
Measurement Science
and Technology             

ACCEPTED MANUSCRIPT

Looseness detection system of bolted joints using a VMD-based
nonlinear transformation approach with deep residual network
To cite this article before publication: DongYoon Kim et al 2025 Meas. Sci. Technol. in press https://doi.org/10.1088/1361-6501/ada821

Manuscript version: Accepted Manuscript

Accepted Manuscript is “the version of the article accepted for publication including all changes made as a result of the peer review process,
and which may also include the addition to the article by IOP Publishing of a header, an article ID, a cover sheet and/or an ‘Accepted
Manuscript’ watermark, but excluding any other editing, typesetting or other changes made by IOP Publishing and/or its licensors”

This Accepted Manuscript is © 2025 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar
technologies, are reserved..

 

During the embargo period (the 12 month period from the publication of the Version of Record of this article), the Accepted Manuscript is fully
protected by copyright and cannot be reused or reposted elsewhere.

As the Version of Record of this article is going to be / has been published on a subscription basis, this Accepted Manuscript will be available for
reuse under a CC BY-NC-ND 3.0 licence after the 12 month embargo period.

After the embargo period, everyone is permitted to use copy and redistribute this article for non-commercial purposes only, provided that they
adhere to all the terms of the licence https://creativecommons.org/licences/by-nc-nd/3.0

Although reasonable endeavours have been taken to obtain all necessary permissions from third parties to include their copyrighted content
within this article, their full citation and copyright line may not be present in this Accepted Manuscript version. Before using any content from this
article, please refer to the Version of Record on IOPscience once published for full citation and copyright details, as permissions may be required.
All third party content is fully copyright protected, unless specifically stated otherwise in the figure caption in the Version of Record.

View the article online for updates and enhancements.

This content was downloaded from IP address 166.104.17.164 on 15/01/2025 at 06:17

https://doi.org/10.1088/1361-6501/ada821
https://creativecommons.org/licences/by-nc-nd/3.0
https://doi.org/10.1088/1361-6501/ada821


Looseness detection system of bolted joints using a
VMD-based nonlinear transformation approach
with deep residual network

Dong-Yoon Kim1, Min-Je Kim1, Chun-Il Kim2‡, Gil Ho
Yoon1§
1 Department of Mechanical Engineering, Hanyang University, Seoul, South
Korea
2 Department of Mechanical Engineering, University of Alberta, Edmonton,
Canada

E-mail: cikim@ualberta.ca and ghy@hanyang.ac.kr

July 2024

Abstract. Bolted structures are subject to various vibrations, external forces
and environmental factors, all of which can reduce their structural stability and
compromise the integrity of bolted connections. Detecting bolt loosening in
advance is crucial, as these effects often cause bolts to become loose, potentially
leading to structural failure or collapse. However, identifying looseness in
complex or large structures poses significant challenges, particularly when there
is insufficient prior information about the loose-fit condition. To address this
issue, the present study proposes a novel detection system for bolted joint
looseness, employing a Variational Mode Decomposition (VMD)-based Nonlinear
Transformation (NT) approach integrated with a deep residual neural network,
under several underlying assumptions. The proposed method utilizes VMD to
decompose transverse vibrational modes into Intrinsic Mode Functions (IMFs),
selectively extracting signals with desired modes. The NT method is then
applied to scale and shift the extracted signals, transforming them into a
form that facilitates approximate classification. Image-based spectrograms are
generated from the differences between transformed and reference signals, which
are subsequently analyzed by the deep residual network. To validate the proposed
method, several plates with bolted joints are considered.
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network2

1. Introduction

In most mechanical structures with bolted joints,
various vibrations, external forces and environmental
factors such as resonance effects, cyclic loading,
abrasive wear and rust, can compromise the integrity
of bolted connections, posing significant operational
hazards. These factors often lead to the loosening of
bolted joints, which can potentially result in structural
failure or even collapse. Traditional approaches to
addressing this issue have primarily relied on vibration-
based methods to evaluate structural safety and
predict faults, as proposed in various studies [1, 2, 3, 4,
5]. Additionally, artificial intelligence techniques have
been integrated into health monitoring systems for
bolted joints, enabling the detection of abnormalities
through training on large datasets [6, 7, 8, 9].
However, identifying looseness in complex or large
structures that are difficult to assess directly remains
a significant challenge. This diagnostic approach is
often limited by constraints in data collection and
measurement, particularly when there is insufficient
prior information about the loose-fit condition. To
overcome these challenges, this study proposes a novel
looseness detection system for bolted joints, employing
a Variational Mode Decomposition (VMD)-based
Nonlinear Transformation (NT) approach integrated
with a deep residual network. In the VMD process,
signals within the target frequency ranges are extracted
by considering the mechanical characteristics of both
simplified and complex systems. In the NT process,
the vibration response of the complex system, with
limited prior information, is interpreted by mapping
it to the vibration response of the simplified system.
After that, the looseness conditions of bolted structures
are detected with the image-based spectrograms and
deep residual network.

Vibration-based methods are widely used to
diagnose structural abnormalities. Among these
methods, research has focused on detecting damages
using frequency response functions [10, 11, 12, 13,
14, 15, 16]. Detection assessment methods based
on eigenfrequency data were presented in [17, 18,
19, 20], while structural damage detection techniques
employing wavelet signals were explored in [21,
22]. Vibration analysis has also been applied to
fault detection in wind turbines and the diagnosis
of pump faults [23, 24, 25]. For bridge damage
detection, vibration-based approaches were employed

in [26, 27, 28]. Research on detection methods
utilizing the cross-correlation functions of vibration
responses was conducted in [29, 30]. Empirical
mode decomposition techniques, which directly extract
modes, have been employed to identify abnormal
conditions in [31, 32]. Additionally, VMD methods,
recognized for their advantages in signal decomposition
within the frequency domain, have been utilized for
fault diagnosis [33, 34, 35, 36]. Fault detection in
rotating machinery was achieved by integrating the
VMD with multiscale singular value decomposition
[37]. To monitor the conditions of the transmission
tower, a method for extracting the free vibration
response was employed in [38]. Furthermore, focusing
on various methods of data preprocessing, fault feature
extraction and identification, a review of studies on
vibration-based fault detection in rolling bearings was
presented in [39].

To investigate the looseness of bolted joints,
various vibration-based detection methods have been
widely researched. Modal-based vibrothermography
has been proposed to monitor the health conditions
of bolted joints [40]. Diagnosis of bolt loosening has
also been performed using laser excitation tests [41],
while the looseness of bolted connections in pipelines
was detected through changes in natural frequencies
[42]. Additionally, a detection method employing
an empirical mode decomposition-based nonlinear
identification approach was proposed in [43]. Although
vibration-based methods are effective for detecting
abnormalities in bolted joints, alternative approaches
have also been studied. For instance, ultrasonic
wave-based techniques were employed to assess the
conditions of bolted joints in [44, 45, 46]. To evaluate
the quantitative health monitoring of bolted joints,
a piezoceramic actuator-sensor was used in [47, 48].
Moreover, an acoustic health monitoring approach was
presented to investigate the looseness in [49, 50]. An
impedance-based structural health monitoring method
was also presented in [51], and an active detection
approach for loose bolts in complex satellite structures
was studied in [52]. The detection method for looseness
in bolted structures was developed by incorporating
both direct and indirect measurement methods for
axial force [53]. The locations of loose bolts and
the axial forces of all bolts were predicted through
tensile tests under different preload conditions [54].
Additionally, a classification method for bolt loosening
based on wave energy dissipation using piezoelectric
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network3

active sensing was explored in [55]. A monitoring
method combining the inversion of magnetic field
changes with surface clearance was proposed to detect
bolt loosening [56].

Deep learning models are powerful tools for auto-
matically diagnosing abnormalities, and image-based
classification has been extensively studied. Among
these models, supervised learning-based Convolutional
Neural Networks (CNNs) have been widely researched
for fault detection in various applications [57, 58, 59,
60]. Additionally, CNNs have been applied in the medi-
cal field for diagnosing diseases or specific parts [61, 62].
CNN models are known for their ability to classify ob-
jects quickly and accurately compared to other meth-
ods. However, many studies have explored diagnos-
ing abnormalities using not only supervised learning
but also unsupervised learning, semi-supervised learn-
ing, and reinforcement learning. A novel unsupervised
model was developed for intelligent fault diagnosis in
rotating machinery [63]. Semi-supervised learning us-
ing a stacked autoencoder was employed for fracture
identification [64]. The reinforcement learning meth-
ods have been also utilized for intelligent fault detec-
tion, as demonstrated in [65, 66]. In addition, studies
on fault detection using graph neural networks, which
can learn relationships between nodes, edges and graph
features, have been conducted in [67, 68].

The present study aims to detect the looseness
of complex or large bolted joints using the VMD-
based NT approach integrated with a deep residual
network, as illustrated in figure 1. To execute the
overall procedure, it is assumed that easily obtainable
vibration signals from small structures with tight-fit
and loose-fit conditions, as well as from large structures
with tight-fit conditions, are known in advance. The
process begins with the decomposition of the measured
vibration signals through the VMD process, followed
by the extraction of the desired mode. The extracted
signals are then approximately classified using the
nonlinear transformation method and the transformed
signals are generated into virtual spectrograms with
the difference between the signals. These virtual
spectrograms are subsequently analyzed and diagnosed
using the deep residual network.

This paper is organized as follows. Section 2
outlines the methodologies for detecting looseness in
bolted joints. Section 3 demonstrates the validation
of the proposed method through several examples.
Section 4 concludes the study and offers suggestions
for future research directions.

2. Methodology for detection of bolted joint
looseness

2.1. Simplified lab-scale bolted joints versus complex
large-scale bolted joints

This subsection outlines the assumptions made for
detecting the vibration responses of complex and
large-scale bolted joints using the vibration responses
of simplified lab-scale bolted joints. It is assumed
that vibration responses from simplified lab-scale
bolted structures can easily be obtained and can be
measured under both tight-fit and loose-fit conditions.
These simplified structures allow for the assessment
without difficulty under some different materials,
boundary conditions and various factors that influence
these responses. For complex and large-scale bolted
structures, it is assumed that only the vibration
responses of the tight-fit condition are known in
prior. Whether produced as a finished product in
a factory or assembled at a construction site, the
vibration data of the tight-fit conditions of complex
and large-scale bolted structures can be known in
advance. However, the vibration responses under
loose-fit conditions in complex structures are assumed
to be unknown. In practice, conducting experiments
or simulations on mega or geometrically complicated
structures is both time-consuming and challenging,
and detecting looseness conditions further increases the
difficulty. The above assumptions are summarized as
follows:

■ Assumption 1: The vibration responses of the
tight-fit and the loose-fit conditions of simplified
or small reference bolted joints can be easily
obtained.

■ Assumption 2: The responses of the tight-fit
conditions of complex or large bolted joints can
be also obtained.

■ Assumption 3: The responses of complex or
large bolted joints with loose fit are difficult to
be obtained.

Based on these three assumptions, this study aims
to detect the loose-fit conditions of complex and large-
scale bolted joints. To achieve this, vibration responses
are measured using an acceleration sensor and an
impact hammer. The process of approximating the
responses between simplified reference and complex
structures is performed on the obtained vibration
data using variational mode decomposition (VMD)
and nonlinear transformation (NT) methods. In the
VMD process, the signal is decomposed around a
target frequency where modes and peaks occur, and
the intrinsic mode function (IMF) of the desired mode
is extracted. The extracted signals are transformed
into a frequency response function. Subsequently,
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network4

Figure 1. Procedure of the looseness detection system.

the NT method is applied between the frequency
response functions, and these responses are converted
into spectrogram images, which are then diagnosed
using a deep residual network. The entire research
procedure is illustrated in figure 1. This method
enables the detection of differences even when there
are geometrical, material, and bolt size discrepancies
between the simplified and complex structures. In
addition, this study is based on the fact that the
eigenfrequencies associated with the order of mode
shape appear similar from a mechanical engineering
perspective with some differences in the geometry and
material properties. It is acknowledged that the mode
crossing phenomena may occur due to the differences
in the material properties and the geometry.

2.2. Variational mode decomposition (VMD) of
transverse vibration responses

This research utilizes the Variational Mode Decompo-
sition (VMD) method to decompose the vibration sig-
nals [69, 70, 71]. Vibration modes contain valuable
information about the mechanical characteristics of a
system. Therefore, separating a vibration signal into
individual modes facilitates a better understanding and
estimating of the system’s dynamic behavior. Within
the framework of the VMD method, the proposed ap-
proach involves decomposing a vibration signal into in-
dividual components known as Intrinsic Mode Func-
tions (IMFs). Each component exhibits distinct spar-
sity properties in the frequency domain [69]. A key fea-

ture of the VMD method is that each mode possesses
a limited bandwidth and is primarily defined around a
center frequency.

The IMFs are defined as amplitude-modulated-
frequency-modulated signals as follows:

uk(t) = Ak(t) cos(ϕk(t)) (1)

where the phase and envelope are denoted by ϕk(t)
and Ak(t), respectively. The instantaneous frequency
is denoted by ωk(t) = ∂ϕk(t)/∂t in the k-th IMF.
The detailed theoretical background of the VMD
method can be referred to [69]. In the present
study, the VMD is employed to decompose the
acceleration signal into several IMFs, which are utilized
for modal identification. This process is presented as a
constrained variational problem as follows:

min
{uk},{ωk}

{
K∑

k=1

∥∥∥∥∂t [(δ(t) +
j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
2

}

subjected to
K∑

k=1

uk(t) = ẍp(t)

(2)

where the Dirac function and convolution are denoted
by δ and ∗, respectively. uk and ωk are the modes and
center frequencies. With Lagrangian multipliers λ, the
constrained variational problem can be transferred into
an unconstrained optimization problem as follows:
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network5

L({uk} , {ω̄k} , λ) = α

K∑
k=1

∥∥∥∥∂t

[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jω̄kt

∥∥∥∥2

2

+

∥∥∥∥∥ẍp(t)−
K∑

k=1

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), ẍp(t)−

K∑
k=1

uk(t)

〉
(3)

where α denotes the regularization parameter and
it depends on the data fidelity constraint. The
quadratic penalty term is considered to noise effect
and Lagrangian multipliers are employed to utilize
constraints. The alternate direction method is used
to solve (3). With iterative sub-optimizations, the
different center frequencies and modes are able to be
obtained. Each mode is presented as:

uk(ω) =
ẍp(ω)−

∑
i̸=k ui(ω) + (λ(ω)/2)

1 + 2α(ω − ω̄k)2
(k = 1, 2, ...,K)

(4)

where ẍp(ω) is the fast Fourier transform (FFT) of the
signal ẍp(t).

To perform the VMD method, several processes
are proposed. The mode uk(ω) is updated with (5).
With a filter tuned to the center frequency ω(k),
Wiener filtering is applied for updating the mode.

un+1
k (ω) =

ẍp(ω)−
∑

i<k u
n+1
i (ω)−

∑
i>k u

n
i (ω) + (λ(ω)/2)

1 + 2α(ω − ω̄k)2

(k = 1, 2, ...,K)

(5)

In (6), the center frequency ω̄n+1
k is updated as follows:

ω̄n+1
k =

∫∞
0

ω
∣∣un+1

k (ω)
∣∣2 dω∫∞

0

∣∣un+1
k (ω)

∣∣ dω (6)

All frequencies satisfy ω ≥ 0 and the Lagrangian
multiplier λn+1(ω) is obtained by (7).

λn+1(ω) = λn(ω) + τ

(
ẍp(ω) −

∑
k

un+1
k

)
(7)

K∑
k=1

∥∥un+1
k − un

k

∥∥2
2

∥un
k∥

2
2

≤ ε (8)

where τ is the parameter of noise tolerance and ε is the
convergence criteria, respectively. The whole iteration
is conducted as the dual ascent and is finished until the
convergence criteria as shown in (8).

The present study selected specific IMFs for
detecting the looseness of bolted joints during the
VMD process. The criteria for selecting IMFs consider
stiffness and mass differences between the simplified
and complex systems. Each target frequency range
is determined and selectively employed based on
the center frequencies where the desired mode and
corresponding peak are located. The selected IMFs are

then mapped using a nonlinear transformation method,
which involves shifting and scaling according to the
peak frequency.

2.3. Nonlinear transformation with frequency
response functions of the selected IMFs

This subsection describes the nonlinear transformation
(NT) method, which can conduct preliminary classifi-
cation before performing an image-based deep resid-
ual network. The NT method has been studied for
diagnosing various abnormalities, such as failures and
delaminations, as shown in [72, 73]. This method al-
lows for the approximate classification of signals before
performing the deep learning process and increases the
accuracy of diagnosis. In this study, the NT method
is first carried out with the responses of the simplified
bolted joints with a tight fit and the complex bolted
joints with a tight fit. The responses are the frequency
response functions (FRFs) of the selected IMFs in the
previous VMD process. The NT function matches the
eigenfrequencies of the tight-fit condition in the com-
plex structure to those of the tight-fit condition in the
simplified reference structure. Additionally, the sig-
nal of the tight-fit condition in the complex structure
to which this function is applied can approximate the
curve slope to some extent with respect to the signal
of the tight-fit condition in the simplified structure.
After the mapping function between the tight-fit sys-
tems is defined, the same mapping function is applied
to the responses of the unknown condition in the com-
plex structure. Before defining the mapping function,
the frequency response function is defined as follows:

Y = H(ω) (9)

where the Y, H and ω denote the frequency response,
response function and angular velocity, respectively.
The mapping function matches the peak frequencies of
the tight-fit condition in the complex structure to those
of the tight-fit condition in the simplified reference
structure. Herein, these peak frequencies are applied
by shifting angular speed. The amplitudes of FRFs are
also mapped by shifting and scaling of amplitudes.

ω̃c =

(
H−1

s (Ys
max)

H−1
c (Yc

max)

)
· ωc (10)

Ỹc =

(
Ys

max − Ys
min

Yc
max − Yc

min

)
· Yc (11)

where the Yc and Hc are the frequency response and
transfer function of the complex system, the Ys and
Hs are those of the simplified system, respectively.
The maximum FRF values of the simplified reference
and complex systems are denoted by Ys

max and Yc
max.

The minimum FRF values are also denoted by Ys
min
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network6

and Yc
min, respectively. The ωc denotes the resonance

frequencies of the complex system.
The frequency response functions (FRFs) of the

simplified structure with the tight fit and those of the
complex structure with the tight fit are transformed
using the previously defined mapping function. In
other words, the FRF of the complex structure with
the tight fit is scaled and shifted to target that
of the simplified structure with the tight fit. This
function is once again applied to the FRF of the
complex unknown-fit system. Then, the condition
of the complex structure with the unknown fit can
subsequently be determined. If the complex structure
with the unknown fit is in the tight-fit condition,
its FRF will closely resemble that of the simplified
structure with the tight fit. Conversely, if the complex
structure is in the loose-fit condition, its FRF will
differ from that of the simplified structure with the
tight fit. Moreover, the transformed response of the
complex structure with the loose fit may resemble the
FRF of the simplified structure with the loose fit;
however, the eigenfrequencies of the two signals may
not match exactly and could exhibit slight differences.
Additionally, the nonlinear transformation method
offers a significant advantage; data augmentation
through the application of the mapping function. For
instance, data can be augmented by the number of
products of multiple signals to the simplified reference
signal. To implement this method, several procedures
are proposed as follows:

(i) Nonlinear transformation of the tight-fit systems

• The dynamic responses of the complex tight-
fit system (TS) transform to those of the
simplified reference tight-fit system (TRS)
with a mapping function.

• TS is transformed to a mapped tight-fit
system (MTS) as it is mapped to the target
eigenfrequency of TRS.

(ii) Applying the same function to the unknown-fit
system

• The response of the complex unknown-fit
system (US) is transformed into a mapped
unknown-fit system (MUS) by applying the
same defined function.

• After this process, MTS and MUS can be
approximately compared and classified to the
TRS and simplified reference loose-fit system
(LRS).

• If TS and TRS match, there is no need to
use this method and if there is a difference
between the two signals, this method can be
used to distinguish them.

2.4. Deep residual neural network with virtual
spectrograms

This subsection describes the method of using a deep
residual neural network to detect the looseness of
bolted joints with virtual spectrograms created by
differences between vibration signals. This study
adopts Resnet-50, a so-called deep residual neural
network, to classify the conditions of the bolted
joint structures. ResNet-50 is recognized as one of
the leading artificial intelligence networks for image
classification and has been shown to surpass human
recognition capabilities in certain tasks [74]. This
network is developed to address the vanishing gradient
and exploding gradient issues that arise as the network
depth increases [74, 75, 76]. Some key features are
residual blocks and skip connections. Residual blocks
aim to learn the residual or difference between the
input and the desired output instead of trying to
learn an underlying function directly. This approach
facilitates the training of deep networks by mitigating
vanishing gradient problems. Skip connections allow
the gradient to be directly backpropagated to earlier
layers which aids in training deeper networks. To
utilize these advantages, we employ the deep residual
neural network with the following architecture in
figure 2 and the details in table 1. The present models
are trained with a mini-batch size of 8, a max epoch of
50, a learning rate of 0.0001, a shuffle in every epoch, a
method of stochastic gradient descent with momentum
and an image resizing of 224 × 224 in MATLAB [77].

In order to construct the looseness detection sys-
tem using the deep residual network, frequency re-
sponse functions (FRFs) obtained from the variational
mode decomposition and nonlinear transformation pro-
cesses are employed. With the differences between
these FRFs, virtual spectrograms are generated to cre-
ate training and validation datasets using a Short-
time Fourier transform (STFT). In the training set,
the tight-fit signals of the simplified structure (TRS)
serve as the reference signal. Virtual spectrograms are
generated from the differences between the TRS and
the transformed tight-fit signals of the complex model
(MTS), as well as the loose-fit signals of the simplified
model (LRS). For the validation set, the transformed
tight-fit signal of the complex structure (MTS) is used
as the reference signal. Virtual spectrograms are then
created from the differences between the MTS and the
TRS, as well as the transformed unknown signals of
the complex structure (MUS). These virtual spectro-
gram images are used with a size of 256 × 256. In the
first example, 100 training and 100 validation data are
employed, and in the second example, 125 training and
125 validation data are also employed. Note that each
data in the training and validation datasets are differ-
ent and experimental data. By leveraging the methods
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network7

described above and the present deep residual neural
network, the vibration-based looseness detection sys-
tem for bolted joints is developed.

Table 1. The residual network architecture in detail.

Layer Name Layer Description Output Shape
Input 224 × 224 × 3 224 × 224

Conv1
Convolution filter 7 × 7, Strides 2,
Number of filter 64, ReLU, Batch normalization

112 × 112

Conv2 x

Max pooling filter 3 × 3, Strides 2,
ReLU, Batch normalization 1 × 1, 64

3 × 3, 64
1 × 1, 256

× 3
56 × 56

Conv3 x

ReLU, Batch normalization 1 × 1, 128
3 × 3, 128
1 × 1, 512

× 4
28 × 28

Conv4 x

ReLU, Batch normalization 1 × 1, 256
3 × 3, 256
1 × 1, 1024

× 6
14 × 14

Conv5 x

ReLU, Batch normalization 1 × 1, 512
3 × 3, 512
1 × 1, 2048

× 3
7 × 7

Average pool, 1000-d FC, Softmax 1 × 1

2.5. Experimental setup

To demonstrate the application of the proposed
approach, experiments are conducted. An impact
hammer experiment is conducted with several bolted
specimens to obtain transverse vibration signals, as
shown in figure 3. Detailed parameters of the bolted
specimens are provided in table 2. In example
1, one end of the specimen is clamped, while in
example 2, both ends are clamped. The tight-fit
condition of the bolted joints means that it has been
tightened with a torque wrench until a torque of 15
N·m is reached. On the other hand, the loose-fit
condition means that the torque applied by the torque
wrench is 0 N·m. Data acquisition is carried out
with the NI-9234 data acquisition device (DAQ), the
accelerometer (PCB Piezotronics model 352C33) and
the impact hammer (PCB Piezotronics model 086C03).
The measured acceleration data are utilized in the
variational mode decomposition process, while both
force and acceleration data are employed to generate
the frequency response function.

3. Experimental examples

This section presents several examples to verify the
detection of looseness locations in complex structures
with bolted joints using the methodologies described
above. In each case study, the four types of specimens,
i.e., simplified specimens with tight-fit and loose-
fit joints, and complex specimens with tight-fit and
unknown-fit joints are considered. The variational
mode decomposition (VMD) method is employed to
extract intrinsic mode functions (IMFs) from the

acceleration data. The extracted signals are then
transformed into frequency response functions (FRFs).
The nonlinear transformation (NT) is applied between
the FRFs of the simplified and complex bolted
structures. Virtual spectrograms are subsequently
generated based on the differences between signals
obtained from the NT process. With these virtual
spectrograms, the locations of the looseness in the
complex bolted structures are detected through the
deep residual network.

3.1. Example 1: Beam models with three bolted joints

In the first example, beam models with three bolted
joints are considered in figure 4. It is assumed that
the vibration responses of the simplified specimens
with tight-fit and loose-fit joints and the vibration
response of the complex specimen with tight-fit joints
are known prior. However, the vibration response of
the complex specimen with loose-fit joints is unknown,
and it is intended to find out the loosened positions
among joints. First, a transverse vibration experiment
is performed with the simplified and complex bolted
joints in figure 5. Acceleration data are measured
over a duration of 4 seconds and are used to obtain
the impulse response. As shown in figure 5, it is
intricate to identify the relationship between signals
of the simplified and complex structures with only
acceleration signals and detecting the location of the
looseness in bolted joints is also challenging. For
this reason, the present study adopts a method of
decomposing and filtering signals by applying the
VMD to acceleration signals.

Figure 6 shows the VMD process with a
representative signal of the simplified specimen with
tight-fit joints. Figure 6 (a) and (b) show the original
acceleration signal of the simplified specimen with
tight-fit joints and the corresponding IMFs obtained
through the VMD method. Each mode represents
different central frequencies and is decomposed to the
IMFs according to the central frequencies. Figure 7
(a) and (b) show the six IMFs and their fast
Fourier transforms, respectively. The VMD method
is generally employed to filter out noise and identify
key characteristics of the signal. In the present
study, VMD is applied to extract and utilize the
bases of the signal for generating FRFs. The criteria
for extracting IMFs and selectively converting them
to FRFs are set to target the frequency ranges at
which the third mode appears in both simplified
and complex specimens. Specifically, a frequency
range of 1000 - 1500 Hz is chosen for the simplified
specimens, while a range of 500 - 1000 Hz is selected
for the complex specimens, with the IMFs present in
those ranges being utilized. For this example, two
IMFs are considered because the IMFs present in the
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network8

Figure 2. Residual neural network architecture.

Table 2. The detailed parameters of bolted joint specimens.

Specimen Bolt Nut

Size Case Material
Width

(mm)

Length

(mm)

Thickness

(mm)

Mass

(g)

Diameter

(mm)

Mass

(g)

Diameter

(mm)

Mass

(g)

Small
Three holes Stainless Steel 25 145 4.8 115 M8 12 M8 4

Four holes Structure Steel 67 154 4.8 378 M8 12 M8 4

Large
Three holes Stainless Steel 38 250 5.6 394 M9 21 M9 6

Four holes Strcuture Steel 100 230 5.0 842 M12 42 M12 16

Figure 3. Vibration experimental setup.

target frequency ranges of the simplified and complex
systems are different. Figure 8 (a) and (b) show the
respective FRFs of the decomposed IMFs and the FRF
generated by the fifth and sixth IMFs. These IMFs
are represented in the frequency domain for use in
the nonlinear transformation. With these FRFs, the
nonlinear transformation process is carried out in the
next process.

In the NT method, it is assumed that the vibration
responses of simplified specimens with tight-fit and
loose-fit joints and that of the complex specimen
with tight-fit joints are known in advance. The
goal of this approach is to approximately figure out
the response of a complex specimen with loose-fit

joints. To achieve this, the eigenfrequencies of the
complex and simplified specimens with tight-fit joints
are mapped. Figure 9 shows the application process
of the nonlinear transformation method with a tight-
fit reference signal (TRS) and loose-fit reference signal
(LRS) of the simplified specimens, a tight-fit signal
(TS) and an unknown-fit signal (US) of the complex
specimens. Firstly, the vibration responses of TRS,
LRS and TS are measured. Comparing the responses of
the two tight-fit systems, a mapping function to fit the
eigenfrequencies is able to be defined. In this example,
the third mode of the TS is matched to that of the
TRS. The function is defined considering the shifting
factor of angular speed and the scaling and shifting
factors of amplitudes. Here, the eigenfrequency of
the third mode of the TS perfectly matches that of
the TRS, and their slopes might become also similar.
The overall dynamic responses of the system might
become somewhat proportional as the responses are
transformed. It is observed that the eigenfrequencies
of a mapped tight-fit signal (MTS) of the complex
specimen become similar to those of the TRS but
differences in their magnitudes exist. Then, the
unknown-fit signal (US) of the complex specimen is
measured. The same mapping function is applied to
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network9

the US, transforming it into a mapped unknown-fit
signal (MUS). Finally, in the classification step, the
eigenfrequencies of the MTS are roughly similar to
those of the TRS and the system with the MUS might
be similar to the system with the LRS.

Figure 10 shows the virtual spectrograms gener-
ated with the reference signals of the simplified speci-
mens and the transformed signals of the complex spec-
imens. The differences between these signals are trans-
formed into virtual spectrograms using the Short time-
Fourier transform. This process is applied to the TRS,
LRS, MTS and MUS. An important consideration is
the selection of reference data for calculating the differ-
ences. For the training dataset, virtual spectrograms
are generated with TRS as the reference and are cre-
ated by the difference between the MTS and TRS are
designated as the TRS. Meanwhile, spectrograms con-
structed from the differences between the LRS 1, 2, 3,
and TRS are labeled as LRS 1, 2 and 3, respectively.
In the validation dataset, the MTS is selected as the
reference data and the spectrograms generated by the
difference between the TRS and MTS are denominated
as a tight-fit condition. Spectrograms derived from the
differences of the MUS and MTS are labeled as loose-
ness conditions. The employed virtual spectrograms in
the training and validation datasets show similarities.
Utilizing these datasets, the locations of the looseness
in complex bolted structures can be classified and di-
agnosed in the deep residual network.

Figure 11 (a) and (b) show the confusion matrices
for looseness detection without and with the VMD-
based NT method, and figure 12 (a) and (b) illustrate
the corresponding confusion radar maps. Without the
VMD-based NT method, locations of the LRS 1 are not
detected, resulting in an overall detection accuracy of
70 %. On the other hand, with the present VMD-
based NT method, the looseness of bolted joints is
detected with a significantly improved accuracy of 95
%. As shown in figure 11 (b), the LRS 2, 3 and
4 in the validation dataset are detected with 100 %
accuracy. On the other side, the looseness conditions
of the LRS 1 are evaluated with an accuracy of 80 %.
The discrepancy in detection accuracy for LRS 1 can
be attributed to differences between the spectrograms
of LRS 1 - TRS and MUS 1 - MTS. Although there
are some errors, the locations of the looseness in
complex bolted joints can be investigated with high
accuracy. These findings emphasize the importance
of the VMD-based NT method in detecting the
conditions of complex bolted structures with simplified
bolted structures. Thus, this example validates the
effectiveness of the looseness detection approach with
the VMD-based NT method.

Figure 4. Illustration of geometric configurations
represented by simplified and complex specimens with
three bolted joints.

(a)

(b)

Figure 5. Acceleration data of the simplified and
complex specimens measured by impact hammer for
4 seconds. (a) The acceleration signals of the four
conditions of the simplified specimen with three bolted
joints and (b) the acceleration signals of the four
conditions of the complex specimen with three bolted
joints.
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network10

(a)

(b)

Figure 6. The VMD process with the acceleration
signal of the representative simplified specimen with
tight-fit joints. (a) The original acceleration signal and
(b) the IMFs of the acceleration signal.

(a)

(b)

Figure 7. The IMFs generated with the acceleration
signal of the tight-fit joints in the simplified specimen.
(a) The IMFs of the acceleration signal and (b) the fast
Fourier transformations of the IMFs.

(a)

(b)

Figure 8. The FRFs constructed with the IMFs. (a)
FRFs generated by the six IMFs and (b) the FRF
generated by the IMF 5 and IMF 6.

3.2. Example 2: Beam models with four bolted joints

For the second illustrative example, the VMD-based
NT method is applied to beams with four bolted
joints that exist some types of mechanical looseness in
figure 13. From a mechanical vibration perspective,
the vibration response of the assembled structure
is primarily determined by the vibration mode and
resonance frequency, which depend on the stiffness
and mass. The lighter mass of the bolt compared
to the main mechanical structure has minimal impact
on the vibration response, making it more challenging
to identify and detect anomalies in bolted joints. In
addition, the effects of the clamping forces of the
bolts determining the stiffness values of the assembled
structures are relatively small. For this reason, in this
example, the vibration responses of the beams with the
loose fit and the tight fit are hard to distinguish in the
low-frequency range under 6000 Hz. Therefore, this
example focuses on detecting loose-fit joints in large
and complex specimens by analyzing the frequency
range above 6000 Hz. It is important to note that the
signals of all simplified specimens with tight-fit and
loose-fit joints, as well as the signal of the complex
specimen with tight-fit joints, are known in advance.
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network11

Figure 9. The NT process with the FRFs of the simplified and complex specimens with three bolted joints.

Figure 10. Representative virtual spectrograms
created by the differences between the transformed
signals and reference signals in the training and
validation datasets.

First of all, acceleration signals of the assembled
specimens are measured using a transverse vibration
experiment, as depicted in figure 14. With these
measured acceleration signals, the conditions of bolted
joints are classified and detected through the VMD-
based NT method combined with the deep residual
network.

The VMD procedure for analyzing the accelera-
tion signal of the representative simplified specimen
with tight-fit joints is presented in figure 15. Fig-
ure 15(a) shows the original acceleration signal of the
simplified specimen with tight-fit joints. Figure 15 (b)
shows the intrinsic mode functions (IMFs) of the accel-
eration signal. With the above processes, figure 16 (a)

and (b) show the six IMFs and their fast Fourier trans-
formations. Comparing fast Fourier transformations,
the acceleration signals of the representative simplified
specimen with tight-fit joints can be seen decomposed
into each mode and eigenfrequency. In this example,
the target frequencies for the simplified and complex
systems are approximately 7000 Hz and 3000 Hz, re-
spectively. The third IMFs corresponding to the target
frequency ranges are employed. Figure 17 (a) and (b)
depict the FRFs of all IMFs and the FRF of the third
IMF, respectively. Considering the eigenfrequencies of
both the simplified and complex specimens, the FRF of
the third IMF is used for the nonlinear transformation
method.

Figure 18 shows the entire nonlinear transforma-
tion process with the representative tight-fit reference
signal (TRS) and loose-fit reference signal (LRS) of
the simplified specimens, and tight-fit signal (TS) and
unknown-fit signal (US) of the complex specimens. In
the acquisition step, the TRS, LRS and TS are mea-
sured. As previously discussed, a nonlinear mapping
function is defined to approximately match the TS to
the TRS. In the outcome step, the TRS, LRS and
mapped tight-fit signal (MTS) of the complex spec-
imen are presented. While the MTS does not com-
pletely match the TRS, their peak frequencies and
slopes are able to be matched. Next, the US is mea-
sured and transformed using the previously defined
mapping function, resulting in the mapped unknown-
fit signal (MUS). Finally, in the classification step, the
TRS, LRS, MTS and MUS can be identified. The TRS
and MTS are observed to be similar, while the LRS
and MUS exhibit differences from both the TRS and
MTS. Through this process, the vibration signals can
be approximately classified.
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network12

(a)

(b)

Figure 11. Confusion matrices showing the results
of the looseness detection of the complex beam models
with three holes. (a) The confusion matrix without the
VMD-based NT method and (b) the confusion matrix
with the VMD-based NT method.

Figure 19 shows representative virtual spectro-
grams generated by differences between the trans-
formed FRF signals of the complex specimens and the
reference FRF signals of the simplified specimens. In
this example, the frequency range between 6800 and
7200 Hz is considered, as distinguishing differences in
responses below 6000 Hz proves challenging. Similar to
the previous example, the TRS in the training dataset
and MTS in the validation dataset are designated as
reference signals. In the training dataset, virtual spec-

(a)

(b)

Figure 12. Confusion radar maps about the results
of the confusion matrices. (a) The confusion radar
map without the VMD-based NT method and (b) the
confusion radar map with the VMD-based NT method.

trograms generated from the differences between the
MTS and TRS are trained as the TRS condition, and
those constructed with the differences between the LRS
1, 2, 3, 4 and TRS are trained as the LRS 1, 2, 3 and
4 conditions, respectively. For the validation dataset,
virtual spectrograms generated from the differences be-
tween the TRS and MTS are evaluated by compar-
ing them with the tight-fit condition of the training
dataset, while those constructed from the differences
between the MUS 1, 2, 3, 4 and MTS are assessed un-
der looseness conditions. These virtual spectrograms
are then used for the detection of looseness in complex
bolted joints, utilizing the deep residual network for
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network13

classification and diagnosis.
Figures 20 and 21 present the results of detecting

the looseness of complex bolted joints with and without
the VMD-based NT method. Without the VMD-
based NT method, the locations of the LRS 1, 2
and 3 are not properly detected and the total results
have an accuracy of 40 %. On the other side, the
looseness detection of bolted joints using the VMD-
based NT method is conducted with an accuracy of 92
%. As shown in figures 20 (b) and 21 (b), the virtual
spectrograms corresponding to the MUS1 - MTS and
MUS2 - MTS are detected as looseness conditions with
an accuracy of 100 %. However, the spectrograms of
the MUS3 - MTS and MUS4 - MTS are classified as
looseness conditions with an accuracy of 80 %. Upon
investigation, it is observed that the MUS3 - MTS,
that is, some virtual spectrograms for the LRS 3 in
the validation dataset resemble those of the LRS 2
in the training dataset. In addition, some virtual
spectrograms of MUS4 - MTS are also detected with
those of the LRS 2 in the training dataset. Despite
these discrepancies, the results demonstrate that the
VMD-based NT method significantly enhances the
ability to accurately detect the locations of looseness in
bolted joints compared to the method without VMD-
based NT.

One of the attitudes is that it may be difficult
to control the magnitudes when applying the VMD-
based NT method. In addition, it can be difficult
to investigate abnormalities in frequency bands higher
than the frequency bands of the present study.

Figure 13. Illustration of geometric configurations
represented by simplified and complex specimens with
four bolted joints.

(a)

(b)

Figure 14. Acceleration data of the simplified and
complex specimens measured by impact hammer for
4 seconds. (a) The acceleration signals of the five
conditions of the simplified specimen with four bolted
joints and (b) the acceleration signals of the five
conditions of the complex specimen with four bolted
joints.

(a)

(b)

Figure 15. The VMD process with the acceleration
signal of the representative simplified specimen with
tight-fit joints. (a) The original acceleration signal and
(b) the IMFs of the acceleration signal.
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network14

(a)

(b)

Figure 16. The IMFs generated with the acceleration
signal of the tight-fit joints in the simplified specimen.
(a) The IMFs of the acceleration signal and (b) the fast
Fourier transformations of the IMFs.

(a)

(b)

Figure 17. The FRFs constructed with the IMFs.
(a) FRFs generated by the six IMFs and (b) the FRF
generated by the IMF 3.

Figure 18. The NT process with the FRFs of the
simplified and complex specimens with four bolted
joints.

Figure 19. Representative virtual spectrograms
created by the differences between the transformed
signals and reference signals in the training and
validation datasets.

4. Conclusion

This study proposes a novel detection system for bolted
joint looseness using the Variational Mode Decompo-
sition (VMD)-based Nonlinear Transformation (NT)
approach integrated with the deep residual neural net-
work, under certain assumptions. To verify the present
method, several beam models with three and four
holes are considered. Acceleration signals obtained
from transverse vibration experiments are decomposed
into intrinsic mode functions (IMFs) using the VMD
method. Among the decomposed IMFs, those within
the target frequency ranges considering the mechani-
cal characteristics of simplified and complex systems
are selected and transformed into frequency response
functions (FRFs). These FRFs are roughly classified
through the nonlinear transformation process, and it
has become possible to interpret the complex system
as the simplified system. The transformed signals are
then used to generate virtual spectrograms, which are
subsequently employed for training and validation in
the deep residual network. In the first and second
examples, looseness conditions are detected with ac-
curacies of 95 % and 92 %, respectively, when using
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Looseness detection system of bolted joints using a VMD-based nonlinear transformation approach with deep residual network15

(a)

(b)

Figure 20. Confusion matrices showing the results
of the looseness detection of the complex beam models
with four holes. (a) The confusion matrix without the
VMD-based NT method and (b) the confusion matrix
with the VMD-based NT method.

the VMD-based NT method integrated with the deep
residual network. In contrast, accuracies drop to 70
% and 40 % without the VMD-based NT method. By
combining VMD and NT methods, effective signal pro-
cessing and high accuracy are achieved, and the loose-
ness conditions of bolted joints can be successfully de-
tected. In the present study, structures with 3 or 4
bolts are employed, but structures with fewer than 3
or more than 4 bolts might be considered in future

(a)

(b)

Figure 21. Confusion radar maps about the results
of the confusion matrices. (a) The confusion radar
map without the VMD-based NT method and (b) the
confusion radar map with the VMD-based NT method.

research. Moreover, the other assembly methods can
be considered and the detection methods of multiple
irregular signals of more complex structures in high-
frequency bands can be developed.
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