
Fig. 22 is visualized using iso-surface function inMATLAB.
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Fig. 19 Optimization results: a
The layouts comparison with
and wihtout the MOR scheme
(the QSRV method: 12 bases at
100 Hz for the center frequency,
the MQSRV method: 12 bases at
the center frequencies (50 Hz,
70 Hz, 90 Hz, 110 Hz, 130 Hz
and 150 Hz)); b the responses of
the designs

Table 6 Computation of the full
order model and the model order
reductions for the frequency
domain in Fig. 19

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 34.9509 206.6 211.3 63,339

QSRV 12 39.9196 / 38.2873 2.5 (82.6×102) 1.5 (140.9×102) 3,706 (17.1×102)

MQSRV 12 35.5083 / 35.4973 2.6 (79.5×102) 1.5 (140.9×102) 3,759 (16.9×102)

Fig. 20 Optimized layouts with
and without the MOR scheme. a
The optimized layouts (The
numbers for the first and second
frequency domains are 11 and
22, respectively. One basis at
[50 Hz : 5 Hz: 100 Hz], i.e., the
number of the bases:
1 × 11 = 11 and two bases at
[250 Hz: 5 Hz: 300 Hz], i.e., the
number of the bases:
2 × 11 = 22)
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Table 7 Computation of the full
order model and the model order
reductions for the two frequency
domains in Fig. 20

Method nd � (N · rad s−1) CPU times (s) (Speed up [%])
(FOM / ROM) Forward Sensitivity Total

FOM 21.5804 192.4 184.1 69,340

MQSRV 33 21.6355 / 21.6122 5.8 (33.2×102) 2.3 (80.0×102) 4768 (14.5×102)

Fig. 21 3D box design design
example: (�d colored by gray
and discretized by 24 × 24 × 24
Q8 elements, density of air(ρa):
1.204 kg/m3, bulk modulus of
air (κa): ρa × c2 N/m2, density
of rigid (ρr): ρa × 107 kg/m3 ,
bulk modulus of rigid (κr):
κa × 1010 N/m2, air speed c:
343 m/s, m=5, volume ratio: 20
%)

Fig. 22 An 3 dimensional optimized layout with the MQSRV method
for the two frequency domains (the first frequency domain: [50 Hz: 0.05
Hz: 100 Hz] and the second frequency domain: [200 Hz: 0.05 Hz: 250
Hz], 11 and 22 bases for the first and second frequency domains, 1 basis
at [50 Hz: 0.05 Hz: 100 Hz] and 2 bases at [200 Hz: 0.05 Hz: 250 Hz])

For a clear 3 dimension layout, elements with design vari-
ables greater than 0.7 are visualized. The purpose of this
example is to investigate the numerical efficiency of the
presentMQSRVmethod for 3 dimensional problem.As illus-
trated, the layouts are similar to each other and as shown in

Table 8, the achieved speedup is over 100.This example illus-
trates that the present MQSRV method is effective in terms
of computation and performs well for large-scale acoustic
problem.

4 Conclusions

The contributions of the present work are twofold: (a) the
development of a new set of the Ritz bases at multiple cen-
ter frequencies for the improvement of the accuracy of the
model order reduction and (b) an efficient acoustic topol-
ogy optimization based on the model order reduction. The
solution of the Helmholtz equation for the acoustic sim-
ulation requires a lot of computational time in frequency
domain as the dynamic stiffness matrix is dependent on a
frequency of interest. Therefore, it is important to accel-
erate the computation. With the reduction bases computed
through the multifrequency quasi-static Ritz vector method,
it is possible to reduce the size of the dynamic stiffnessmatrix
significantly and it accelerates the optimization procedure as
well as the analysis procedure. In our numerical tests, it is
possible to achieve the speed up over 15 times.With an insuf-
ficient number of bases, the optimized layoutswith themodel
order reduction are different to the optimized layouts with-
out the model order reduction scheme. Having demonstrated
the potential of the model order reduction method for acous-
tic topology optimization on several design problems, it is
possible to explore the application of the Ritz vectors of the
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Table 8 Comparison of the full
order model and the model order
reductions in Fig. 22

Method nd CPU times per iter (s) (Speed up [%])
Forward Sensitivity Total

FOM 4077.0 4105.7 8182.9

MQSRV 33 50.9 (80.7×102) 25.7 (159.8×102) 76.7 (106.7×102)

MQSRV method for transient problem. Another interesting
topic may be to extend the topology optimization approach
with the model order reduction scheme for nonlinear struc-
ture.
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