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This research aims to develop a novel unified analysis method for an acoustic-porous-structure mul-
tiphysics interaction system when the porous medium is modeled by the empirical Delany–Bazley
formulation. Multiphysics analysis of acoustic structure interaction is commonly performed by solv-
ing the linear elasticity and Helmholtz equations separately and enforcing a mutual coupling bound-
ary condition. If the pressure attenuation from a porous material is additionally considered, the
multiphysics analysis becomes highly intricate, because three different media (acoustic, porous, and
elastic structures) with different governing equations and interaction boundary conditions should
be properly formulated. To overcome this difficulty, this paper proposes the application of a novel
mixed formulation to consider the mutual coupling effects among the acoustic, fibrous (porous), and
elastic structure media. By combining the mixed finite element formulation with the Delany–Bazley
formulation, a multiphysics simulation of sound propagation considering the coupling effects among
the three media can be easily conducted. To show the validity of the present unified approach,
several benchmark problems are considered.

Keywords: Acoustic-porous-structure interaction; Delany–Bazley model; acoustic analysis; empirical
material model.

1. Introduction

To reduce the adverse effect of loud noise or to improve static and dynamic characteristics
of a broad range of engineering structures,1–6 a number of finite element analysis and design
methods have been developed and proposed with the help of ever-increasing availability of
high-speed computers.1,6–9 Despite a number of studies relevant to the analysis methods
for acoustic, acoustic-structure, and acoustic-porous-structure based on Biot’s theory,10–13

to the best of our knowledge, a unified analysis for an acoustic-porous-structure interaction
system with empirical material model for fibrous medium has not been considered. This
paper presents a new analysis method based on a mixed finite element formulation to
consider acoustic-porous-structure interaction using the Delanzy–Bazley material model,

1550002-1

J.
 C

om
p.

 A
co

us
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

A
L

IF
O

R
N

IA
 @

 S
A

N
 D

IE
G

O
 o

n 
01

/0
8/

15
. F

or
 p

er
so

na
l u

se
 o

nl
y.

http://dx.doi.org/10.1142/S0218396X15500022


2nd Reading

December 22, 2014 15:4 WSPC/S0218-396X 130-JCA 1550002

G. H. Yoon

which is a representative empirical material model for acoustic pressure attenuation inside
a fibrous medium.4,5,9,14,15 With the unified mixed finite element analysis approach, it is
possible to conduct a unified analysis for improving pressure attenuation by simultaneously
distributing porous and linear elastic media. This aspect is very important in structural
optimization, especially topology optimization, which allows the creation or deletion of
structural, acoustic, and porous domains (Fig. 1).16

It is important to control and reduce the adverse effects of loud and irritating noises that
lead to adverse health issues in industry and daily life (Fig. 2). For instance, a factory with
loud machinery noise often causes ear health problems for its workers.6,14,17–19 To reduce
the adverse effects of loud and irritating noises, many engineering approaches have been
developed (Figs. 1 and 2). For example, some acoustic structures (e.g. expansion chambers,
Helmholtz’s resonators, fibrous textured wall surfaces) have been used to increase acoustic
pressure attenuation and shield some areas from incoming sound waves in machine and

Noise source

Radiation condition

Design domain

Porous

Solid
Air

Unoptimized structure Optimized structure

Structural optimization

Fig. 1. Analysis domain changes in structural optimization.

Fig. 2. Absorbing material in a lecture room at Hanyang University.
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architecture applications.6 Often small vibrating structures whose resonance frequencies
match those of problematic noises and vibrations are implemented to absorb structural
vibrational energy and consequently reduce their propagation. To identify noise phenomena
clearly and to resolve them by means of acoustic engineering approaches, the basic physical
principles, such as the dimensions of spaces, wavelength, frequency, and sound wave coupling
between elastic structures and fibrous media should be considered. Particularly, when it is
possible to neglect the couplings between acoustic domains and the structures enveloping
acoustic domains, the Helmholtz equation can be used to numerically estimate noise levels
for some objective regions of interest.

When the velocity of a fluid plays an important role in the acoustic phenomena, direct
analysis using the Navier–Stokes equations coupled or uncoupled with the Helmholtz equa-
tion can be employed (see Ref. 6 and references therein). However, one interesting acoustic
phenomenon is the coupling effect between the elastic structures and the fibrous media
when the elastic structure is not considered to be rigid with infinite impedance. For vibro-
acoustic systems, the mutual couplings between the acoustic and structure or among the
acoustic, structure, and fibrous media should be considered. One popular coupling theorem
for this multiphysics system is Biot’s theory, which models micro-scale interactions between
the structure and a fluid.6,13

Previous researches indicated that acoustic–structure interaction simulation can be con-
ducted in the framework of a mixed finite element formulation.1–4 Furthermore, this method
has been used for the simulations of incompressible or nearly incompressible elastic media
and vibro-acoustic interaction problems.1–4 In the framework of this mixed formulation,
both pressure and displacements become the primary variables with the linearized Euler’s
and equilibrium equations. Therefore, it was shown that by adopting a single domain with
heterogeneous material properties in the framework of the mixed formulation, the acoustic–
structure interaction phenomena can be simulated.1–4,20 In this research, the mutual cou-
plings among the fibrous, acoustic, and structure materials are additionally considered by
parameterizing the material properties of the mixed formulation (Fig. 1). To consider pres-
sure attenuation from fibrous materials, the Delany–Bazley material model is formulated
in the framework of the present mixed finite element formulation, which is one of the main
contributions of this paper.

In the unified mixed formulation, this study straightforwardly considered three inter-
action phenomena among the fiber, acoustic, and structure materials. First, the acoustic–
structure interaction phenomena are satisfied in the mixed formulation.1–4,20 Second, the
coupling conditions between the acoustic and the fibrous media are satisfied by adopting a
single domain with heterogeneous material properties (bulk modulus, shear modulus, and
density) according to the domain definition of the Helmholtz equation, which is approxi-
mately simulated by the mixed formulation (Fig. 1). The Delany–Bazley material model,
which is applicable to fibrous media with porosities close to one, was used.4,5,9,14,15 This
empirical material formulation has been widely used and has shown its validity in many
acoustic engineering applications.5,10,11,13 A benefit of the Delany–Bazley model is that
the pure Helmholtz equation can be used for the computational calculation of pressure
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propagation and pressure attenuation due to a fibrous material.4,5,9,14,15 Finally, the cou-
pling conditions between the fibrous material and the structure media are satisfied, because
the fibrous material is treated as a special case of an acoustic domain with complex density
and bulk modulus. By adopting three heterogeneous material properties (i.e. density, bulk
modulus, and shear modulus) in the mixed formulation, this research found that it is pos-
sible to simulate the mutual couplings among the porous, acoustic, and elastic structures
when the material properties of the elastic structure, air, and porous materials are assigned
to the unified mixed finite element formulation rather than integrating three different equa-
tions (Fig. 1).

This research is organized as follows: first, the basic formulations of acoustic structure
interaction are provided, and then the porous material model (the Delany–Bazley model)
is introduced. Next, the present mixed formulation is presented for the multiphysics system
of fibrous, acoustic, and structure media, and several acoustic analysis examples are then
presented. Finally, the findings and future research topics are summarized.

2. Governing Equations for Acoustic–Fibrous–Structure Interaction

2.1. Basic governing equations

Acoustic simulation with Helmholtz equation for homogeneous acoustic domain (nonfibrous
media).

Acoustic pressure propagation in a homogeneous acoustic medium (neglecting the dissi-
pation of acoustic energy) is normally simulated by solving the following Helmholtz equa-
tion under proper boundary conditions6 and assuming harmonically varying pressure, i.e.
p̃(t) = peiωt.

∇ ·
(

1
ρa

∇p

)
+

ω2p

ρac2
a

= 0 on Ωa, (1)

where p, ρa, and ca are the pressure in the acoustic domain Ωa, density of the acoustic
domain, and local speed of sound, respectively. The angular velocity and wave number
are denoted by ω and k(k = ω

ca
), respectively. With an appropriate numerical solution

procedure such as the finite element method or finite volume method, the acoustic pressure
propagation phenomenon can be simulated for acoustic engineering problems. Although
the finite element method can solve the Helmholtz equation for a complex and arbitrarily
shaped system, the Galerkin finite element analysis with lower-order basis often suffers from
numerical error and dispersion error caused by the inaccurate prediction of pressure inside
finite elements for medium and high wave numbers, which is one of the restrictions of the
finite element method.19 To improve the accuracy and stability, the number of elements
and the subsequent computational efforts should be increased. To overcome this difficulty,
some advanced methods such as the Trefftz method for the Helmholtz equation have been
reported. (See Ref. 19 and the references therein.)

If there is radiation or scattering from an elastic structure toward the surrounding fluid,
the mutual coupling between the elastic body and the surrounding fluid should be taken
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into account. (See Refs. 6 and 7 for general pressure, acceleration, and impedance boundary
conditions.) At the interaction boundary, the local balance of the linear momentum equation
should be satisfied as follows:

Interface condition for the acoustic domain:

n · ∇p = ω2ρanTu in Sint, (2)

where Sint is the interfacing boundary, and n is the outgoing normal vector. The structural
displacement at the interaction boundary is denoted by u.

2.1.1. Governing equation: Linear elasticity problems

Time-harmonic linear structural analysis neglecting the body force can be described by
Newton’s law:

∇ · σ = −ω2ρsu on Ωs, (3)

where σ, ρs, and u are the stress tensor in the structural domain Ωs, structural mass density,
and displacement vector, respectively. At the interface of the structural domain, the traction
of the solid part should equal the pressure, and the following condition should be imposed.

Interface condition for the solid part:

fSint
= pn on Sint. (4)

The structural force applied at the interaction boundary is denoted by fSint
. After imposing

the interface boundary conditions of Eqs. (2) and (4), the scattering wave and structural
response can be calculated by a standard finite element procedure. Figure 3 shows the over-
all procedure of the common acoustic-structure interaction analysis under the interaction
boundary conditions.

Acoustic domain Structural domain

Helmholtz equation

n

2 T
ap ω ρ⋅∇ =n n uinterS

Linear elasticity equation

intS p= ⋅f n

Fig. 3. Governing equations and interaction boundary conditions between acoustic and structural domains.
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2.1.2. Acoustic simulation with empirical material model for fibrous media

The classical Helmholtz Eq. (1) is derived from the linearized Euler’s equation for com-
pressible media by neglecting the dissipation of acoustic energy. However, often the acoustic
energy dissipation from absorption and attenuation of sound pressure by a fibrous medium
need to be considered in some practical acoustic engineering simulations,21 and many the-
oretical and numerical models have been developed to simulate the dissipative energy loss
from various fibrous materials.4,5,9,12,14,15 These models can be categorized into several
classes. One class for such fibrous material simulation is the phenomenological approach,
which directly simulates the viscous and thermal interactions between air and fibrous mate-
rials. Biot’s theory is a popular phenomenological approach.13,21 Despite some theoretical
advantages, this approach requires the values of several parameters determined by the geom-
etry and material properties of the fibrous material of interest. Another shortcoming from
a computational point of view is that it requires more degrees of freedom (DOF) than the
Helmholtz equation.7 In addition, the geometric parameters of a fibrous material are often
too irregular to be measured and used in practice.

According to Bolton,9,14 most fibrous materials are inhomogeneous, and their material
properties vary randomly throughout their volume. Another class for the simulation of a
fibrous material may be the empirical material formulation based on the Helmholtz equa-
tion with complex material properties.10,11,22 This research considers the Delany–Bazley
material formulation, which is known as one of the most representative empirical material
formulations for fibrous materials with porosities close to one, and is formulated as follows:

kc = ka(1 + 0.0978(f̃ )−0.7 − i0.189(f̃ )−0.595), (5)

Zc = Za(1 + 0.057(f̃ )−0.734 − i0.087(f̃ )−0.732), (6)

f̃ =
ρaf

ξ
cc =

ω

kc
, ρc =

kcZc

ω
, f =

ω

2π
, (7)

where ka and ρa denote the wave number and the density of air without pressure attenuation,
respectively. The complex wave number and impedance value of the Delany–Bazley empir-
ical material model are kc and Zc, respectively. Note that the empirical material formulas
shown in Eqs. (5)–(7) are based only on the measurements of the bulk airflow resistivity, ξ,
which is highly dependent on the chosen fibrous material and introduces viscous losses in
sound propagation.11,12 Because of its simplicity in numerical implementation, this Delany–
Bazley empirical material model is widely accepted and works well for fibrous materials
when the normalized frequency (f̃ = ρaf

ξ ) is in the range of [0.01, 1]. Nevertheless, the above
empirical formulation does not guarantee a suitable prediction of the acoustic behavior of all
porous materials in all frequency ranges, particularly for f̃ > 1 or < 0.01.11,15 Furthermore,
the coefficients proposed by Delany and Bazley have been adjusted to apply the formula
to other poro-elastic materials. For example, Miki21 and Allard and Champoux20 obtained
different coefficient values and formulas that improve the prediction accuracy of the Delany
and Bazley model by incorporating material characteristics and other geometric quantities
such as tortuosity and the shapes of micro-holes inside fibrous materials.15,21
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2.2. Unified mixed finite element formulation for

acoustic-porous-structure interaction problems

The mixed finite element procedure was extended to simulate the acoustic-porous-structure
interaction. To the best of the author’s knowledge, this approach has not been tried prior
to this research. In the mixed finite element formulation, the governing equations without
body forces are formulated as follows:

∇ · σ = −ω2ρu on Ω, (8)

p = −Kεv, (9)

e = ε − εV

3
δ, (10)

εv =
∆V

V
= εkk, (11)

K =
E

3(1 − 2ν)
, G =

E

2(1 + ν)
, (12)

σ =

{
−pδ + 2Ge for incompressible material

Kεvδ + 2Ge for compressible material
, (13)

where K, G and ρ are the bulk modulus, shear modulus, and mass density, respectively,
and δ is Kronecker’s delta and the strain tensor is denoted by ε in Eq. (11). The above
finite element equations have been used for incompressible media, and by varying the shear
modulus G and bulk modulus K, the acoustic and structural domains can be described for
the multiphysics simulation of both G and K simultaneously.1–4,20 To illustrate this aspect,
a two-dimensional analysis was considered. By assigning zero for the shear modulus, it is
possible to simulate the incompressibility condition of the acoustic domain.

For the finite element implementation, the weak forms are used.∫
Ω

δεT σdΩ +
∫

Ω
ω2ρδuT udΩ = 0 (14)

∫
Ω

(
p

K + εV

)
δpdΩ = 0 (15)

where the virtual displacement, the virtual deviatoric strain, and the virtual strain are
denoted by δu, δεV , and δε, respectively. To satisfy the so-called Inf-sup condition, the
continuous displacements and the continuous pressure element are implemented as shown
in Fig. 4.1–3 With this, the standard finite element formulation can be obtained.[

Kuu − ω2Muu Kup

KT
up Kpp

][
U

P

]
=

[
R

0

]
(16)

where the structural displacements and the pressure vectors are denoted by U and P,
respectively. The stiffness matrices for the displacements and the pressure, the coupling
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Nodal point displacements

Pressure

Fig. 4. Mixed finite element with continuous displacements and continuous pressure.

matrix, the mass matrix, and the external force vector are denoted by Kuu, Kpp, Kup,
Muu, and R, respectively.

The analysis domain Ω is decomposed as:

Ω = Ωs ∪ Ωa ∪ Ωp, (17)

where the subscripts s, a and p denote structural, acoustic, and fibrous, respectively. The
following material properties of the mixed formulation was assigned.1–4,20

K ≡ Ks, G ≡ Gs, ρ ≡ ρs on Ωs, (18)

K ≡ Ka, G ≡ Ga = 0, ρ ≡ ρa on Ωa, (19)

K ≡ Kp, G ≡ Gp = 0, ρ ≡ ρp on Ωp, (20)

In the fibrous domain, the shear modulus becomes zero, and the bulk modulus and density
become complex values, as given by the Delany–Bazley material model. The present mixed
formulation provides a means for rapid and easy consideration of the multiphysics effects
of changes in the shape and topology of the acoustic domain (Figs. 3 and 5). To meet the
so-called inf–sup condition, the continuous Q2 displacement and the continuous Q1 pressure
element are implemented (Fig. 4).1–3 Note that it is possible to use different finite element
spaces for u and p for the structural domain. In other words, different shape functions can
be used for the solid, porous, and acoustic materials. For example, one study has com-
bined the standard finite element method with the wave-based method (an indirect Trefftz
method).19 In the present simulation, we employed the same finite element spaces for all
materials.

Structural Domain
Acoustic Domain

A unified mixed formulation

, ,s s sK K G G ρ ρ≡ ≡ ≡
, 0,a a aK K G G ρ ρ≡ ≡ = ≡

Fibrous Domain

, 0,p p pK K G G ρ ρ≡ ≡ = ≡

Fig. 5. Material assignment for acoustic-porous-structure simulation.
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3. Multiphysics Analysis Examples

To show the validity of the present mixed formulation for the coupled analysis of acous-
tic, fibrous, and structure media, the following benchmark acoustic analysis examples are
considered. [See Refs. 1, 3, 4 and 7 for the application of the mixed formulation for acoustic
(fluid)-structure.]

3.1. Acoustic pressure calculation of simplified car

Car model 1

For the first numerical example, the pressure values of a simplified car cavity model are
calculated (Fig. 6); the acoustic domain is filled with air and bounded in part by velocity
input, a rigid wall, and elsewhere by a sound-absorbing wall with an acoustic impedance
Z.19,23 Although this is only a simplified pure acoustic car model, this example was cho-
sen because it shows the various aspects of the present formulation. For a noise source,
the velocity vin = 1 m/s was assigned to the left panel at x = 0m. At the roof, the

point x y

a 0.00 0.00

b 1.50 0.00

c 1.50 0.75

d 1.25 1.00

e 0.50 1.00

f 0.00 0.50

p 0.88 0.70

a b

de

f

p c

v 1x =

(a)

x

x

v 1
u

(where v u)

i i

i
ω ω

ω

= − = −

=

u 0, v=0=

u 0, v=0=

u 0, v=0=

x y

air

n u+n v 0

1
( ) 0

i p
p

Z

ω
ρ

=

− ⋅∇ − =n
3

141,610 Pa, 0 Pa

1.225 Kg/m , 340 m/s
aa

aa

K G

cρ
= =

= =

(b)

Fig. 6. Two-dimensional simplified car cavity analysis example.19,23 Here, ρa = 1.225 Kg/m3, ca = 340 m/s,
the number of DOF of mixed formulation = 162 767, and the number of DOF of the Helmholtz equation
(the classical Galerkin method for the Helmholtz equation) = 50 169.
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Fig. 7. The comparison of the pressures.

normal impedance Z = ρaca was introduced for the attenuation effect by air. Figure 7
shows the obtained pressure values at point P that are similar to the results in Ref. 23.
Similar responses can be obtained with the Helmholtz equation and the present mixed
formulation.

In Fig. 8, the solution convergence with respect to mesh refinements is tested. As the
additional primary variables are added, the number of DOF is much greater than that

DOF = 12,263 (63.8 s) DOF = 47,167 (181.3 s) DOF = 332,665 (864.6 s)

(a)

DO F =  103,52 (79.1 s) DO F  = 40929 (183.5 s) DO F =  162767 (809.1 s)

(b)

Fig. 8. Mesh refinement results: (a) quadrilateral finite element meshes, (b) triangular finite element meshes
and (c) solutions.
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(c)

Fig. 8. (Continued)

of the pure Helmholtz equation. From a computational point of view, the present mixed
formulation takes much more time than the pure Helmholtz equation. In this problem,
it takes 63.8, 181.3 and 864.6 s for the FE models with 12 263, 47 167 and 332 665 DOF,
respectively. The triangular meshes take 79.1, 183.5 and 809.1 s with 10 352, 40 929 and
162 767 DOF, respectively.

Car model 2

For the next numerical example, the simplified car in Fig. 9 is considered here; the geometry
is redrawn by the open software (XY scan) and the eigenfrequencies of the simplified car are
similar to those of the reference.18 The acoustic domain is again filled with air and bounded
in part by the velocity input (vin = 1 m/s) at the left side, by the sound-absorbing wall with
the acoustic impedance Z = ρaca at the top roof and elsewhere by the rigid wall. For the
comparisons, the pressure inputs at the point A and the point B inside the car cavity are
compared by the Helmholtz equation and the present mixed formulation in Figs. 9 and 10.
The finite element mesh and the boundary conditions are presented in Fig. 10. As in the
first simplified car, the almost similar responses of the Helmholtz equation and the mixed
formulation can be obtained.

Car model 3

For the last car example, the other simplified car in Fig. 11(a) is considered here; the
geometry is also redrawn by the open software (XY scan).24 The compartment has the
rigid wall boundary condition for all the boundaries except the left top surface for the noise
source from engine room as shown in Fig. 11(a). To calculate the pressure inside the car
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-0.2 0 0.2 0.4 0.6 0.8 1 1.2
-0.2

0

0.2

0.4

0.6

0.8

v 1x =

Point A Point B

(a) (b)

Fig. 9. The 2nd two-dimensional simplified car cavity analysis example.18 (Scanned geometry from Ref. 18
by the digitizer program XY scan, ρa = 1.25 Kg/m3, ca = 340 m/s, computed eigenfrequencies = [0 Hz,
174.89 Hz, 306.32 Hz, 321.5 Hz, 419.34 Hz and 450.61 Hz]).

Fig. 10. The analysis of the simplified car of Fig. 9. (a) a finite element mesh, (b) the boundary condition,
(c) and (d) the responses of the point A (0.6, 0.2) and the point B (0.8, 0.2).
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0 0.5 1 1.5 2 2.5 3

-0.5

0

0.5

1

1.5

v 0.1x =

(a) (b)

(c) (d)

Fig. 11. The 3rd two-dimensional simplified car cavity analysis example.24 (Scanned geometry from Ref. 24
by the digitizer program XY scan, ρa = 1.225 Kg/m3, ca = 343 m/s) (a) the geometry, (b) a finite element
mesh and (c) the pressure distribution and (d) the solution comparison between the mixed formulation and
the Helmholtz equation at the bottom boundary.

with the 15 wave number, the finite element in Fig. 11(b) is used for both the present mixed
formulation and the Helmholtz equation. The pressure distribution is obtained as Fig. 11(c).
Figure 11(d) shows the pressure distributions at the bottom boundary line of the mixed
formulation and the Helmholtz equation. As illustrated, the almost similar distributions can
be obtained.

3.2. Impedance at normal incidence of layer backed by impervious

rigid wall

In the next numerical experiment, the complex impedance at the surface of a layer of fibrous
material with thickness of 0.1 m and normal flow resistivity of 10,000 Nm−4s in Fig. 12 is
calculated.10,25 The analytical impedance at the surface of the layer fixed on a rigid wall in
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Fig. 12. Pressure attenuation by a layer of a fibrous material of thickness d with normal flow resistivity of
10 000 Nm−4s (see p. 25, Ref. 10): (a) a schematic layout to measure the absorptivity and impedance; (b)
employed finite element model and Sommerfeld boundary condition for sound source; and (c) impedance
and (d) wave number of porous material.

Fig. 13(a) can be derived as follows:

Z = −iZc cot(kcd), (21)

where the complex impedance (Zc) and complex wavenumber (kc) are determined by
Eqs. (5) and (6) with the flow-resistivity value ξ = 10 000 Nm−4s, and thickness d = 0.1 m.
Although the above simple equation is derived by the one-dimensional acoustic model
assumption, a two-dimensional finite element model is constructed in Fig. 12 with the
present mixed FE formulation to calculate the impedance at the surface of the layer of
the fibrous material.10,25 In the left acoustic domain, the bulk modulus and density of the
air are assigned zero shear modulus in order that the model is reduced to the Helmholtz
equation. In the right fibrous layer domain, complex bulk modulus and the complex density
of the fibrous material are assigned. With the present monolithic mixed FE formulation,
the coupling boundary conditions between the acoustic and fibrous domains are satisfied
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(a) (b)

Fig. 13. (a) Complex impedance Z calculated by Eq. (19) and the present approach; (b) normal incidence
reflectivity from uniform fibrous layer.

in the unified FE formulation. To simulate the sound source, the normal incident pressure
input is applied by the Sommerfeld boundary condition imposed at the leftmost side as:

n · ∇p + i · k · p = 2i · k · pin, (22)

where n and pin are the outward unit vector normal to the acoustic domain and the pressure
amplitude of the incoming wave, respectively, in Fig. 12(b). The impedance is defined as
the ratio of the pressure to the velocity; thus, the pressure values at the mid-top surface of
the layer of the fibrous material, indicated by A in Fig. 12(b), are calculated by varying the
exciting frequency values, and the following simple impedance calculations are performed
at point A in Fig. 13(a).

Z =
p

du

dt

=
p

iωu
, (23)

where the x displacement value is denoted by u, which is one of the components of u.
Therefore, the time derivative of the harmonic varying x displacement (i.e. x velocity)
becomes iωu. Figure 13(a) shows the curves of the analytical and calculated impedance
values. As illustrated, the present mixed FE formulation can predict the one-dimensional
analytic impedance very accurately.

Furthermore the reflectivity value R is calculated from its definition as follows:

R =
po − pi

pi
=

Z − Za

Z + Za
= 1 − |A|2, (24)

pi = pine−ikax, (25)

where the pressure at x = L and its magnitude are pi and pin, respectively, and A is
the absorptivity. The acoustic impedance and wavenumber of air are Za = ρaca and ka,
respectively. Figure 13(b) shows the analytical and calculated reflectivity values. As shown,
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the present monolithic mixed FE formulation can simulate the absorptive phenomena of
the fibrous layer very accurately.

This example shows the following characteristics. At first, the multiphysics simulation
of air and fibrous media can be performed in a unified mixed formulation without sep-
arating air and solid material by using different governing equations under the mutual
coupling boundary condition. Although the mixed formulation requires more elements and
DOF compared with the pure Helmholtz equation, it can still be useful to simulate the
acoustic-porous-structure interaction system adopting a unified domain with heterogeneous
material properties.

3.3. Impedance at normal incidence of a fibrous layer with an air gap

between the fibrous layer and the rigid wall

In this analysis example, the complex impedance at the surface of a layer of fibrous material
with thickness of 0.1 m and backed by an air gap of 0.1 m is calculated.10 The normal
flow resistivity is again set to 10 000 Nm−4s. From the one-dimensional acoustic theory, the
analytical impedance at the surface of the layer in Fig. 14(a) can be derived as:

Z(M2) = Zporous
−iZ(M1) cot(kcd) + Zporous

Z(M1) − iZporous cot(kcd)
, (26)

where kc is the wave number. The complex impedance values at the positions M1 and M2

are denoted by Z(M1) and Z(M2), respectively. To simulate the above analytical solution, a
two-dimensional finite element model is constructed in Fig. 14 with the present mixed FE
formulation. Figure 15 shows the impedance and the wave number of the fibrous material.

Fig. 14. Pressure attenuation of a layer of a fibrous material of thickness d with normal flow resistivity of
10 000 Nm−4s (see p. 27, Ref. 10): (a) schematic layout to measure the absorptivity and impedance; and (b)
employed finite element model and Sommerfeld boundary condition for sound source.
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Fig. 15. (a) Impedance; and (b) wave number of porous material.
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Fig. 16. (a) Complex impedance Z calculated by Eq. (19) and the present approach; (b) normal-incidence
reflectivity from uniform fibrous layer.

As in the previous example, the impedance and reflectivity value are calculated as shown
in Eqs. (23)–(25).

The mixed formulation is also used to simulate the above theoretical formulation in
Fig. 14(b). The calculated impedance and reflectivity values are plotted in Fig. 16(a) and
Fig. 16(b), respectively. As illustrated, the present formulation can accurately predict the
theoretical results (see p. 27, Ref. 10).

3.4. Pressure attenuation of an acoustic expansion muffler

The above analysis example verifies that the present u/p mixed finite element formulation
can simulate the absorptive phenomenon accurately. To test this feature further, pressure
attenuation of an acoustic muffler is compared with the analytical pressure attenuation
formula.8 The characteristics of this two-dimensional expansion muffler without fibrous
material, including the analytical transmission-loss (TL) curve, are well studied.8 The
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incoming wave pressure was first calculated using Eq. (28):

pi =
1

eikx1

p1 − p2e
−ikx12

1 − e−i2kx12
, (where p1 = pie

ikx1 + pre
−ikx1, p2 = pie

ikx2 + pre
−ikx2), (27)

where p1 and p2 are the complex pressures at the arbitrary points of the inlet, and the
distance between the two points (x = x1, x = x2) is x12. The magnitudes of the incoming
and reflected waves are denoted by pi and pr, respectively. The TL of the acoustic muffler
is then approximated by the three-point method that calculates the ratio of the incoming
wave pressure to the transmitted wave pressure such that:

TL = 20 log
(∣∣∣∣ pi

p3

∣∣∣∣
)

+ 10 log
(∣∣∣∣Ai

Ao

∣∣∣∣
)

, (28)

where the complex pressure output at the outlet is denoted by p3. The areas of the inlet
and outlet tubes are denoted by Ai and Ao, respectively.

First, without fibrous or solid media, the simple expansion chamber is modeled by the
present mixed FE formulation, and its TL responses are calculated with respect to the exci-
tation frequencies in Fig. 17. As shown, the accurate calculation of the TL values is possible.

ip k⋅∇ + ⋅n i2ik p k p⋅ = ⋅ ⋅ in

inl

id

1p

H

2p
l

Air

outl

3p

r domain ip k⋅∇ + ⋅ ⋅n 0p =

(a)

(b)

Fig. 17. Example of 2D muffler analysis8: (a) muffler geometry (ρa = 1.25 kg/m3, ca = 343 m/s, l = 1.2 m,
lin = lout = 1.0 m, H = 0.5 m, di = 0.1 m, and x12 = 0.1 M); (b) transmission-loss curves of 1D analytical
TL, TL by the Helmholtz equation, and TL by the present mixed formulation.
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(a)

(b)

Fig. 18. Example of 2D muffler analysis with the solid bar inside the middle of the expansion chamber:
(a) muffler geometry (solid bar with dimensions of 0.02 m× 0.2m); and (b) transmission-loss curves of solid
bar inside the middle of the expansion chamber.

Note that after 3500 rad/s, some differences were observed in the TL values of each method
because the analytical TL value from Eq. (29) is derived by a one-dimensional assumption.
Therefore, for higher excitation frequencies, the one-dimensional assumption is violated. Sec-
ond, in Figs. 18 and 19, the elastic box (whose material properties are those of aluminum)
and the fibrous box are posed inside the chamber. Because of the inclusion of the elastic and
fibrous boxes, the different pressure attentions can be obtained. Compared with the TL of
an air-filled chamber, the different impedance curve with the aluminum bars is improved in
Fig. 18. For the fibrous bars with different flow-resistivity values, the higher TL curves can be
obtained in Fig. 19 as expected. These numerical examples again illustrate that the present
unified mixed FE formulation can simulate the acoustic-porous-structure interaction.

3.5. Eigenfrequency analysis

For the last numerical example, the eigenfrequency of the rectangular box is calculated with
the present mixed formulation in Figs. 20 and 21. With the assumption of the pure acoustic
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Fig. 19. Example of 2D muffler analysis with the fibrous bar inside the middle of the expansion chamber:
(a) muffler geometry (fibrous bar with dimensions of 0.02 m×0.2 m, ξ = 1000 Nm−4s, ξ = 50 00 Nm−4s, and
ξ =10 000 Nm−4s); and (b) transmission-loss curves with different flow-resistivity values.

l
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Fig. 20. Eigenfrequency analysis using (a) Helmholtz equation and (b) mixed formulation with stiff elastic
foundation.
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Finite element mesh 1st Eigenmode

(a)

Finite element mesh 1st Eigenmode

(b)

Finite element mesh 1st Eigenmode

(c)

Fig. 21. Pressure plots of Helmholtz’s equation and mixed finite element formulation. (a) Helmholtz equa-
tion (170 Hz), (b) Mixed formulation (167.77 Hz) and (c) Mixed formulation with rectangular meshes
(167.9789 Hz).

equation or Helmholtz’s equation, fluid near the walls moves parallel to the walls, and the
normal velocity component is zero. However, in the mixed formulation, the fluid velocities
near the walls are assumed to zero (Fig. 21), which is one of the notable differences between
the Helmholtz’s equation and mixed formulation. At this point, it should be mentioned
that the Helmholtz’s equation is the simplest equation for sound in fluid after assumptions
such as no loss and small density changes. The mixed formulation considers more complex
redundant fluid velocities. As a result, the first eigenvalue of the mixed formulation is
lower than that of the pure Helmholtz’s equation. Furthermore, using the triangular mesh,
spurious modes of the mixed finite element in the eigenfrequency analysis were observed.
Thus, quadrilateral meshes for the acoustic domain were used in this study. Because the
eigenfrequencies of the solid domain in Fig. 21(b) are much higher than those of the first
mode of the acoustic domain, the first mode of the acoustic domain was obtained even with
the triangular mesh at the rigid solid domain.
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4. Conclusions

This study has developed a new monolithic mixed finite element formulation for an acoustic-
porous-structure interaction system. The present finite simulation with the mixed formula-
tion provides a means for rapid and easy consideration of the coupling effects of the media.
To model the pressure attenuation of fibrous material, the Delany–Bazley material model is
implemented rather than the phenomenological model. The main benefit of employing the
empirical model is that the complicated pressure propagation behavior of fibrous material
can be easily considered with a few parameters of fibrous material. The empirical material
model is generally employed and formulated in the acoustic equation (i.e. the Helmholtz
equation); however, this research reveals that the empirical material model can also be
used inside the mixed formulation. The accuracy and efficiency of the present method are
demonstrated through several analysis examples in which the wall and part of an analysis
domain are partially treated with sound-absorbing material. In future research, a structural
topology optimization for fibrous, acoustic, and structure interaction is planned.
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