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1. Introduction

In this study, we report the development of a novel fatigue constraint topology optimization (FCTO) method that consid-
ers dynamic failure criteria (fatigue) implemented using a stress-life approach under constant and proportional mechanical
loading, as shown in Fig. 1. Since the introduction of topology optimization (TO) for a linear structure, TO has been applied to
a wide range of engineering problems (see [1] and references therein). Nevertheless, the application of TO to dynamic failure
constraints is regarded as one of the most difficult problems in engineering. Thus, despite some recent TO developments for
static failure criteria, few studies have applied TO to dynamic fatigue failure [2-4]. To contribute to this important research
topic, we investigate the application of dynamic failure theories and related issues in their implementation, and present a
new and innovative FCTO procedure. In addition to the three well-known numerical difficulties and theoretical issues asso-
ciated with the stress-based TO method (STOM), namely the singularity problem, the local constraint problem, and highly
nonlinear behavior, the FCTO method has additional numerical issues not investigated prior to this research. First, we inves-
tigated the effect of the local mode problem of fatigue constraints, which requires static as well as harmonic analysis for the
constant and proportional load shown in Fig. 1. If linear mass interpolation is used, a gradient-based optimizer cannot find a
local optimum due to excessive oscillation of aggregated fatigue constraints, which results from the high stress value caused
by the local mode problem. In addition, non-differentiable fatigue criteria constraints such as the modified Goodman, Soder-
berg, and Gerber criteria need to be relaxed for a successful FCTO method. As shown in Fig. 2, there are non-differentiable
kinks associated with fatigue constraints based on the Soderberg and modified Goodman criteria. To effectively resolve these
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Fig. 1. Application of topology optimization with fatigue constraints.

additional issues, we proposed and implemented greater penalization of the element mass matrix with respect to the design
variables and some differentiable relaxations for the non-differentiable criteria. In short, we successfully resolved new
issues, including the local mode problem and non-differentiable criteria, for TO considering fatigue criteria.

1.1. Issues associated with fatigue constraint TO (FCTO)

Successful application of TO with fatigue constraints requires careful consideration of issues such as the local mode issue
and the non-differentiability of constraints. TO was first formulated to minimize strain energy, i.e., compliance, subject to a
volume constraint. Elaboration of this concept has led to application of TO to consider various kinds of static responses,
dynamic responses, and even multiphysics system responses. Nowadays, TO approaches to minimize compliance subject
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Fig. 2. Non-differentiable fatigue failure criteria: (a) Soderberg criterion and (b) modified Goodman criterion.

to a volume constraint and a compliant mechanism design are easily solved [1,5]. To optimize the response of a dynamic
system, eigenvalue or dynamic responses can be considered directly [6]. Furthermore, it is now possible to optimize many
multiphysics systems such as acoustic [7], electro-magnetic [8], and fluid-structure [9] environments by TO. Despite these
applications of TO, local constrained structural TO taking static failure or dynamic failure into account remains one of the
most difficult TO problems. There are three well-understood issues associated with TO with fatigue constraints: the singu-
larity problem, the local constrained problem, and the highly nonlinear behavior [10-31] encountered in minimization of a
volume subject to local von Mises stress constraints for a static load. The present TO method for dynamic fatigue is based on
a stress-life approach with a static load and alternating load; several solutions to the difficulties and issues associated with
the stress-based TO problem have been proposed. First, many solutions have been proposed to the singularity issue,
[14,17,19,21-23,32,33]. Specifically, this issue occurs due to the material interpolation approach of the SIMP method which
relaxes discrete design variables, i.e., zeros (voids) or ones (solids), so that these fall within a continuous variable range from
a small positive value, i.e., 0.001 or 0.0001, to one. Although the stress values of finite elements for a void region should be
zero, they often have non-zero values because small positive values are assigned to the corresponding design variables to
represent a void region. Therefore, gradient-based optimization will be affected by a non-smooth optimization history. To
resolve this singularity issue, the epsilon relaxation method [21,32], gp-relaxation method [16], and relaxed stress-indicator
method [14,34] have been proposed. The gp-relaxation method and the relaxed stress-indicator share some similarities in
terms of formulation of different penalization parameters for Young’s moduli, and a constitutive matrix for stress evaluation
is employed by both methods. Second, a local constraint issue arises because stress constraints are one of the local responses
of a static system and the stress values of every center point of the finite elements should be constrained. Commonly, a gra-
dient-based optimizer such as SQP (Sequential Quadratic Programming), SLP (Sequential Linear Programming), or MMA
(Method of Moving Asymptotes) [35] benefits from a dual sub-problem formulation fit for optimization problems with a
large number of design variables and a relatively small number of constraints. If we consider stress constraints for every
finite element (FE), the number of constraints becomes large. In this case, a dual optimizer does not offer benefits. To solve
this issue, a global constraint approach with p-norm [12,14,34] or Kreisselmeier-Steinhauser (KS) [10,12,13] has been pro-
posed. In this global stress approach, an optimization problem with many local constraints can be transformed into an
approximated optimization problem with a few global constraints that sufficiently approximate the local constraints. This
global stress approach has been modified by dividing the design domain into several sub-domains to better account for
the local behavior of the constraints [10,13,14,34]. Third, the highly non-linear behavior of stress constraints becomes an
issue when design variables are relaxed and the global constraint approach is employed [11]. To resolve this issue, an accu-
rate and efficient dual optimizer should be employed. The present FCTO method is based on a stress-life approach that con-
siders static and alternating structural loads. Therefore, numerical issues related to the stress-constrained TO problem for a
static structural load are encountered, and numerical techniques developed for stress-constrained TO should be applied.

1.2. Localized mode problem in dynamic fatigue problems

The localized mode problem encountered when applying TO to dynamic responses, including eigenvalues, is observed in
the FCTO method. To optimize dynamic responses, a mass matrix as well as a stiffness matrix shall be interpolated with
respect to the density design variables (see [1,36-38] and references therein for issues related to the dynamic problem).
The localized mode problem becomes severe in the FCTO method when computing stress values for alternating structural
loads. Some regions with a relatively large mass to stiffness ratio vibrate easily, and the stress values of the corresponding
regions can increase drastically. Consequently, stress constraints are violated even at regions with gp stress relaxation, and
stable convergence cannot be achieved. To overcome this phenomenon, we increased penalization of the mass penalty fac-
tor; this aspect will be discussed in more detail in the numerical section.

1.3. Non-differentiability of fatigue failure criteria

As stated above, we used a stress-life approach for fatigue criteria for a simple alternating stress status. Because common
mechanical materials often have higher strength for a compressive load than a tensile load, it is necessary to distinguish
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regions subject to a tensile load from those subject to a compressive load. However, in the case of multi-axial structural
loads, it is not easy to identify whether an applied load is tensile or compressive. Furthermore, for a static structural load
in addition to an alternating harmonic load, an effective multiaxial stress measure, such as the sum of hydraulic stress,
the signed von Mises, or the signed maximum absolute principal stress, should be defined before applying the stress-life
method [39-43]. Many fatigue experiments reported to date have revealed that a compressive load has a smaller influence
on fatigue life than a tensile load. Therefore, the signed von Mises criterion or the signed maximum absolute principal stress
should be employed to determine the state of the stress components of interest, either under a compressive load or tensile
load, based on the sign of the maximum absolute principal stress. This calculation procedure becomes problematic in struc-
tural optimization due to determination of the signs of the principal stress values as well as the non-differentiable condi-
tions. After calculating the effective multiaxial stress, the fatigue life can be estimated by the modified Goodman or
Soderberg criterion; however, these are non-differentiable with respect to the effective multiaxial stress. Note the existence
of some kinks of the envelopes of the fatigue life criteria in Fig. 2. To eliminate these kinks, we developed approximated dif-
ferentiable formulations of the envelopes.

This paper consists of three sections. In section one, we provided an overview of topology optimization with fatigue con-
straints. In the second section, we present detailed formulations of the TO method with fatigue constraints. Accumulated
damage to a mechanical structure under static and alternating loads due to fatigue failure as well as static failure are con-
sidered, and detailed formulations are provided in connection with TO. In the third section, several illustrative design opti-
mization examples, including a simple two-bar, cantilever beam, and C-shape bracket, are solved with fatigue failure
constraints. In particular, we highlight the validity and limitations of our proposed fatigue-constrained TO method by com-
paring the results of two-bar size optimization and two-bar topology optimization. Concluding remarks are provided and
future research topics are discussed in the final section.

2. Topology optimization formulation for static failure and dynamic fatigue failure

This section is devoted to the development of a new TO formulation that considers dynamic fatigue failure in the frame-
work of the SIMP method. First, basic assumptions regarding external mechanical loads (or fatigue loads) in connection with
fatigue assessment are made. Furthermore, we reformulate the fatigue analysis procedure based on the stress-life approach
using mean stress, i.e., modified Goodman or Gerber criteria for TO. Then, we derive the sensitivity of the fatigue failure con-
straint with respect to the design variables. We also modify the non-differentiable fatigue criteria for stress components into
differentiable criterion formulations.

2.1. Fatigue analysis under static and alternating loads

2.1.1. Basic dynamic fatigue assumptions: stress life approach for constant and proportional loads

To consider fatigue phenomena in TO, we adopt the stress-life approach established by numerous tests as one of the total
life approaches. Furthermore, we evaluate stress values at the centers of finite elements for constant and proportional loads.
The “constant” load condition implies that the corresponding loading is a variant of a sine wave with a single load ratio.
Therefore, one set of FE stress results, i.e., static and dynamic FE analysis results, is required to calculate the alternating
and mean stress values. The “proportional” load condition implies that even though the radius of Mohr’s circle varies during
cyclic loading, the orientation of the principal axes with respect to the loading axes remains fixed. This proportional load
condition is essential as a fatigue failure phenomenon, because non-proportional loads are not well understood. Further-
more, depending on the approach used to predict the load cycle limit before failure, state-of-the-art approaches to explain
fatigue phenomena of a mechanical structure can be divided into two categories: total life approaches and damage tolerant
approaches [40-43]. In a total life approach, the total number of effective loading cycles is estimated approximately by con-
sidering the magnitude of the effective stress applied to a mechanical component. The number of effective loading cycles
before fatigue failure with respect to the stress magnitude can be graphically represented in a S-N diagram, which can be
obtained from engineering fatigue experiments [40-43]. In real engineering applications, the history of stress or strain
induced by an external mechanical load is recorded to characterize the effective loading cycle and the S-N diagram is used
to calculate the number of loading cycles remaining before fatigue failure. In contrast, in a damage tolerant approach, prop-
agations of pre-existing fatigue flows from initial sizes into critical sizes are analyzed analytically (see [40,42,43] and refer-
ences therein for more details). We focus on the stress life approach as one of the total life approaches to characterize high
cycle fatigue life. We also assume that external loads are constant and proportional.

2.1.2. Finite element analysis: static and dynamic FE analyses

For fatigue life analysis, the magnitudes of the alternating stress and mean stress need to be calculated [39-43]. In this
research, we calculate mean stress values by static finite element analysis and alternating stress values by harmonic finite
element analysis.

Static analysis is conducted using the following equation:

KU,, = F,,, (1)
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where K, F,;, and U,; denote the global stiffness matrix, mean force vector, and the corresponding displacement vector,
respectively. Global stiffness matrix is constructed by assembling the eth element stiffness matrix, k., as follows:

NE
K= {\11(5 and k, = / B'C.Bdv (v, : eth element domain). (2)

Ve

Here, C, and B represent the constitutive matrix and the strain-displacement matrix, respectively. According to the material
penalization method in the SIMP method [1,5,14,34,44], the constitutive matrix of the eth element is interpolated by using
the eth design variable, },, as follows:

Ce = fe(7:)Co = 7:Co, 3)

where f;, Co, and n are the interpolation function of the constitutive matrix, constitutive matrix without penalization, and
penalization parameter, respectively. In this research, we fix the penalization value to 3. Without a loss of generality, the
mean stress vector can be calculated using the displacement vector from the static analysis as follows:

Ome = SceBum.ez (4)

sCe = f5(7)Co = V¢ Co, (5)

where f; and sC, are the interpolation function for stress and the constitutive matrix for stress evaluation, respectively. The
mean stress and the mean displacements of the eth element are denoted by 6., and u,,,, respectively. Note that the penal-
ization parameter, n, for stress evaluation is different than that of the static analysis to avoid the singularity issue associated
with stress-based topology optimization [14,16,34]. A generally accepted value of the penalization parameter for stress eval-
uation is 0.5 (see [14,16,34] for more details).

Harmonic finite element analysis is conducted as follows:

(K — 0*M)U, = KU, = F,, (6)

where M, K,, F,, and U, represent the mass matrix, dynamic stiffness matrix, alternating force, and the corresponding dis-
placement vector, respectively, for an exciting angular velocity, w. The consistence mass matrix can be assembled as follows:

NE NE
M= A]fM(ye)me = Aly;‘m m, and m, = / pN'Ndv (p : nominal density), (7)
e= e= e
where the penalization parameter for the mass matrix interpolation is denoted by n,, and the shape function of the eth ele-
ment is N. The interpolation function for the mass matrix is denoted by f),. The value of mass penalization is important to
avoid the localized mode issue; we fix this at 4 [1]. Without a loss of generality, the alternating stress vector can be calcu-
lated using the displacement vector from the harmonic analysis as follows:

6,0 = sC.Bug,. (8)

Fig. 3 shows the interpolation functions for Young’s modulus, stress, and the mass matrix. If the value of mass interpo-
lation, n,,, is smaller than the value of Young’s modulus interpolation, n, the natural frequency of a localized region becomes
small at the element with a small design variable. Due to this phenomenon, the localized region vibrates severely, resulting
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Fig. 3. Interpolation functions for Young's modulus, stress, and mass matrix.
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in the local mode problem. If a large mass interpolation value is used, the local mode problem can be avoided because
Young's modulus is larger than the mass for all density values, as shown in Fig. 3. Furthermore, the value of 0.5 for stress
evaluation is important to avoid the singularity problem [14,21,34].

It is important to note that both static FE analysis (1) and harmonic FE analysis (6) are needed for fatigue analysis and the
effective stress measures of the two FE analyses should be calculated to apply the S-N diagram obtained by the uniaxial fati-
gue test. After the mean and alternating stress components are calculated, the fatigue life can be estimated from the S-N
diagram. Because the S-N diagram is generally obtained from a uniaxial fatigue cycle test, some measures are needed to rep-
resent the effect of multiaxial stress components. To do this, we employ the effective stresses approach [40-42].

2.2. Fatigue life approach: modified Goodman, Soderberg, and Gerber theories

We employ the modified Goodman, Gerber, and Soderberg theories in our TO of stress effects as follows:

Modified Goodman : —2% max{am, 0] <1

; 9)

O04|6,,=0 aTs
2
Gerber: —%¢ (max[am’0]> <1, (10)
a|6;n=0 (N
04 max[op, 0]
Soderberg : + <1, G))
alom=0 Uy

where 045,,-0, 0y, and o7s represent the stress amplitudes for a fixed life for a completely reversed loading, yield strength,
and tensile strength of the material of interest, respectively. Effective alternating and mean stresses are denoted by ¢, and
om, respectively. Many relevant measures and engineering theories based on numerous tests exist to effectively correlate the
S-N diagram obtained by a one-dimensional uniaxial fatigue experiment (completely reversed stress cycles) with fatigue
phenomena for a multi-axial mechanical load. The most popular criteria to apply the experiment results and observations
from uniaxial load tests to failures with multiaxial loads are the Tresca, von Mises, and signed von Mises criteria. In this
research, we use the signed von Mises measure as the effective stress measure for multi-axial mean stress because it can
simultaneously consider tensile and compressive stress effects as well as the nominal magnitudes of stress components.
Signed von Mises measure is explained later in his section while the others measures are described in the Appendix A
[40-43]. Note that in Eqgs. (9)-(11), the effect of the compressive effective mean stress is ignored by choosing a maximum
value between zero and the employed mean stress measure (o,,). Therefore, the effective mean stress measure should be
formulated to consider the effect of compressive or tensile stress. To do this, we employ the signed von Mises criterion. How-
ever, the effective alternating stress measure is always positive because the magnitude of the fluctuating stress is considered.
Therefore, we use the von Mises stress measure to represent the effective alternating stress as follows:

1 2 2 2
%= \/(crm = 023)" + (020 — 034)" + (030 — O1a)", (12)
where 614, 024, and o3, are the sorted alternating principal stresses.

2.3. Multiaxial mean stress effect measure

Fatigue theories based on the results of fatigue uniaxial experiments have indicated that the effect of compressive mean
stress can be negligible compared to the tensile mean stress. Therefore, from a computational point of view, it is important to
determine whether a mechanical component of interest is under a compressive or tensile load [40-43]. For the case of a mul-
tiaxial load, this is not a trivial determination as with a uniaxial load case. In other words, it is challenging to determine
whether an applied stress is compressive or tensile using a mean stress measure like the von Mises stress equivalent stress,
because this measure is always positive. To determine whether an applied stress state is compressive or tensile, the sign of
the maximum absolute principal stress component can be used for the signed von Mises criterion as follows [41]:

i 2 2 2 :
O.signed von Mises _ O-rz;oanses = %\/(Ulm - GZm) + (O-Zm - 03m) + (03m - Glm) lf |O-1,m| = ‘03.m‘7
m

(13)

_O-;OHMBES = _% \/(Glm - O-Zm)2 + (JZm - 03m)2 + (O-Bm - O-1m)2 lf |O-3.,m| > ‘Gl.m‘-

Here, 01, 02m, and a3, are the sorted mean principal stresses. It should be emphasized that the above criterion is not dif-
ferentiable with respect to the stress components. Furthermore, due to its non-differentiability, it is impossible to adopt a
gradient optimization algorithm such as SLP (Sequential Linear Programming), SQP (Sequential Quadratic Programming),
or MMA (Method of Moving Asymptotes).
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2.4. Topology optimization formulation considering fatigue failure

2.4.1. A new topology optimization formulation
Based on the basic assumptions for dynamic fatigue described above, we propose the following TO formulation that min-
imizes mass usage subject to fatigue failure constraints.

Miniymize v(y),

subject to f, =L\ (04,0m) <1,
<

f — Omax _ Oat0Om 1

2e ” gy T~ oy YO (14)
_ _ Omin _ 04=0

fro=—Tgn=0000m <1,

<v. <1, e=1,2,...,NE
© : Fatigue criteria(Modified Goodman, Soderberg, Gerber).

Here, 7 is the density design variable vector of the SIMP method for NE finite elements. The first constraint, f, , or L) is the
fatigue life constraint among the modified Goodman, Soderberg, and Gerber criteria of the eth finite element, which is a func-
tion of the alternating stress, ¢, and the mean stress, ,,. The superscript @ indicates the type of fatigue criteria among the
modified Goodman, Gerber, and Soderberg criteria. To prevent static failure, referred to as one-time loading failure, the max-
imum absolute value of the sum of the alternating stress and the mean stress should be less than the yield strength at the
second constraint, f, ., and the third constraint, f5 .. The failure envelopes of the optimization problem using the fatigue fail-
ure criteria of Egs. (9)-(11) and the constraint functions of Eq. (14) are represented in Fig. 4. When constraining the Soder-
berg criterion, the second constraint, f,,, can be ignored because the failure envelope belongs to that of the second
constraint. Therefore, we only consider the modified Goodman and Gerber theories.

Singularity, local constraint, and highly nonlinear behavior issues associated with static stress-based topology optimiza-
tion arise when dynamic and static stress constraints are defined at every finite element [10,14,15,22,34]. Therefore, we
reformulate the original optimization problem in Eq. (14) by adopting a density filter method and global constraint approach
as follows [14,34]:

Minimize Z/eve, (Y : Filtered density)

subject to  (f; max)k <1, (15)
<fZ max)k < ]7
Famadi < 1, k=1,2,---,RN
¥ = E(y) with the density filter E,

(fimax)x = Max(f;,), if e € Q and the eth element exists, i = 1,2,3, (16)

where the filtered density of the eth element is y. and the number of divided sub-domains is RN. The maximum value of the
ith constraint functions of the kth subdomain is denoted by (f; n.«),- AS the maximum operator is non-differentiable, it is
common to choose an approximation function such as the p-norm function, KS function, or a similar function [14,34]. In this
research, we used the p-norm approach as follows:

(fi,max>k ;tlfr<.fl PN (e € Qk)7 (17)
1/p
(fi,PN)k = (Z(fi.e)pj}e) ) fi.e = 07 (e € Qk)v (18)
e
ljrer—l
clter = e ’-"=>m,.;f4 +(1 -t 0<au<l. (19)
i.PN/k

In the above equations, the p-norm criterion is multiplied by the correction parameter, ¢, determined as the ratio of the
value of the p-norm criterion to the value of the maximum constraint function of the previous iteration with a damping
parameter, «, to avoid oscillations of the constraints [14,34]. For the p-norm criterion, it is important to note that the value
of f; . should be positive to accurately approximate the maximum value. The first fatigue constraint, f, ., does not present any
problems as it is always positive, but the second and third constraints are not always positive depending on the value of
mean stress. Thus, simple application of the p-norm criterion to the second and the third constraints is not possible. Further-
more, the failure criterion becomes non-differentiable with the signed von Mises measure [41]. We present our solutions to
these problems in Section 2.3.
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Fig. 4. Failure envelopes of the constraints of the present optimization formulation (14).

2.5. Development of differentiable fatigue failure criteria

2.5.1. Maximum, minimum, and logical if operators

As explained in the preceding paragraph, the three explicit fatigue constraints, namely the Gerber, modified Goodman,
and Soderberg constraints, are non-differentiable with respect to stress components as well as design variables due to max-
imum, minimum, and logical “If* operators. To reformulate these constraints to be differentiable, we first make the signed
von Mises criterion differentiable using the mathematical operators proposed in [34]:

_a+b \J@-b’+e [a axzb €0
Tz.max(avb)* 2 + 2 N{b, a<b,

_a+b_\@-b’+& (bazb o
lI12,m1n(avb)* 2 2 N{a, a<hb,

where a and b are arbitrary real values. To determine the maximum and minimum principal stresses, the maximum operator
and minimum operator for three real variables can be defined as follows [34]:
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2
\/ (a-b)?
<§+§—C+T> +&

2 )

~ 2,
P3max(@,b,¢) =9+5 45+ Y@,
a a (22)

>b =
~<{b, b>aandb >
c=a >

o
T
=
<l
4
%
//~
o
NS
NS
MT
=
T
N—
+
&

(23)

Vv VoWV R

«(@,b,¢) + Pmax(a,c,b)+
/ 6, (24)

Pna
\P3.max(a7 b7 C) = \pmax(b7 a, C) + lpmax(bv C, a)+
Winax (€, @,b) + Wmax (¢, b, @)

Wiin(a, b, ¢) + Win(a, ¢, b)+
\PB.min(a’ b7 C) = ‘i’mm(bﬂ, C) +‘*Pmin(b7C, Cl)+ /6 (25)
‘ilmin((% a, b) + ‘ilmin(a b7 a)

where ¢ is a small positive value. Similarly, it is also possible to define an approximated absolute operator and an approx-
imated “if” operator as follows:

Wass(a) = Va2 + ¢, (26)

~1 if a>0
=05 if a=0 s=100>1. (27)
~0 if a<0

2.6. Differentiable signed von Mises criterion

Using the differentiable logic operators described above, the differentiable signed von Mises stress can be approximated
as follows:

Gﬁ,DnMiSES if |G1m| > |O3m],

a,sni]gned vonMises  _ ) o if |o1m| = 103.ml,
—qgronMises if |G3 0| > |G,

N {T,f('(f]_m' > |O3m) — “Pif(‘o-}m‘ > |01 m|)} % O';OnMises, (28)

>~ (\o]?m\*\aam\) - (103 107 ) x O-fnunMiseS7

1+e \/‘~“’1.m ~[03 )2+ 1+e \/(‘”l.mH“—}m‘)z*"

where gigned vonMises i 3 differentiable form of the signed von Mises stress, , in Eq. (13). To avoid too large of an

exponent in the “if” logic operator in Eq. (28), the difference between the maximum and minimum principal stress values is
normalized.

O_signed von Mises
m

2.7. Differentiable fatigue failure criteria

With the above reformulations, the equivalent multiaxial mean stress and alternating stress become differentiable with
respect to the stress components. However, deriving the differentiable fatigue failure criterion of Eqs. (9)-(11) using the
above differentiable multiaxial mean stress and alternating stress is still an issue. We therefore formulate the following
differentiable formulas with respect to the stress components:

signed von Mises 0)

LSM _ Oq + \Pz,max(gm g ]7 (29)

Differentiable modified Goodman :
O04|6,,=0 OTts
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“_signed von Mises 2
Differentiable Gerber : LS = %a_ ¥ max(Tm .0) <1, (30)
4|61 =0 ars
o ]{,2 (a,signed von Mises 0)
Differentiable Soderberg : [} = —¢— 4 —2ma7m <. (31)
Ga\a—m:() G}’

The differentiable modified Goodman, differentiable Gerber, and differentiable Soderberg are positive and denoted by
IS IS8 and, L®, respectively. As they are positive, the above criteria defined at every finite element can be aggregated with
the help of the fatigue p-norm criterion, (f; .} P-norm formulas for the second and third constraints are developed in the
next subsection.

2.7.1. Global p-norm formula for the second and third static failure criteria

As mentioned in Section 2.1, local constraint functions should always be positive to be aggregated with the p-norm cri-
terion. However, static failure criteria of the second and third constraints, (f; n.x), ad (f3 na) 1 are not always positive when
(04 +0m)/0y <0and (04 — Gn)/0y, <0, as shown in Fig. 5.

To address this issue, we adopt a maximum operator with an element-wise static failure constraint and a value of zero:

~_signed von Mises
fZE:"PZ_maX (MO> < 1, (32)
; a,
__ -signed von Mises
f3e=Yamax L,O <1 (33)
' g
y

Then, the two constraints become positive and the p-norm approach can be employed.

2.7.2. Localized mode issue for FCTO

When using harmonic finite element calculations to calculate stress values for alternating structural loads in stress-based
topology optimization, the localized mode issue becomes critical, which is one of the main findings of this study. Several
studies have demonstrated artificial vibrations at low density regions due to linear interpolation or low power penalization
of the mass matrix [1,36,37]. Consequently, oscillations of the fatigue constraints become severe and stable optimization
convergence cannot be guaranteed. To resolve the side-effects of these localized modes, several numerical and theoretical
techniques have been developed. To evaluate the effects of these localized modes on the stress calculation, let us consider
the structure shown in Fig. 6, which can be regarded as an intermediate topology optimization design. Application of a har-
monic force, results in high oscillations of structural displacements at void regions. Due to these oscillations, associated high
stress values are inevitably observed (see Fig. 6, center figure). To suppress these artificial stress values, we use a higher value
for the penalization factor of mass matrix interpolation with respect to the density design variable; the approach is both sim-
ple and robust. As illustrated in Fig. 6 (bottom figure), artificial stress values at the void regions are successfully suppressed
using this higher penalization factor.

2.7.3. Sensitivity analysis

To conduct topology optimization using a gradient-based optimizer, the sensitivity values of the objective and constraints
function need to be derived. Sensitivity of the objective function (mass usage) with respect to design variables is simple to
derive, but it is more complicated to derive the sensitivities of the constraint functions. Shown below is sensitivity analysis
performed using the adjoint variable method:

T f
O, o o o,

y m ¥ m

Fig. 5. Static failure envelopes of the present optimization problem.
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e'eQy : :

Because the external mean and alternating forces are independent of the design variables, the adjoint variables AT,
and Al , for the sensitivity analysis can be derived from static equilibrium and dynamic equilibrium equations as
follows:

‘% e ‘%u (36)
=Y fipn)i OLie 00m OOme K., (38)

OL;, 00m 06pe Uy

e'eQy
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Fig. 7. Design domain, boundary conditions, and loading conditions of the two-bar design problem (E = 200 GPa, v = 0.3, o7s = 300 MPa, g, = 165 MPa,
p = 7860 kg/m’).

o T
ik (OLi, 00, O6qe
KT}, _ l,[f’{\lk ie a ae , 39
atak gﬁk al;, \ 90, 96,, U, (39)
Of ol (OLse 00w 06me)
T iPN/k ie Om Gm,e’
Kmxm,k:—e%;k oL, (a G, DG aum) : (40)

Finally, the sensitivity of the constraint function can be derived by applying Eqs. (39) and (40) in Eq. (34) as follows:

difiene 0<fi.PN>k+0(fi.PN>k aL;, 904 Bﬁa.e_,'_("(fi.PN)k oLy, 90 OOme
d7e = T o% a7, 90a d6ac Dje oLy, 0om 96me Oje 41)
T dK T dK
+;“a.k dT:UG + )“m,k d«};ﬂ Um'
180
140
100
o, (MPa) o, (MPa)
165 165
85 \¢ 8 ¢
Cery
Rsd M Y ber
Y Feasible region %},"“d(» by Feasible region
Imdnla,,
T T T T T T
165 165 300 165 | 165 300
o, (MPa) o, (MPa)
(V) ©)

Fig. 8. (a) S-N diagram and failure envelopes of the (b) modified Goodman and (c) Gerber theories (Basquin equation: ; = 300 MPa, by = —0.075, Ny = 107,
therefore 6, -0 ~ 85 MPa).
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Fig. 9. Size optimization problem of the two-bar structure where the areas and angles of the two bars are the design variables.

3. Topology optimization examples for fatigue constraint

To demonstrate the effectiveness and validity of the present TO method based on the present formulation of Eq. (42), we
solve three optimization problems: a two-bar design, a cantilever, and a C-shape bracket. We compare these results with
those obtained by size optimization and those reported in the literature. Because the envelopes of the modified Goodman
and Soderberg theories are defined by similar formulas with different denominators in Egs. (9) and (10), we use the modified
Goodman theory and Gerber theory to solve fatigue-constrained TO. For stable optimization convergence, we apply density
filtering with a fixed filter radius using the Method of Moving Asymptotes as an optimizer [14,34]. The convergence criterion
is the largest value of the difference in design variables between sequential iterations. We set the number of maximum iter-
ations to 1000.

Miniymize V() = Jee, ¥ : Filtered density)
e=1
subject to (f} max)i < 1, (42)
<fz.max>k < 17
Fmmd < 1, k=1,2,....RN
¥ = E(y) with the density filter E.

3.1. Example 1: Two-bar design

For the first optimization example, the two-bar design example shown in Fig. 7 was considered, as relevant STOM studies
have used the von Mises Yield criterion or the Drucker-Prager Yield criterion [10]. These previous studies indicated that a
structure consisting of two supporting tension and compression bars could be obtained through TO methods by minimizing
the volume subject to a static local stress constraint or by minimizing compliance minimization subject to a mass constraint
(see [10,17] and references therein). Here, we discretized a rectangular design domain, 120 x 30 mm, using 120 x 30 linear
QUAD finite elements. We applied a clamp boundary condition to the bottom line, and evenly applied a fluctuating force
(mean force: 200 N, alternating force: 200 N) to the top center five nodes to remove the stress concentration of the external
force. In Fig. 7(b), F, and F,, represent the alternating force with a period T and the mean force, respectively. Without loss of
generality, the number of sub-regions was set to 4 and the number of total constraints was 12 (4 x 3) using the p-norm
approach to fatigue constraints in the optimization formulation (42). Plain carbon steel 1020 was employed; this material
has a Young’s modulus and Poisson’s ratio of E =200 GPa and v = 0.3, respectively. Ultimate tensile strength (o), yield
strength (oy), and density (p) were set to 300, 165 MPa, and 7860 kg/m>, respectively. To determine the alternating stress
value, 0, -0, for a minimum desired number of loading cycles in the S-N diagram in Fig. 8(a), we employed the Basquin
equation as follows [40,42,43]:

b,
Oajon-0 = 0f(2Np)7. (43)
Table 1
Size optimization results of the two-bar size optimization problem.
Optimal variables by the modified Goodman criterion Optimal variables by the Gerber criterion

A; (mm?) 2.0147 1.7688

A, (mm?) 1.8054 1.7321

B (deg) 48.136 45.601

B2 (deg) 41.864 44.399

Vi (mm?) 81.158 74.269

V, (mm?) 81.158 74.269
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Fig. 10. Localized mode issue: (a) optimization history with the local mode and (b) optimization history without the local mode after application of a higher
penalization factor to the mass matrix.

We set the fatigue strength coefficient, of, and the exponent of the Basquin equation, by, to 300 MPa and —0.075, respec-
tively. The minimum desired number of loading cycles, N;, was set to 107; normally, over 10° loading cycles represents an
infinite loading cycle. We obtained the failure envelopes of the modified Goodman and Gerber criteria; these are shown in
Fig. 8(b, ).

Few studies have considered fatigue constraints in TO. To determine the potential and limitations of the present
approach, we first conducted size optimization of the two bars discretized by two truss elements, as shown in Fig. 9.
Angles and cross-sectional areas of each bar were set to the design variables of the size optimization problem of minimizing
the volume subject to the fatigue failure constraint (the first constraint) and static failure (the second and third constraints)
[10].

According to previous relevant research [10], the optimal design variables for size optimization are §, = , =45 and
A1 = A = F/V26max, Where 6. is the maximum allowable stress value with the same compressive and tensile strength.
We performed harmonic finite element analysis as follows:
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Fig. 11. Topology optimized results of the two-bar structure and their von Mises stress contours: designs with p values of (a) 1.5 (V(y)/V, = 0.078), (b) 2
(V(y)/Vo = 0.074), and (c) 4 (V(y)/Vo = 0.072).
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where A, I, ¢, and s are the sectional area, length, cosine, and sine of the bar orientation of the eth element, respectively.
Then, the size optimization version of Eq. (42) can be formulized as follows:

Min. A]l] -‘rAzlz = ( Ay + A )1,

sin sin i,

subjectto 1, = L’ (00, 0m) < 1, (45)
f — Omax — Jat0Om
2e oy [
fre=—Tm=teingl  e=1.2

7 gy

In Table 1, optimal solutions to the above formulation based on the modified Goodman criterion and Gerber criterion are
presented. Unlike STOM with stress constraints, we obtained asymmetric solutions considering fatigue constraints. Indeed,
the structural members were more resistive to compressive load than tensile load; the 8, angle was smaller than the g,
angle. This table also shows that the angles optimized by the Gerber criterion tended to be more symmetric because the
envelope of the Gerber criterion was larger than that of the modified Goodman criterion. Because the modified Goodman
criterion is more conservative than the Gerber criterion, more material is used for the modified Goodman criterion. If a
designer wants a more conservative structure, s/he should use the modified Goodman criterion; otherwise, s/he should
use the Gerber criterion. Interestingly, when fatigue constraints were considered, the volumes (V3, V5) of the left and right
bars became equal.

Next, we solved the continuum TO using Eq. (42). Fig. 10 shows optimized layouts obtained using a higher penalization
factor than previously used to resolve the local mode issue. As stated, locally vibrating areas were present as a result of the
local mode. Indeed, TO with a low mass penalization, n,,, in Eq. (7) could give erratic FEM solutions and optimization con-
vergences, especially for void regions with lower densities. Use of a high mass penalization makes it possible to conduct TO
with stable convergence and can help alleviate serious local optima issues based on use of higher penalization factors in the
interpolation functions of the stiffness and mass matrices.
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Fig. 12. Topology optimized results of the two-bar, failure envelope, and three constraints contour considering the modified Goodman criterion: designs

with p values of (a) 1.5 (V(y)/Vo = 0.088, number of elements with 5" *"Mses - 0 and j > 0.9, NE* = 80, number of elements with g5gne vonMises
> 09, NE =82), (b) 2 (V(y)/Vo = 0.088, NE' — 84, NE~ = 86), and (c) 4 (V(y)/Vo — 0.080, NE' — 64, NE~ = 73).
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Fig. 13. Optimized topologies of the two-bar, failure envelope, and three constraints contour considering Gerber criterion: designs with p values of (a) 1.5
(V(y)/Vo = 0.089, NE* = 64, NE- = 89), (b) 2 (V(y)/Vo = 0.084, NE" = 60, NE- = 65), and (c) 4 (V(y)/Vo = 0.086, NE" =67, NE- = 71).
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Fig. 14. Optimized layouts for the two-bar with different numbers of sub-domains considering the modified Goodman criterion: (a) 1 sub-domain
(V(y)/Vo = 0.088), (b) 2 sub-domains (V(y)/V, = 0.097), (c) 4 sub-domains (V(y)/V, = 0.088), and (d) 8 sub-domains (V(y)/Vo = 0.106).

Figs. 11-13 show the optimized layouts considering the static failure criteria of the DE theory and the dynamic fatigue
failure criteria of the modified Goodman and Gerber theories with different p values, respectively. Comparison of the opti-
mized layouts revealed several important aspects related to fatigue constraints.

First, the unsymmetrical designs shown in Figs. 12 and 13 reflect the influence of the unsymmetrical fatigue constraint in
Fig. 8; in contrast, the designs in Fig. 11 based on a static stress constraint are symmetrical, which is linked to size optimi-
zation. Unsymmetrical envelopes of dynamic failure criteria have high fatigue strength to compressive load, whereas the DE
theory (the static failure criterion) does not distinguish between a compressive load and a tensile load. For a material of

______________________________________________________________

Ak
™~
/
Ty

50 mm ) \ E J
RVARVL
mm H T 1
(a) (b)

Fig. 15. A cantilever beam structure with mean and alternating forces (E = 200 GPa, v = 0.3, 15 = 300 MPa, 0, = 165 MPa, p = 7860 kg/mz): (a) geometry
and boundary conditions and (b) mean and alternating forces.
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Fig. 16. Optimized layouts for the cantilever beam (p = 4): (a) an optimized layout based on the DE theory (von Mises stress criteria) (V(y)/Vo = 0.278), and
optimized layouts based on the dynamic fatigue failure of the (b) modified Goodman criterion (V(y)/V, = 0.345, NE* = 570, NE~ = 547) and (c) Gerber

criterion (V(y)/Vo = 0.333, NE* = 548, NE~ = 504).

interest with a high fatigue strength for a compressive load, unsymmetrical designs, such as those shown in Figs. 12 and 13,
are obtained through TO for fatigue constraints. Second, by comparing the optimized layouts in Figs. 11 and 12, and Fig. 13 in
terms of angles and volumes with those of the size optimization results shown in Table 1, it is clear that the results obtained
with a p value of 1.5 are similar to the size optimization results. To correctly reflect the largest stress value in p norm for a
continuum structure, several studies have recommended using a positive integer value of more than 3 for the p value
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Fig. 17. Comparison of the optimized layouts (dS" > d5", d$® ~ d3°).

[14,16,30,34]. Based on our results, we made the following observations with the caveat that the obtained layouts were local
optima. The angle between the two bars became narrower as the p value increased. We attribute this to the aggregation
characteristics of p-norm. It is likely that a large p value, which plays an important role in aggregating local stress constraints,
more severely magnifies the effect of stress concentrations at finite elements near the force and displacement boundary con-
ditions. It is also evident that there were differences between the truss model and the continuum model. In addition, mass
ratios with different p values were almost the same in the present examples, where Vj is the total volume. Third, in the opti-
mized layouts shown in Fig. 12 (modified Goodman) and Fig. 13 (Gerber), the layouts based on the Gerber theory tended to
preserve the symmetry property better than those based on the modified Goodman theory. These phenomena can be
explained by comparing the shapes of the failure envelopes of the two theories in Fig. 8; the failure envelope of the Gerber
theory was more symmetric than that of the modified Goodman theory. Moreover, the volumes of the left and the right bars,
NE* and NE~, were similar to each other, as observed in the size optimization results. As a final observation, limitations of the

Optimized layout Optimized layout Optimized layout Optimized layout
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Fig. 18. Optimized layouts for the cantilever beam with different numbers of sub-domains considering the modified Goodman criterion: (a) 2 sub-domains
(V(y)/Vo = 0.540), (b) 4 sub-domains (V(y)/V, = 0.449), (c) 10 sub-domains (V(y)/V, = 0.345), and (d) 20 sub-domains (V(y)/V, = 0.345).
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Fig. 19. Optimized layouts for the cantilever beam with different numbers of minimum desired fatigue cycles considering the modified Goodman criterion:
minimum of (a) 10% (V(y)/Vo = 0.227), (b) 10° (V(y)/V, = 0.256), (c) 10° (V(y)/V, = 0.291), and (d) 107 (V(y)/V, = 0.345) desired cycles.

gray elements used in the present approach is evident in the plots of the mean signed von Mises stress and the alternating
von Mises stress. Due to use of intermediate design variables for design variable filtering and to address the local optima
issues of TO, the stress values of finite elements with lower densities were underestimated. We tested the effect of the num-
ber of sub-domains; results are shown in Fig. 14. All optimized results had two bars, but the objective values were different
due to the local optimum issue of local constraints.

3.2. Example 2: Cantilever beam

We next considered a cantilever beam structure with a clamped boundary condition and downward proportional loading,
as shown in Fig. 15, to evaluate the validity of the observations drawn from the first example. As before, we use the material
properties of plain carbon steel 1020 [39]. Design domain was discretized by 5000 2 x 2 mm quadrilateral Q4 plane stress
elements. Number of regions used to calculate p-norm was 10 and the number of constraints in the TO formulation for this
example was 30 (10 x 3). Magnitudes of the mean and 1 Hz alternating forces were set to 100 and 400 N, respectively; it
should be emphasized that the forces are proportional loadings. The fatigue strength coefficient, g, and the exponent of
the Basquin equation, b, were set to 300 MPa and —0.075, respectively. The minimum desired number of loading cycles
for the S-N curve, Ny, was set to 107

As in the first TO example, only the static failure criteria of the DE theory and the fatigue failure criteria of the modified
Goodman and Gerber theories were used to obtain the optimized layouts and associated stress and constraints contours
shown in Fig. 16(a-c). Similar to the observations made in the first TO example, the symmetricity of the optimal layouts
was based on the symmetricity of the envelopes of the three constraints. When dynamic fatigue was considered, the tension
bars appeared to compensate for fatigue degeneration of the material caused by tensile stress. Second, the layout optimized
based on the modified Goodman criterion (Fig. 16(b)) was more unsymmetrical than that of the Gerber criterion (Fig. 16(c)).
Moreover, as compared in Fig. 17, the ratio of the upper and lower margins of the cantilever beam (d, /d,) was quantitatively
larger in Fig. 16(b) than in Fig. 16(c). Additionally, the layout in Fig. 16(b) was more conservative in terms of the used volume



1158 S.H. Jeong et al./Applied Mathematical Modelling 39 (2015) 1137-1162

Optimized layout Optimized layout

| o
0.00 1.00

| o | | L | | L |
0.00 1.00 0.00 1.00 0.00 1.00

| 1 ]
0.00 1.00

f3 contour f3 contour f3 contour

(@ (b) (©

Fig. 20. Optimized layouts for the cantilever beam with different NE values considering the modified Goodman criterion: (a) 3200 (80 x 40) elements
(V(y)/Vo = 0.381), (b) 5000 (100 x 50) elements (V(y)/Vo = 0.345), and (c) 7200 (120 x 60) elements (V(y)/Vo = 0.363).
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Fig. 21. A bracket with mean and alternating forces (E = 200 GPa, v = 0.3, 075 = 300 MPa, 0, = 165 MPa, p = 7860 kg/m?): (a) geometry and boundary
conditions and (b) mean and alternating forces.

than that in Fig. 16(c), because the failure criterion of the modified Goodman is more conservative than that of the Gerber
criterion.

Optimized topology layouts obtained by changing the number of sub-domains for the p-norm calculation are shown in
Fig. 18. Material usage of each optimized layout decreased until the number of sub-domains increased to 20. Use of an appro-
priate number of sub-domains allowed for effective consideration of the local behavior of the fatigue life constraint, in turn
resulting in a better layout with local constraint values evenly distributed in the structural domain. However, it is not clear
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Fig. 22. Optimized topologies of the bracket: (a) optimized layout considering the von Mises stress criterion (V(y)/V, = 0.184), (b) dynamic fatigue failure
based on the modified Goodman criterion (V(y)/Vo = 0.345, NE" = 779, NE~ = 882) and (c) Gerber criterion (V(y)/Vo = 0.295, NE" = 806, NE~ = 885).

how to choose the number of sub-domains; we proposed values between 4 and 12 for this example based on our numerical
experience. In Fig. 19, we show the results of testing the effect of the number of loading cycles. Because an increase in the
minimum desired fatigue life resulted in a more conservative fatigue constraint, as expected, the optimized layouts became
more conservative with increasing loading cycle number. Fig. 20 shows the effect of the mesh quality on the results. The lay-
outs in Fig. 20(a-c) were obtained with different mesh dimensions (3200 (80 x 40), 5000 (100 x 50), and 7200 (120 x 60));
different layouts were obtained due to the local optima issue. Although we used mesh-independent filtering for this
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example, the layouts differed according to changes in mesh size. Because local constraints were considered and regional con-
straints changed according to the each element’s stress or fatigue constraint value, different local optimum were obtained for
different mesh sizes.

Example 3: C-shape bracket

For the final optimization example, we chose the C-shape bracket topology optimization problem discretized by 11,200
1 x 1 mm QUAD elements, as shown in Fig. 21, to determine how our formulation treats reentrant corners. The material
properties of plain carbon steel 1020 were used and the same parameter values as used for examples 1 and 2 were assigned
to the parameters for the S-N curves. Lower left edge of the bracket was clamped with mean and alternating forces applied at
the center part of the right lower edge. Rounded corners are preferred to avoid stress concentration at reentrant corners
[14,34]. The number of regions for p-norm was set to 8, and the total number of failure constraints was 24. The magnitudes
of the mean and 5 Hz alternating forces were 20 and 100 N, respectively.

Fig. 22(a-c) show the optimized layouts of the bracket constrained using the static failure criterion of the DE theory, the
fatigue failure criterion of the modified Goodman theory, and the fatigue failure criterion of the Gerber theory, respectively.
Similar to the layout based on the DE theory, the other two layouts had rounded corners at the reentrant domains to avoid
stress concentration. Some differences existed at the left clamped edges in Fig. 22(a) and Fig. 22(b, c). The left leg of the two-
bar in Fig. 22(a) gathered together at the clamped edge, but several bars emerged in the layouts in Fig. 22(b, ¢) and were not
gathered together, as the fatigue failure criteria was more conservative. This example indicated that rounded corners are
preferable not only when considering static failure, but also when considering dynamic failure.

4. Conclusions

Because fatigue failure contributes greatly to the reliability and expected life span of mechanical engineering structures,
civil buildings, and marine structures, a mathematical optimization process that considers failures due to static and dynamic
loads is an important engineering task. Despite some relevant stress-based topology optimization studies, fatigue failure has
rarely been considered in the context of TO. Thus, our focus in the present research was to investigate the effects of local
mode and the non-differentiability of fatigue constraints and present some engineering resolutions to these issues to enable
successful fatigue constraint TO.

To estimate the fatigue life or the limit number of an alternating loading of a material of interest, we utilized a stress-life
approach. To consider the effect of mean stress on fatigue, we used the modified Goodman, Soderberg, and Gerber theories
after calculating stress values using a static FE procedure and a harmonic FE procedure. In addition, we demonstrated that
the local mode issue, which is problematic in the dynamic topology optimization problem, was also a serious problem in the
fatigue-constrained TO method. Localized mode resulted in excessive fluctuations of stress values and associated fluctua-
tions in fatigue constraints, which made the optimization process difficult. We resolved this by employing a higher mass
penalization factor. Furthermore, we addressed the differentiability issue of fatigue constraints by introducing differentiable
local operators. To demonstrate the applicability and validity of our TO formulation, we obtained optimum solutions for 2D
continuum structures. Due to the effects of compressive and tensile forces on fatigue life, unsymmetrical designs and
rounded corners, which can also prevent static failure, were obtained. In addition, by comparing the optimum solutions
for an idealized truss structure, we investigated the effects and local optimum issues associated with the p-norm penalty
factor. In short, we developed and evaluated a new dynamic fatigue-constrained topology optimization method.
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Appendix A
A.1. Effective stress measures for alternating stress: von Mises stress and Tresca stress
There are several measures for effective multiaxial alternating stress components similar to the von Mises stress, which is

obtained based on distortion energy theory, and Tresca stress, which is obtained based on maximum shear stress theory as
follows:

w1
gonMises — 7 V(010 = 020 + (02 — 53) + (3 — 1), (46)

O1a— 0O
Gzresca = Toax = la 5 3‘71 (47)

where a4, 024, and o3, are the sorted alternating principal stresses. The von Mises stress measure and the Tresca stress
measure are denoted by gz°"Mies and giresce, respectively.
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A.2. Effective stress measures for mean stress: von Mises stress and hydrostatic axial stress

Similar to the alternating stress criteria, the von Mises criterion can be used for effective multiaxial mean stress as
follows:

. 1
o.;oanses _ \/(O-lm _ O'Zm)z + (Oam — 0-3m)2 + (O3m — O'1m)2, (48)
V2
G%esca = Tomax = 6”’1;&’ (49)

where 61, G2m, and o3y, are the sorted mean principal stresses. Because these two criteria are always positive, whether an
element is under compression or tension cannot be determined. In addition to the above von Mises mean stress measure, the
sum of the hydrostatic axial stresses can be used to calculate the effective multiaxial mean stress as follows:

0" = G1m + Oam + O3m = Oxin + Oym + Tom. (50)
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