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a b s t r a c t

This research develops a new topological optimization (TO) method to assess dynamic
fatigue failure in the frequency domain for random excitation forces. Besides static
failure, fatigue life (or fatigue failure) is an important design criterion for the safety
of mechanical and building structures. Therefore, many assessment theories and
computational approaches have been proposed, and they can be divided into two
categories: time domain and frequency domain. Although both approaches have been
successfully applied for engineering purposes, they are rarely considered in structural TO.
To consider fatigue failure caused by stochastic mechanical loads in structural TO, this
research adopts fatigue assessment approaches in the frequency domain, such as narrow
band solution, the Wirsching and Light method, the Ortiz and Chen method, and Dirlik
method. For TO, we perform an adjoint sensitivity analysis with those fatigue assessment
methods. We consider some two-dimensional benchmark problems and show that the
present design method successfully constrains fatigue.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This research presents a new topology optimization (TO) method that can consider fatigue life in the frequency domain.
In addition to static failure, fatigue life or fatigue failure is an important design criterion for the safety of mechanical and
building structures, as shown in Fig. 1. When a mechanical structure is excited by an arbitrary dynamic load, some cracks
arise inside the structure, and those cracks can eventually cause the fracture of the structure. Thusmany assessment theories
and computational approaches have beenproposed, and they can be divided into two categories: timedomain and frequency
domain. Although they have been successfully applied for engineering purposes, they are rarely considered in structural TO.
Thus, this study contributes to this research area by developing an optimization formulation and modifying these theories
and approaches to make them suitable for structural optimization.
Fatigue life, which is the time before a sudden fracture, can be assessed in the time or frequency domain [1–9]. The rain flow
counting method is generally accepted as the standard approach in the time domain. However, its application is limited to a
relatively simple load profile and a short time period. To consider complex load profiles for a long time span, applied loads
should be analyzed in the frequency domain with the S–N curve. Some assessment methods have already been developed
[3–9]. Thesemethods calculate the PSD (power spectrum density) function and PDF (probability density function) of applied
loads; their features are briefly explained in the subsequent sections, or see [3,4,8,9] formore details. Using PSD and PDF, the
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Fig. 1. General fatigue progress process.

Fig. 2. S–N curve for fatigue analysis.

time history information of applied loads can be analyzed in the frequency domain, making it easy to analyze a complex load
over a long time. The load profiles in the frequency domain are further divided into the narrow band frequency region and
the wide band frequency region, depending on the frequencies of the focused applied load. The assessment in the narrow
band frequency regionwas first proposed in [3,4,8,9], and it is called the narrow band solution [3,4,8,9]. Although this narrow
band solution is efficient and conceptually easy to understand, it neglects information from thewide band frequency region,
and its assessment is conservative. To overcome those limitations, many new approaches, such as the Wirsching and Light
method, the Ortiz and Chen method, and Dirlik method, have been proposed [5–7].

From a structural optimization point of view, it is important to consider both fatigue failure and static failure. Much research
has already been done to address structural failures [10–28]. The consideration of local failures in TO is especially difficult,
and much research has been conducted. However, researchers rarely consider the fatigue constraint in structural TO, which
allows free-material distribution [27,29–31].

TO was proposed in [32,33], and it has been applied to various application areas [34–38]. Because it allows free-
material distribution, it can provide much better initial designs than the size or shape optimization methods. Despite its
dissemination in various multiphysics systems, its application to the failure constraint is still a difficult problem because of
stress singularity, the local constraint issue, and nonlinear behavior. Thus, many innovative ideas such as qp-relaxation, the
p-norm approach, and regional constraints have been proposed to resolve these issues [10–12,14–18,21,22,26,39]. Recently,
static failure for ductile and brittle materials and the dynamic fatigue constraint for harmonic load (one-frequency load)
have been considered in TO [26,27]. But it remains difficult to consider complicated dynamic loads. To contribute to these
research fields and consider complex load profiles over a long time period, this research applies fatigue life assessments
in the frequency domain to TO. Similar to structural TO for static failure, many theoretical difficulties, such as the local
constraint, stress singularity, and nonlinear constraint issues, occur in the fatigue constraint in the frequency domain of
interest. To resolve them, the qp-relaxation approach and the p-norm approach have been applied, which permits the
structural TO problem to be solved with consideration of fatigue failure in the frequency domain.
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Fig. 3. An illustrative example of peaks and upward zero crossing for a random excitation. (a) The concepts of Ep and E0+ (Ep ∼= 7, E0+ ∼= 3) and (b) the
case of a harmonic load (Ep = 3, E0+ = 3).

Fig. 4. Power spectrum density function.

This paper is organized as follows: in Section 2, we explain fatigue life estimation approaches in the frequency domain
and modify those approaches for TO. We present and derive a new TO formulation and sensitivity analysis for the fatigue
constraint with respect to the design variables in Section 3. In Section 4, we solve several numerical examples to show the
effectiveness of our formulation. In Section 5, we provide our conclusions and findings.

2. Fatigue life estimation

In this section, we explain the estimation approaches for fatigue life in the frequency domain before we develop a new
TO formulation constraining fatigue life. One of the distinct advantages of the estimations of fatigue life in the frequency
domain is that they can consider fatigue life caused by non-proportional loads that change their principal axes, whereas
the fatigue life methods in the time domain cannot consider the effect of non-proportional loads. It is important to use
some special estimation approaches for the calculations of the equivalent stress such as Langer criterion, modified Langer
criterion, and Lee criterion [40]. However in the present research, as we adopt the von-Mises stress for the calculations
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Fig. 5. Probability density function.

Fig. 6. Peak count by the narrow band solution.

b ca

Fig. 7. A limitation of the narrow band solution [4,8]. (a) An original load history, (b) a load profile by the narrow band solution, and (c) a load history by
the narrow band solution. (See [4,8] for more details.)

of the equivalent stress, the non-proportional loads are not considered. Furthermore, as they are based on the frequency
domain, it is relatively easy to consider random vibration or random excitation. Here, however, we consider a relatively
simple excitation as an illustration.

2.1. Fatigue life estimation in the frequency domain

When an isotropic structure is subjected to repetitive mechanical loads less than its ultimate stress, micro and macro
cracks develop, accumulate, and progress inside the structure. If the number of repeated loads exceeds certain limitations,
the structure will fracture. Therefore, in an engineering design process, it is important to know or predict the cycle numbers
of repeated mechanical loads as well as their magnitude. To address the accumulated damage, the standard approach is to
apply following Miner’s rule.

D =

kn
i=1

ni

Ni
(1)
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a

b

Fig. 8. An example of the singularity of accumulated damage. (a) An analysis domain and (b) the applied load (F = F1eiω1 t + F2eiω2 t , F1 = 450 N, ω1 =

2π (rad/s), F2 = 150 N, ω2 = 10π (rad/s), T = 100 s).

a b

c d

Fig. 9. Contours of the accumulated damage (density = 0.5): (a) Narrow band solution, (b) Wirsching and Light method, (c) Ortiz and Chen method and
(d) Dirlik method.

where the accumulated damage, the total number of stress blocks, the number of actual loading cycles, and the number of
loading cycles to failure under the ith stress are denoted by D, kn, ni, and Ni, respectively. Note that Miner’s rule assumes
the applied loads cause purely alternating stresses with zeros for average stress values. For the ith-stress Si, the number of
loading cycles to failure, Ni, is computed by the S–N curve (Fig. 2).

NSm = C (2)

where C andm are the constants determined by the material used. The subscript, i, is intentionally omitted in N and S. The
stress amplitude and the number of repeated stresses are denoted by S and N , respectively.

Despite a straightforward application of the S–N curve, it can be applied only tomechanical loadswhose timehistories are
provided a priori and whose profiles are relatively simple or countable. With stochastic or long-span loads across decades,
the application of the S–N curve becomes almost impossible, and other measures must be used for fatigue analysis. For
example, in the offshore oil industry, the requirement for a rapid fatigue analysis method based on the frequency domain
became apparent in designing large jacket platforms because fatigue failures had to be prevented. But fatigue analysis in
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Fig. 10. Contours of the scaled accumulated damage from Fig. 9: (a) Narrow band solution, (b) Wirsching and Light method, (c) Ortiz and Chen method
and (d) Dirlik method (SF = 2 and density = 0.5).

a b

c

d

Fig. 11. L-shaped bracket problem. (a) The geometry and the load (the excited load was distributed on the six nodes on the tip of the right edge; the total
number of elements in the design domain is 5000), (b) the S–N curve (C : 1.02 × 107 MPa and m: 5.56), (c) a mechanical load (F = F1eiω1 t + F2eiω2 t , F1 :

135 N, ω1 = 2π, F2 : 45 N, ω2 = 10π, T = 100 s), and (d) the frequency response function of dynamic compliance with the uniform design variables
(density = 1).

the time domain becomes expensive because of the large number of degrees of freedom in FE models and the high number
of possible load combinations, which makes the speedy calculation of a frequency domain analysis attractive. In connection
with the S–N curve, one possible approach could be to useMiner’s rule after analyzing load history in the frequency domain
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Fig. 12. Optimal layouts considering the fatigue constraint (SF = 1.0, WL = Wirsching and Light, OC = Ortiz and Chen).

a

b

Fig. 13. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 1.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 11(d).)

as follows:

D =

kn
i=1

ni

Ni
=

EpT
C


∞

0
Smp (S) dS (3)

where the expected rates of load peaks, the excited stress range, and the probability density function are denoted by Ep, S,
and p(S), respectively. The total period is denoted by T . In Eq. (3), the approximate rates of load peaks, Ep, can be indirectly
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Fig. 14. Optimal layouts considering the fatigue constraint (SF = 2, WL = Wirsching and Light, OC = Ortiz and Chen).

a

b

Fig. 15. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 2.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 11(d).)

computed by:

Ep =


m4

m2
, E0+ =


m2

m0
(4)

where E0+ is the approximate rate of zero up-crossing. The nth moment of a one-sided PSD function of alternating stress is
denoted by mn. Simply, the approximated numbers of load peaks and the numbers of zero up-crossings per second in the
case of a random force in Fig. 3 are Ep and E0+ , respectively.
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Fig. 16. Optimal layouts considering the fatigue constraint (SF = 5, WL = Wirsching and Light, OC = Ortiz and Chen).

Fig. 17. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 5.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 11(d).)

The nth moment of the PSD in Fig. 4 is defined as follows:

mn =


∞

0
f nW (f )df (5)

whereW is the power spectral density function for random stress.
As a random mechanical load can be presented in PDF form, it is possible to evaluate the damage for random mechanical
load in the frequency domain. Fig. 5 shows an example PDF.
Because the results of a frequency response analysis of a general random mechanical load show multi-frequency
components, it is not easy to integrate the integrals in Eqs. (3) and (5).Many approximatemethods have been developed [4,9]
and can be categorized depending on the region size of the frequency components in a random load, i.e., narrow frequency
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Fig. 18. Comparison of the fatigue damage of the design generated using Dirlik method as calculated by all four fatigue assessment methods (SF = 2,
WL = Wirsching and Light, OC = Ortiz and Chen).

a b

Fig. 19. Optimization histories of the designs by the Dirlik method: (a) SF = 1 and (b) SF = 2.

a

b

Fig. 20. Another mechanical load. (a) A high frequency mechanical load (F = F1eiω1 t + F2eiω2 t , F1 : 112.5 N, ω1 = 12π, F2 : 37.5 N, ω2 = 16π, T =

100 s) and (b) the frequency response function of dynamic compliance with the uniform design variables (density = 1).

region or wide frequency region. For a random load with a narrow frequency region, the narrow band solution is available.
For a random load with a wide frequency region, the Wirsching and Light method, the Ortiz and Chen method, and Dirlik
method have been proposed [3–9]. These approaches adopt different PDFs.
Narrow band solution
In the narrow band solution, the simplest PDF in Eq. (6) is used.

p(S) =
S

4m0
e

−S2
8m0 (6)

where S is the stress amplitude and m0 is the 0th moment. Its peak counting example is shown in Fig. 6. Because the PDF
function is simple, its computation is relatively easy and straightforward. One of the pitfalls of thismethod is that as it always
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Fig. 21. Designs with no scaling factor.

Fig. 22. Optimal layouts considering the fatigue constraint for the mechanical load in Fig. 20. (SF = 2, WL = Wirsching and Light, OC = Ortiz and Chen).

assumes that one positive peak follows one negative peak with the same magnitude for a positive valley for one cycle, as
shown in Fig. 6(a); positive valleys and negative floors are ignored in a wide frequency range in Fig. 6(b).
For example, consider the mechanical load in Fig. 7(a), which is the combination of a low frequency load (1 Hz) and a high
frequency load (10 Hz). With the narrow band solution, the mechanical load is approximated as shown in Fig. 7(b) and (c).
Therefore, the narrow band solution method becomes a conservative measure in fatigue design.
The Wirsching–Light method and the Ortiz–Chen method

As explained above, the narrow band solution is a conservative or incorrect measure for a mechanical load with a wide
frequency range. To consider fatigue in a wide frequency range, some alternative methods, such as the Wirsching and Light
method [5] and the Ortiz and Chen method [6], have been proposed. In the Wirsching and Light method, the accumulated
damage can be calculated as follows:

DWL = ζWDNB (7)

ζW = aW + [1 − aW ] (1 − λ)bW , λ =
m2

√
m0m4

(8)

aW = 0.926 − 0.033m, bW = 1.587m − 2.323 (9)

where DWL is the accumulated damage approximated by the Wirsching and Light method. The accumulated damage
calculated by the narrow band solution is denoted by DNB. Them is the exponent value in Eq. (2).
Similar to the Wirsching and Light method, the Ortiz and Chen method calculates the accumulated damage as follows:

DOC = ζODNB (10)

ζO =
1
κ


m2ml

m0ml+2
, l =

2.0
m

, κ =
m2

√
m0m4

(11)

where the accumulated damage defined by the Ortiz and Chen method is DOC .
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a

b

Fig. 23. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 2.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 20 (b).)

a

b

c

d

Fig. 24. Cantilever beam problem. (a) The geometry and the load (the excited load is distributed on the eleven nodes in the center of the right edge; the
total number of elements in the design domain is 5000, and the number of reinforcement elements is 600), (b) the S–N curve (C : 1.02 × 107 MPa and
m : 5.56), (c) a mechanical load (F = F1eiω1 t + F2eiω2 t , F1 : 450 N, ω1 = 2π, F2 : 150 N, ω2 = 10π, T = 100 s) and (d) the frequency response function
of dynamic compliance with the uniform design variables (density = 1).
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Fig. 25. Optimal layouts considering the fatigue constraint (SF = 1.0, WL = Wirsching and Light, OC = Ortiz and Chen).

a b c

0
0
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0.25 0.5 0.75 1.0

Fig. 26. The effect of the gray element (2475th element): (a) location of the 2475th element, (b) change of the normalized accumulated damage and
(c) change of the total volume.
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a

b

Fig. 27. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 1.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 24(d).)

Dirlik method
The Wirsching and Light method and the Ortiz and Chen method are experimental formulations based on the narrow

band solution used to overcome its limitations. However a more accurate method is presented by selecting another PDF, as
shown in Eq. (12).

p(S) =
1

2
√
m0


D1

Q
e

−Z
Q +

D2Z
R2

e
−Z2

2R2 + D3e
−Z2
2


(12)

Z =
S

2
√
m0

, κ =
m2

√
m0m4

, X =
m1

m0


m2

m4
, Q =

1.25(κ − D3 − D2R)
D1

D1 =
2

X − κ2


1 + κ2

, D2 =
1 − κ − D1 + D2

1

1 − R
, D3 = D1 − D2, R =

κ − X − D2
1

1 − κ − D1 + D2
1

where the involved parameters are Z , κ , X , Q , D1, D2, D3, and R. With Dirlik method, a more accurate prediction is possible;
see [4,7–9] for more details.

2.2. Finite element analysis

For TO considering fatigue, this research uses the finite element procedure. Because we need to consider the harmonic
responses of a structure, we adopt the following harmonic finite element procedure.

K − ω2M

U = KDU = F (13)

where the mass matrix, the stiffness matrix, and the dynamic stiffness matrix are denoted by K, M, and KD, respectively. The
displacement and the force vectors are U and F, respectively. The angular frequency is ω. The stiffness matrix and the mass
matrix are constructed by following standard FE procedures.

K =

NE
e=1

ke and ke =


Ωe

BTCeBdv (Ωe : the eth element domain) (14)

M =

NE
e=1

me and me =


Ωe

ρNTNdv (ρ : the nominal density) (15)
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Fig. 28. Optimal layouts considering the fatigue constraint (SF = 2, WL = Wirsching and Light, OC = Ortiz and Chen).

where the constitutive matrix and the strain–displacement matrix are Ce and B, respectively. The shape function is denoted
by N. The number of finite elements is NE.

3. Topology optimization formulation for the fatigue constraint in the frequency domain

3.1. Optimization formulation and material interpolation

Optimization formulation
This section presents a new TO formulation based on a fatigue life method in the frequency domain. The objective is

an extension of the stress-based TO problem minimizing the volume subject to local static stress constraints. Due to some
numerical difficulties and issues, many innovative approaches, such as the density filter, the qp-relaxation method, the
p-norm approach, and regional constraints, have been proposed. Initiated by that research, the following optimization
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a

b

Fig. 29. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 2.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 24(d).)

problem is considered here.

Minimize
γ̃

V (γ̃) =

NE
e=1

γ̃eve (γ̃ : filtered density)

Subject to ⟨Dmax⟩ ≤ 1
γ̃ = Ξ (γ) with the density filter Ξ

(16)

⟨Dmax⟩ ≡ C iter


NE
e

Dp
e γ̃e

 1
p

(e ∈ Ωe) (17)

⟨DPN⟩ ≡


NE
e

Dp
e γ̃e

 1
p

(e ∈ Ωe) (18)

C iter
= α

Diter−1
max

⟨DPN⟩
iter−1 + (1 − α) C iter−1 0 < α < 1 (19)

where the eth design variable and the eth filtered design variable are denoted by γe and γ̃e, respectively. The eth volume is
ve. The accumulated damage of the eth element is De. The value of the p-norm is denoted by p, and a positive value from 3
to 5 is used for p. The correction factor at the iter-th optimization iteration, the maximum accumulated damage value at the
iter-th optimization iteration, and the damping factor are denoted by C iter , Diter

max, and α, respectively.
Material interpolation for TO
Following the SIMP method, the constitutive matrix Ce is interpolated as:

Ce = γ nk
e C0 (20)

Plane stress : C0 =
E0

1 − ν2

1 ν 0
ν 1 0

0 0
1 − ν

2

 (21)

where the eth design variable is γe with the penalization nk. Nominal Young’s modulus and Poisson’s ratio are denoted by
E0 and ν, respectively.
For TO, the stress at the eth element is evaluated as follows:

σe = CS,eBue (22)

CS,e = γ nS
e C0 (23)
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Fig. 30. Optimal layouts considering the fatigue constraint (SF = 5, WL = Wirsching and Light, OC = Ortiz and Chen).

where the stress and displacements of the eth element are denoted by σe and ue, respectively. The penalization parameter
for the stress evaluation is ns. Here it should be noticed that the above formulations adopt the inconsistent constitutive
matrix CS,e to overcome the singularity issue in the stress-based TO; see [17,21,26] for more details. The common penalty
factors for nk and ns are 3 and 0.5, respectively. The mass matrix is interpolated and formulated as:

M =

NE
e=1

γ nm
e me (24)

where the penalization parameter for the mass matrix is denoted by nm. This penalization factor is set to a positive value
higher than nk to avoid the localized mode issue; see [16] for more details.
The constraint controlling issue

When we adopt the direct formulation for the accumulated damage in Eq. (18), the singularity of the constraint with
respect to the design variable is observed; this singularity is not related to the stress singularity issue. To show this feature,
the cantilever structure of Fig. 8 can be considered.With an evenmaterial distribution inside the rectangular design domain,
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a

b

Fig. 31. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 5.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 24(d).)

a

b

c

Fig. 32. Comparisonwith the complianceminimization problem (the damage plotted in the logarithm scale: log10 D): (a) the optimized layout in Fig. 30(d)
(Dirlik method) and the accumulated damage distribution (b) the layout minimizing the compliance subject to the mass constraint (Mass ratio = 40%) and
the accumulated damage distribution and (c) the layout minimizing the dynamic compliance subject to the mass constraint (Mass ratio = 40%) and the
accumulated damage distribution.
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Fig. 33. Reinforced cantilever beam structure problem. (a) The geometry and the load (the excited load is distributed on the eleven nodes in the center of
the right edge), (b) the S–N curve (C : 1.02 × 107 MPa andm: 5.56), (c) a mechanical load (F = F1eiω1 t + F2eiω2 t , F1 : 170 N, ω1 = 4π, F2 : 170 N, ω2 =

6π, T = 1000 s), (d) the frequency response function of dynamic compliance with the uniform design variables (density = 1), and (e) a finite element
model of the design domain (total number of design domain elements is 5000, and the number of reinforcement elements is 600).

the accumulated damage calculated for the load in Fig. 8(b) by eachmethod is plotted in Fig. 9. As shown, the two end corners
at the clamped side show very high accumulated damage compared with the accumulated damage in other areas or to the
finite elements. Depending on the numerical approach for a gradient-based optimizer to deal with this singularity, some
different layouts can be obtained.

To prevent this singularity issue in analysis and design, we propose to use the following scaling factor, SF, of the
accumulated damage at each finite element.

D̃ = D
1
SF =


kn
i=1

ni

Ni

 1
SF

. (25)

The accumulated damage, D, is sensitive to small variations of the density variables. By taking the exponent 1/SF the
singularity of D can be relaxed.
Fig. 10 shows the scaled accumulated damage of the original damage in Fig. 9. Fig. 10 shows the distribution of scaled
accumulated damage with 1.5 of SF. As shown, the big differences in the magnitudes are reduced. The maximum gradient
value of the accumulate damages is about 1524 in the unscaled case and the localization problem of the gradient of the
accumulated damage is serious. However the maximum value is reduced as about 39 after applying the scale factor. So it
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Fig. 34. Optimal layouts considering the fatigue constraint (SF = 1.0, WL = Wirsching and Light, OC = Ortiz and Chen).

can help the optimization convergence and it can efficiently reduce the gray elements. From an optimization point of view,
some different designs could be obtained.

3.2. Sensitivity analysis formulation for fatigue life in the frequency domain

It is essential to derive the sensitivity value of the accumulated damage. We do so by combining the adjoint sensitivity
method with the Lagrange multiplier, λ. First, the differentiation of the accumulated damage is calculated as:

d

D̃PN


dγ̃e

=

∂

D̃PN


∂γ̃e

+

4
n=0

∂

D̃PN


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Fig. 35. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 1.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 33(d).)
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(26)

where the nth momentum of Eq. (5) and the associated PDF function of the eth element of Eq. (6) are denoted by mi,e and
pe, respectively. As the term, dU

dγ̃e
, is difficult to calculate, the following Lagrange multiplier is introduced.
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And the final sensitivity analysis can thus be obtained.
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4. Numerical examples

In this section, we solve three TO optimization problems to demonstrate the effect of the accumulated damage calculated
by the four damage assessment methods. For the gradient based optimizer, we use the method of moving asymptotes [41].

4.1. Example 1: L-bracket

For the first numerical example, Fig. 11 shows an L-shape bracket structure, which is one of the benchmark problems
for stress-based TO. Relevant research has shown that structures with rounded corners are preferred to prevent stress
concentration at the corner [14,15,21]. By comparing the optimal layouts of stress-based TO design and our proposed
accumulated damage design, we can discuss the validity, unique features, and usefulness of our approach. Fig. 11(a) shows
the detailed geometry and boundary conditions. The design domain is discretized by 3600 linear quad elements with the
plane stress assumption. The S–N curve based on Eq. (2) in Fig. 11(b) is used, and the mechanical load is constructed by
combining the two frequency loads in Fig. 11(c). We chose the mechanical load in Fig. 11(c) to investigate the optimized
layouts for a dynamic load whose frequencies are below the first resonance frequency, as shown in Fig. 11(d).
Depending on the value used for the scaling factor, different designs can be obtained. With the present approaches (narrow
band solution, Wirsching and Light, Ortiz and Chen, and Dirlik’s), some optimal layouts in Fig. 12 can be obtained with
1 as the scaling value in Eq. (25). Fig. 13 shows the deformation shapes of the designs. As shown, some designs similar
to those of the stress-based TO method can be obtained, i.e., designs with rounded corners. Note that those four designs
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Fig. 36. Optimal layouts considering the fatigue constraint (SF = 2.0, WL = Wirsching and Light, OC = Ortiz and Chen).

have smoothed corners to prevent stress concentrations, and the damage of all elements is constrained smoothly. In other
words, with 1 for the scaling factor, the optimizer can satisfy the damage constraint related to stress only by removing
materials near the corner. Figs. 14 and 16 show the optimized layouts with the four fatigue assessment methods and
different scaling factors. Figs. 15 and 17 show the deformations of those designs. It is interesting that the designs with 2
for the scaling factor are similar to those in Fig. 12, but their objective values are also higher, except the result from Dirlik
method. It is even more interesting that the designs with 5 for the scaling factor are similar to those of the compliance
minimization problems, and it is important to note that those designs also satisfy the damage constraints. As illustrated
in Fig. 10, with a higher scaling factor, some higher fatigue constraint values are under-estimated, and consequently an
optimizer would decrease the damage values of the other finite elements by reinforcing them. In other words, although the
finite elements at the corner sustain higher damage at a few initial optimization iterations, an optimizerwith a higher scaling
factor reinforces other parts rather than removing materials near the corner. These phenomena or interactions between the
scaling factor and the optimizer can be used to obtain optimized layouts converged to solids and voids. In the compliance
minimization problem with the SIMP approach, a layout whose design variables are prone to converge to ones or zeros is
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a
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Fig. 37. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 2.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 33(d).)

preferred over un-converged or gray designs. Thus if some gray designs, i.e., designs not fully converged to ones or zeros, are
obtained, an alternative approach is optimizing the problem with a higher scaling factor. More important, these examples
also demonstrate that tominimize the stress constraint or the fatigue constraint, two design approaches exist. One approach
is to remove thematerials of finite elements that violate the stress constraint or the fatigue constraint. The other approach is
to reinforce the materials of finite elements that violate those constraints. To our knowledge, the first approach has always
been emphasized and regarded as a solution because the objective values of the layouts with the first approach are lower
than those using the second approach. It is our opinion from an optimization point of view, there may be an alternative
third approach not been found yet providing better local optima than the two approaches. And the layouts by the second
approach are local optima.

From a fatigue analysis point of view, Dirlik method computes the accumulated damages most accurately among the
four methods. To show this difference, we recalculate the damage from the other methods for the optimal layout by the
Dirlik method in Fig. 18(d). The maximum damage of the narrow band, WL, and OC methods is 3.1384, 2.3307, and 2.6149,
respectively, whereas themaximumvalue of Dirlikmethod is 0.9999. This example shows that depending on the assessment
method, different designs can be obtained, andDirlikmethod is superior to the othermethods in terms of accuracy. However,
to show the validity of the present approach, the other methods are further tested in the other examples.

Fig. 19 shows the typical optimization histories. As stated, with the scaling factor, the stable optimization can be achievable.
To show the versatility of the present approach, anther mechanical load, whose frequencies are higher than those of

the previous example, is applied in Fig. 20. Fig. 21 shows the optimized layouts with the four fatigue constraint methods.
All the designs satisfy the damage constraints, but many gray elements exist in Fig. 21. Thus Fig. 22 shows the optimized
layouts with 2 for the scaling factor, which shows clearer interpretations of the optimal layouts than the designs in Fig. 21.
At the bottom, some resonator structures are observed, along with X-shaped structures at the clamped sides. In particular,
sharp corners are obtained because of the effects of the dynamic deformation. In Fig. 23, we can confirm that most largely
deformed regions are left part and right lower part. Also the corner part is little deformed than these two parts that are
circled in Fig. 23. Therefore the sharp corner appears.

4.2. Example 2: Cantilever beam

Cantilever beam 1
The next numerical example considers the cantilever beam in Fig. 24(a). See the figure for the detailed geometry and

boundary conditions. The design domain is 200 mm by 100 mm and is discretized by 5000 linear quad elements. The
mechanical load in Fig. 24(c) is applied for 100 s.

As discussed in the first numerical example, we can successfully obtain optimal layouts that satisfy the damage constraint
(Figs. 25, 28, and 30). Figs. 27, 29, and 31 show the deformations of the designs.With the higher scaling value, layouts similar
to those from the compliance minimization problem can be obtained. To further test the effect of the gray elements, the last
design in Fig. 25 is taken. The damage constraint and the volume are computed by varying the 2475th design variable from
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Fig. 38. Optimal layouts considering the fatigue constraint (SF = 5, WL = Wirsching and Light, OC = Ortiz and Chen).

0 to 1 in Fig. 26. As illustrated, the damage and the volume are slightly affected. Therefore it requires long optimization
iterations.

To compare the optimized designs with the designs from the dynamic compliance minimization problem, Fig. 32 shows the
optimal layout for the present damage constraint and the optimal layout minimizing the dynamic compliance subject to
the mass constraint (40% here). As illustrated, the optimized layouts from the static or dynamic compliance minimization
problem are inferior to the present design in terms of the dynamic fatigue constraint.

Cantilever beam 2
For the next numerical example,we consider the cantilever beamproblemwith a center reinforcement structure (Fig. 33).

One reason for the reinforcement structure is to apply harmonic loads whose frequencies are higher than the first natural
frequency. Without the reinforcement, the frequency responses of intermediate designs vary too much for a gradient
optimizer to smoothly solve the optimization problem.
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a
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Fig. 39. Deformed shape and FRF (frequency response function): (a) the deformation of the optimal layouts (SF = 5.0, WL = Wirsching and Light,
OC = Ortiz and Chen) and (b) the FRFs of the results. (Initial curve is Fig. 33(d).)

Figs. 34, 36, and 38 show the optimized layouts with some different scaling factors. All the designs satisfy the damage
constraints, and the discussions of the previous examples apply to this problem (see Figs. 35, 37 and 39).

5. Conclusions

This research presents a new TO method that minimizes the volume subject to fatigue life in the frequency domain. The
statistical estimation methods for fatigue life (narrow band solution, Wirsching and Light method, Ortiz and Chen method,
and Dirlik method) are adopted in the present TO approach; Dirlik method is superior to the others. For successful TO,
the p-norm approach and the qp-relaxation method are adopted. In addition, from a structural optimization point of view,
the present results show that two approaches to constrain local damage exist. The first approach is to remove materials
or densities from design domains whose local damage is too high, and the second approach is to reinforce other domains
to minimize extraordinary local damage. By solving some numerical examples, we found that our approach successfully
constrains fatigue damage.We also found thatwhen the frequencies ofmechanical loads are far smaller than the first natural
frequency of the structure, the stress-based topology optimization problem with static loads can be applied.

In conclusion, this research presents a new topology optimization algorithmwith structural load that can consider fatigue
life in the frequency domain. For future research, the present approach can be extended for some practical engineering
fatigue problems caused by repeated thermal shock, fluctuating fluid-induced vibration, or acoustic pressure-induced
vibration. Furthermore, the present dynamic fatigue constraints in the frequency domain consider only proportional loads
that do not change their principal axes. For future research, it is possible to use some advanced formula to consider the
non-proportional load [40].
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