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a b s t r a c t

This paper presents a new topology optimization scheme for nonlinear electrostatic systems actuated by
Coulomb’s forces. For successful optimization, computational issues such as (i) alternating governing
equations with respect to spatially defined design variables, (ii) imposing interaction boundary condi-
tions between insulator (air) and conductor (solid) and (iii) control of minimum geometrical feature sizes
must be addressed. To address the first two issues, the paper presents a monolithic formulation based on
continuum mechanics theory which simultaneously calculates the electric potential and structural dis-
placements. To interpolate between insulator and conductor with continuous design variables, the mono-
lithic approach distinguishes between the permittivity value of the electric Poisson’s equation and that of
Maxwell’s stress tensor. For the optimization, standard material interpolations are used for Young’s mod-
ulus and permittivity values. Moreover, a recently developed morphology filter is applied to control elec-
trode gaps and other geometrical features.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

It is a challenging task to design multiphysics systems through
engineer’s intuition because of their complex nature. Therefore,
after the introduction of the topology optimization method [1,2],
many works have applied it to multiphysics systems, especially
in the MEMS application area [3–16]. As an extension of this trend,
this paper presents a new computational framework, paving the
way for systematic design of nonlinear electrostatic systems actu-
ated by Coulomb’s force [17–20].

Electrostatics refers to a simple case of electromagnetism where
the electric field is considered quasistatic due to stationary electric
charges [21]. Moreover, in an electric field, a structure will be sub-
jected to electrostatic forces due to induced charges on its surfaces.
Generally, this electrostatic force can be computed by surface inte-
gration of the so-called Maxwell’s stress tensor [21,22]. Most of the
widely used MEMS devices use this electrostatic phenomenon for
actuation. Typical examples are comb-drive actuators and sensors
consisting of integrated capacitors [12,18].

Because the movement of a conductor influences the electric
field as well as the electrostatic forces, the coupling between the
ll rights reserved.
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s employed at the Technical
electric field and the structural displacements must be considered
simultaneously. In order to analyze electromechanically coupled
systems, there exist several computational approaches (see e.g.,
[7,11]). The principal method is the staggered analysis method
which calculates the electric field in the air and the structural dis-
placements of the conductor separately in each subdomain.
Depending on strategy, there are several ways of solving the cou-
pled problem [22]. Normally several iterations are required, each
involving solution of the respective system possibly using different
analysis techniques (e.g., BEM and FEM). On the other hand, mono-
lithic approaches which calculate the two fields simultaneously
have been suggested recently [7,8]. Monolithic analysis approaches
also require several iterations. However, as opposed to most stag-
gered analysis methods, the monolithic method solves the two
fields in a unified domain.

Concerning optimization of electrostatic systems, size and
shape optimizations have been carried out by a number of
researchers (see [17–19] and references in them). Considering
the electric field only, topology optimization has been applied to
electrostatic rotors in [12]. Topology optimization of the full elec-
tromechanically coupled problem has recently been initiated by
four groups [7,11,15,16] using widely different approaches. Ref.
[11] suggests a staggered analysis method to design actuators
and [7] uses a monolithic approach to maximize the pull-in voltage
of structures. Both approaches consider fixed boundaries between
air and conductor and hence topological variations are limited
to the structural domain. The limitation of design freedom is
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introduced in order to avoid the problem of defining electrostatic
force boundary conditions when the boundaries are unknown a
priori as is the case in topology optimization. The interfacing
boundary condition issue between two distinct governing equa-
tions also arises in topology optimization for pressure load and
acoustic-structure interaction problems. In Refs. [5,10], the prob-
lem was overcome by interpolation between the PDEs of the two
physics problems resulting in a mixed displacement–pressure
(U–P) formulation. A similar approach can be suggested to avoid
the problem with identifying electrostatic force boundary condi-
tions in the topology optimization method. In this paper we elab-
orate and improve on a fully coupled approach first suggested by
us in Ref. [16]. A related approach has recently been suggested
for the weakly coupled problem in Ref. [15].

In order to implement a topology optimization scheme for non-
linear electrostatic actuator design problems, this paper suggests a
monolithic analysis scheme and changes permittivity and Young’s
modulus simultaneously in the whole design domain. In doing so,
we can resolve the issues of alternating governing equations in air
and conductor as well as the identification of the coupling bound-
ary conditions along boundaries between insulator and conductor
as shown in Fig. 1.

In the present monolithic approach, continuum mechanics the-
ory plays an important role in deriving the fully-coupled equations
[22–24]. For material interpolations, the Young’s modulus and per-
mittivity values are interpolated by usual SIMP (Solid Isotropic
Material with Penalization) functions with respect to design
variables. To simulate perfect conductivities of conductors, we
distinguish between the permittivity in Poisson’s equation, here
named ‘‘generalized permittivity”, and the permittivity used for
the electrostatic force calculation. Based on this idea, we can
successfully carry out the topology optimization for electrostatic
structures. Moreover, we address some issues of localization of
the actuation area in the design domain and filtering techniques
that avoid too small and mesh-dependent features.

The paper is organized as follows: Section 2 sets up basic
notations for the electric and linear elasticity equations and
briefly reviews the standard staggered analysis method. Section 3
presents the monolithic approach formulated in the undeformed
domain, provides several analytical examples verifying the
method, and compares the results with other methods. Section 4
describes interpolation functions, local optima and implementa-
tion. Section 5 presents several examples of topology optimization
applied to two-dimensional electrostatic actuators. In Section 6
Fig. 1. Alternating governing equations and boundary conditions for electrostatic system
interfacing boundary conditions. Right: during optimization the original interaction bou
we summarize our findings and discuss some future research
subjects.

2. Governing equations for electrostatic systems and the
staggered analysis method

To provide a basis for further derivations, we start by describing
the standard staggered approach for solving electromechanically
coupled problems. In the subsequent section we modify the mod-
eling scheme to the monolithic formulation.

2.1. Basic notation

To consistently describe the steady-state deformation of struc-
tures actuated by Coulomb’s forces, we define the relation between
coordinates of the undeformed 0

e=sX and deformed t
e=sX systems by

x ¼ Xþ u; ð1Þ

where x = {xi} and X = {Xi} (i = 1,2 for 2D and i = 1,2,3 for 3D) are
coordinates in the deformed and un-deformed domains, respec-
tively, and the structural deformation is denoted by u. Left-sub-
scripts e or s refer to the electric or structural subdomains,
respectively (see Fig. 2a). Moreover, we define the differential oper-
ators in the deformed and un-deformed domains:

rX ¼
o

oXi
in 0

e=sX;rx ¼
o

oxi
in t

e=sX: ð2Þ

The finite deformation tensor, F, is defined as the partial differenti-
ation of the current coordinate x with respect to the undeformed
coordinate X. Thereby, the differential operators of the two config-
urations can be related using the deformation tensor:

F ¼ ox
oX

; rX ¼ FTrx; rx ¼ F�TrX: ð3Þ
2.2. The electrostatic equation

The electric and magnetic fields of general media can be calcu-
lated by solving Maxwell’s equations [21]. Usually, the two fields
are strongly coupled. However, in this research we assume linear
and non-magnetic media. Hence the equations can be decoupled
and only the electric field needs to be solved for. The considered
media have conductivity, r, and permittivity, e, where both are
arbitrary functions of space:
. Left: modeling domain consisting of one air domain and one solid domain with
ndary may change shape and new boundaries must be allowed to form.
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Fig. 2. Notations used in a staggered analysis method. (a) Definitions of boundaries and domains, and (b) illustrations of index notation.
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r ¼ rðxÞ; e ¼ eðxÞ: ð4Þ

Assuming an irrotational electric field, E, with a scalar electric po-
tential / (E = �$x/), one may derive the following governing equa-
tions [21]:

Equation of continuity : rx � ðrEÞ þ oq
ot
¼ 0 and

Gauss law : rx � ðeEÞ ¼ q; ð5Þ

where the charge density is denoted by q [21]. Coupling of these
two equations results in the following transient equation defined
in the deformed domain t

eX (see Fig. 2 for notations for boundaries
and domains):

General equation : rx � rEþ o

ot
eE

� �
¼ 0 or

rx � rrx/þ
o

ot
erx/

� �
¼ 0 in t

eX: ð6Þ

The transient Eq. (6) can be solved in order to calculate electric
fields in media with a given permittivity and non-zero conductivity.
It is, however, common to degenerate this transient system into a
static equation with either conductivity or permittivity depending
on media [21].

In an ideal insulator such as air, the conductivity is assumed to
be zero and the following static Poisson’s equation with only a spa-
tially varying permittivity must be solved in the deformed domain
t
eX:

rx � ðeðxÞ � rx/Þ ¼ 0 in t
eXðuÞ: ð7Þ

Here, we assume that the external charge is zero.
The boundary conditions are defined as follows:

/ ¼ 0 on t
eC/0 ðuÞ : Ground B:C:;

/ ¼ /� on t
eC/� ðuÞ : Voltage B:C:;

/ ¼ /� on t
eC iðuÞ : Interface B:C:;

ð8Þ

where the applied voltage on t
eC/� ðuÞ is denoted by /* and the

boundary t
eC/0 ðuÞ is grounded. Moreover the interfacing boundary

condition t
eC i commonly has the voltage boundary condition /* be-

cause the structure is assumed to be an ideal conductor.
Using the principle of virtual work, the weak form of Poisson’s
equation can be derived:

Electric potential equation :

Z
t
eX
ðrxd/ÞT � eðxÞ � rx/dX ¼ 0; ð9Þ

where d/ denotes the virtual potential.

2.3. Structural equations

Any structure having a permittivity e(x) in an electric field is
subjected to electrostatic forces on the interfacing boundary
t
sC iðuÞ due to the so-called (electric) Maxwell’s stress tensor which
corresponds to the symmetric 2-Rank stress momentum tensor of
an electromagnetic field [21,22]:

TE ¼ eðxÞ EE� E � E
2

I
� �

on t
sC iðuÞð¼

t
sC iðuÞÞ: ð10Þ

The structural equation neglecting body forces can be defined as,

rx � T ¼ 0 in t
sXðuÞ: ð11Þ

The boundary conditions are defined:

n � T ¼ fe on t
sC iðuÞ ðwhere n is the normal vectorÞ;

u ¼ u� on t
sCu� ;

u ¼ u0 on t
sCu0 :

ð12Þ

The Dirichlet boundary conditions are imposed on t
sCu� for u = u*

and t
sCu0 for u = u0, respectively, and the Neumann boundary condi-

tion is imposed on t
sC iðuÞ.

The electrostatic traction force fe, the strain S, and the stress T,
are defined as Eqs. (13) and (14):

S ¼ 1
2
ðrT

xuþrxuÞ; T ¼ CS; ð13Þ

fe ¼ n � TE on t
sC iðuÞð¼

t
eC iðuÞÞ: ð14Þ

Here, we assume geometrically linear strains, S, calculated from the
current displacements, u. The Cauchy stress is denoted by T and the
deformation-independent constitutive matrix is denoted by C.
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Using the principle of virtual work, the following equation can
be derived:

Linear elasticity equation :

Z
t
sX

dSTTdX ¼ �
Z

t
sC i

duTfedC; ð15Þ

where the virtual displacements and associated virtual strains are
denoted by du and dS, respectively.

In deriving this equation, some important assumptions were
used. First of all, we assume geometrically linear analysis. In other
words, we neglect changes of surface areas, volumes and mass
densities between the undeformed and the deformed structural
domains [23]. Due to this assumption, the 2nd Piola–Kirchhoff
stress and the Cauchy stress measures become identical. Further-
more, the associated strain measures – the Green–Lagrangian
strain and the linear strain – also become identical when assuming
deformation independent material properties. Thus, the elasticity
equation is simplified toZ

0
s X

dSTTdX|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
Geometrically linear

ðrx � rXÞ

¼ �
Z

t
sC i

duTfeð/ðuÞ;uÞdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Deformation dependent load

ðrx 6¼ rXÞ

:

ð16Þ

Here, the elasticity equation is simply calculated in the undeformed
domain and the differential operators of the undeformed and de-
formed systems can be treated as the same operator, i.e., $x � $X.
However, the right term of Eq. (15) is dependent on displacements
and is a so-called deformation dependent load [23]. Therefore, the
geometry due to the current displacements u should be considered.
Unlike the left-hand side, the differential operators of the deformed
and the un-deformed systems are treated differently, i.e.,$x 6¼ $X

(see p. 528 of [23] for more details).

2.4. Staggered analysis method

The governing equation for the electric field (9) as well as the
right-hand-side of the elasticity Eq. (16) are defined in the de-
formed configuration which is a function of the displacements
(u). Therefore, the electric potential and the structural displace-
Fig. 3. Computational procedure for
ments must be solved iteratively through the so-called staggered
analysis method as illustrated in Fig. 3. Normally, after solving
the electric field, the electrostatic force associated with that elec-
tric field is calculated through surface integration of Maxwell’s
stress tensor. Then the pure structural equation is solved with
the calculated electrostatic force using Eq. (16). These steps should
be repeated until both fields have converged.

The accuracy of the staggered analysis method is dependent on
how the electric potential equation of Eq. (9) is solved in the de-
formed electric domain t

eXðuÞ. The key step is obtaining an update
geometry, t

eXðuÞ, considering the current structural displacements
u from Eq. (16). There are two common approaches to update the
geometry: (1) Generating a completely new mesh for t

eXðuÞ while
maintaining the boundaries between the structural and electro-
static domains or (2) keeping the original mesh and adjusting the
locations of existing nodes by morphing an original mesh or by
solving a simple elasticity equation for t

eXðuÞ. In both cases, addi-
tional computations are required [22].

The staggered approach with either remeshing or morphing is
in general use and works well for size and shape optimization
problems. Moreover, it is a computationally robust and efficient
method which is being used in state-of-the-art commercial soft-
wares such as ANSYS [22]. Unfortunately, this staggered analysis
method does not allow for free material redistribution in connec-
tion with topology optimization because (i) it requires an explicit
interfacing boundary description for the coupling boundary condi-
tions, (ii) depending on design variable values, two governing
equations must be alternated between, and (iii) there is an ambi-
guity for intermediate design variables. In conclusion, there is a
need for a scheme that inherits the simplicity and efficiency of
staggered methods but at the same time allows for topology opti-
mization without explicit interfacing boundary between insulator
and conductor.
3. A fully coupled formulation for electromechanical systems

In the following, we present a new monolithic analysis scheme
using the same governing equations as before but defined on the
the staggered analysis method.
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whole analysis domain as shown in Fig. 4. Unlike the staggered
analysis method, the electric and mechanical fields are modeled
in a unified domain. All previously defined notations are valid ex-
cept the notations for domain and boundary conditions shown in
Fig. 5. The differences compared to the staggered analysis method
can be listed as

1. Unified equations for conductor and insulator.
2. A generalized permittivity for solutions of the transient Eq. (6)

in the whole domain.
3. Maxwell’s stress tensor formulated in domains not on bound-

aries making use of Gauss’s theorem.
4. Transformation of governing equations from the deformed

domain to the undeformed domain using the deformation ten-
sor (i.e., no remeshing required).

As opposed to the staggered analysis method, the suggested
monolithic approach distinguishes between conductor (e.g., sili-
con) and insulator (e.g., air), not by changing governing equations
from the electric equation to the linear elasticity equation and vice
versa, but by changing three material properties in the unified do-
main (Young’s modulus and permittivities in the electric equation
and the electrostatic force calculation, respectively). Therefore, a
standard topology optimization can be carried out using standard
SIMP material interpolation functions for the three material prop-
erties. Concerning the second aspect above, the electric field in Eq.
(6) must be simulated for both conductor and insulator simulta-
neously. For the conductor, equal potential conditions must hold
for its surfaces. In order to satisfy this condition, we change the
transient system Eq. (6) into a static one by introducing a general-
ized permittivity discussed below. Concerning aspect 3, the elec-
trostatic force is calculated by a volume integration instead of a
Fig. 4. The present monolithic approach where ~e is the generalized Permittivity
used in the electric potential equation, ~es the value in solid domains. Young’s mo-
dulus becomes a very small Ca in the electric domain and the value of the condu-
cting material CS in the solid domain.

Fig. 5. Notations used in the present monolithic approach. Note that the mechanical do
approach where s = ‘‘0” means undeformed space and ‘‘t” deformed space.
surface integration of Maxwell’s stress tensor because of the non-
existing explicit boundary description. Concerning the last aspect,
the electric field and the forces are formulated in the undeformed
domain. As opposed to the staggered analysis method, we do not
want to update an existing mesh or generate a new mesh because
this will cause problems for the free material distribution. There-
fore, by the help of continuum theory, we formulate the governing
equations and electrostatic forces in the undeformed domain.

3.1. Generalized permittivity for the electric equation

In order to simulate the electric field of the transient Eq. (6)
using a static equation, we propose to use an approximation theory
for Eq. (6), described in Refs. [21,25]. Employing a time constant T,
the time derivative of the charge density in Eq. (5) can be linearly
approximated as,

oq
ot
�

tq� 0q
T

ð0q ¼ 0Þ; ð17Þ

where tq and 0q are electric charges in the deformed and the unde-
formed domains, respectively. Ideally, T should be much larger than
the material relaxation time, s = e/r but normally T is selected to be
only 100–1000 times larger than s in order to prevent numerical ill-
conditioning [25]. Eq. (6) may now be reformulated in the form:

rx � ðrEÞ þ rx � ðeEÞ
T

¼ 0 or rx � ðTrþ eÞrx/ ¼ 0 in tX: ð18Þ

For a simpler description, we introduce the generalized permittivity,
~e:

~e � Trþ e then rx � ð~eÞrx/ ¼ 0 in tX ð19Þ
T � s ¼ e=r where T ¼ as c ¼ aec=rc; a� 1; ð20Þ

where the material properties for conductor are denoted by ec and
rc and a is a large constant (=100–1000).

The generalized permittivity ~e for conductor and insulator is de-
fined as,

~e ¼
ea inside air;
~es inside conductor:

�
ð21Þ

Ideally, ~es should be an infinite number to satisfy the conditions of a
conductor. However, a very high number produces numerical insta-
bility. Numerical tests suggest a value around 105 times larger than
the permittivity of air in order to satisfy the equal potential condi-
tion and without causing ill-conditioning. Note that the generalized
permittivity should be used only in the electric field equation and
not in the evaluation of Maxwell’s stress tensor.

3.2. Monolithic formulation in the undeformed domain

Using the generalized permittivity, we can set up the electric
equation as,

rx � ð~eðxÞ � rx/Þ ¼ 0 in tXðuÞ; ð22Þ

where the following boundary conditions are assumed:
main ð�Þ
s X and the electric domain ð�Þ

e X are identical to (s)X(u) in this monolithic
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/ ¼ 0 on tC/0 ðuÞ; ð23Þ
/ ¼ /� on tC/� ðuÞ: ð24Þ

In the monolithic approach, calculating the electrostatic force
by surface integration is inadequate because new holes with a pri-
ori unknown boundary curves may emerge and disappear during
the optimization process. Therefore, we propose to use volume
integration of Maxwell’s stress tensor to calculate the electrostatic
force rather than surface integration:Z

tX
fedX ¼

Z
tX
rx � TEdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Present
monolithic approach

¼
Z

s tCi

nTTEdC|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Staggered approach :

ð25Þ

Now we can write the linear elasticity equation including prestress
from the Maxwell’s stress tensor:

rx � Tþrx � TE ¼ 0 in tXðuÞ; ð26Þ
u ¼ u� on tCu� ; ð27Þ

S ¼ 1
2
ðrT

xuþrxuÞ; T ¼ CS: ð28Þ

Using the principle of virtual work, the two governing equations in
the deformed domain can be set up as,Z

tX
ðrxd/ÞT � ~eðxÞ � rx/dX ¼ 0; ð29ÞZ

0X
dST � TdX ¼ �

Z
tX

dSðu; duÞT � TEdX; ð30Þ

where dS ¼ 1
2
ðrXduT þrXduÞ and

dSðu; duÞ ¼ 1
2
ððF�TrXduÞT þ F�TrXduÞ: ð31Þ

The two Eqs. (29) and (30) are formulated in the deformed domain
tX(u) except for the linear structural potential energy as explained
in the previous section. Still these two equations contain integra-
tions in tX(u) that require updating of the geometry. To resolve this
difficulty, we use transformation of the differential operators. In
other words, we transfer the two governing equations from the de-
formed domain to the undeformed domain using Eqs. (3) and (32):

rxu ¼ F�TrXu;rx/ ¼ F�TrX/; and
Z

tX
ðÞdX ¼

Z
0X
ðÞkFkdX;

ð32Þ

Electric equation :

Z
0X
ðrXd/ÞTðF�1 � ~eðxÞ � F�TÞrX/kFkdX ¼ 0; ð33Þ

Linear elasticity equation :

Z
0X

dST � TdX

¼ �
Z

0X
dSðu; duÞT � TEkFkdX: ð34Þ

These two equations are coupled with each other because the defor-
mation tensor F as well as the virtual strains are functions of dis-
placements u. Note that the equations are valid for general media
consisting of ideal conductors and insulators. The interfacing
Fig. 6. A general model for forces betw
boundary conditions between conductor and insulator are automat-
ically satisfied because we formulate the Maxwell’s stress tensor as
an initial stress term. Therefore, it is not necessary to manually im-
pose interaction boundary conditions, which is one of the advanta-
ges of the proposed scheme.

3.3. Illustrative examples

To prove the correctness and efficiency of the modified govern-
ing Eqs. (33) and (34), we consider four simple test examples.

Example 1. Electrostatic force in a capacitor
The proposed approach can accurately calculate the electro-

static force through volume integration of the Maxwell’s stress
tensor in the undeformed domain using Eq. (34).

To illustrate this aspect, we consider the capacitor with a spring
in Fig. 6. The distance between the two plates changes from d0 to
d0 � u1 + u2 when the voltage /* is applied to the left electrode.
Then, the electrostatic force fe is calculated using the standard
approach:

Standard approach : fe ¼
1
2

eað/2 � /1Þ
2

ðd0 � u1 þ u2Þ2
) 1

2
eað/�Þ2

ðd0 � u1Þ2
: ð35Þ

To derive the well-known Eq. (35) using Eq. (34), the virtual strains
dS and dS(u,du) in the deformed domain and the deformation tensor
are calculated in the form:

dS ¼ ddu
dX

; dSðu; duÞ ¼ ddu
dx

; F ¼ dx
dX
¼ 1þ du

dX
: ð36Þ

Without loss of generality, we assume linear shape functions for the
one-dimensional electric elements. Then the electrostatic force
term, corresponding to the right-hand side of Eq. (34), can be de-
rived using

d/
dX
¼ 1

d0
½�1;1	

/1

/2

� �
; F ¼ 1þ 1

d0
ðu2 � u1Þ ð37Þ

and hence

Monolithic approach :

�
Z

0X
dSTðu; duÞTEkFkdX

¼ �
Z d0

0
½du1; du2	

1
d0

�1
1

� �
dX
dx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

dSTðu;duÞ

ea

2
d/
dX

� �2

F�2

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
TE

dx
dX|{z}
kFk

dX

¼ ½du1; du2	
ea

2
ð/2 � /1Þ

2

ðd0 � u1 þ u2Þ2
1
�1

� �
:

ð38Þ

It is seen that the resulting electrostatic force is the same as the one
in (35). This simple example shows two aspects:

1. The electrostatic forces of the deformed structure can be accu-
rately calculated by the volume integration of the Maxwell’s
stress tensor transformed into the undeformed domain using
the deformation tensor if the structural displacements are
known.
een parallel plates of a capacitor.
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2. The permittivity used in the electrostatic force calculation
should be the original permittivity ea.
Fig. 9. A capacitor with two parallel plates. (a) An one-dimensional model
(k = 100,d0 = 0, ea = 1) and (b) a 2 
 1 two-dimensional model ðCs ¼ 100;Ca ¼
Cs 
 10�6; m ¼ 0;d0 ¼ 0;d ¼ 1;~es ¼ 105eaÞ.

Fig. 10. Numerical results compared with analytical solution for the simple spring
suspended capacitor shown in Fig. 9a.
Example 2. Differential operator transformation
The proposed approach constructs the electric stiffness matrix

but solely based on the structural displacements, without updating
the geometry of the electric domain.

To demonstrate this, we consider a simple one-dimensional
model consisting of three elements with unit area as seen in
Fig. 7. Assuming that the displacements of each node are
[0,1,0.5,0], we can calculate the element stiffnesses in Fig. 7b using
the standard finite element formulation.

Alternatively, the electric stiffness matrix of the considered
one-dimensional system can be calculated using the deformation
tensor (left-hand side of Eq. (33)) as shown in Fig. 8:

/1 : ~e1=2 �~e1=2 0 0

/2 : �~e1=2 ~e1=2þ 2~e2 �2~e2 0

/3 : 0 �2~e2 2~e2 þ 2~e3 �2~e3

/4 : 0 0 �2~e3 2~e3

2
66666664

3
77777775
: ð39Þ

Using this simple example, we demonstrate how the present mono-
lithic approach can construct the electric stiffness matrix based on
structural displacements and without updating the geometry of the
electric domain.

Example 3. A simple capacitor with a spring
For an electromechanically coupled system, the simplest exam-

ple having an analytical solution is the capacitor suspended by a
spring as shown in Fig. 9. To model this one-dimensional system, a
simple two-dimensional model using two rectangular bi-linear 4-
node elements is constructed in Fig. 9b. Fig. 10 shows the
computed solutions by varying the applied voltage, /*, as well as
the analytical solution given by

ku ¼ 1
2

ea
/2

in

ðd0 � uÞ2
; /cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

27

 2k

ea

s
� 5:4433: ð40Þ
a

Fig. 7. Calculating electric element stiffnesses for the undeformed and deformed domain
the deformed domain using the direct method (displacements for each node are (0,1,0.

Fig. 8. Displacement field (left) and corre
The results are seen to match very well. Near the pull-in voltage
/cr = 1/3, the damped Newton-method used for the numerical com-
putations does not converge because of the near-zero value of the
tangent stiffness [7].

Example 4. Two-dimensional analysis example
As a last analysis example we compare our solution with

solutions computed by the commercial FE software, ANSYS, for the
two-dimensional model shown in Fig. 11. The commercial software
b

s, respectively. (a) Stiffness values in the undeformed domain, (b) stiffness values in
5,0), respectively).

sponding deformation tensor (right).
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Fig. 11. A simple beam example. (a) Model definition (Young’s modulus of solid: 153 GPa, Poisson’s ratio of solid: 0.17, relative Permittivity of solid: 10, relative permittivity
of air: 1), and (b) finite element mesh.
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Fig. 12. Responses of Fig. 11. (a) The displacement response at A for varying input potential and (b) the electric energy response.

Table 1
Material properties as functions of design variables

Linear elasticity equation Electric equation

Young’s modulus (C) Permittivity (e) Generalized permittivity ð~eÞ

Solid (c = 1) Cs es ~es � ea
Air (c = 0) Ca ea ea
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provides a state-of-the-art subroutine, ESSOLVE, for the solution of
electromechanical system using a staggered analysis method. To
update the electric domain, it uses a mesh-morphing method with
a remeshing method if necessary (see Ref. [22] for more details).

By changing the applied voltage on the supported end of the
beam, the vertical displacement at A is calculated with both the
present approach and the staggered analysis method provided by
ANSYS [22]. Moreover, to check the coupling influence of structural
displacements to the electric field, the electric energy pE of Eq. (41)
computed by both methods are compared in Fig. 12b. As shown
here, the solutions of the proposed monolithic approach compare
very well to the solutions of ANSYS:

pE ¼
1
2

Z
tX

ETeðxÞEdX; E ¼ �rx/ ¼ �F�TrX/: ð41Þ
4. Topology optimization formulation

4.1. Interpolation function

For topology optimization, the permittivity for the electrostatic
force, the generalized permittivity for the Poisson’s equation and
Young’s modulus are interpolated with respect to design variables
c defined in each element. Using this continuous design variable,
two states - conductor and insulator - are interpolated by varying
c between 0 (air) and 1 (conductor). Table 1 summaries the mate-
rial properties for extreme values of the design variable c. In the ta-
ble, Cs and Ca are Young’s moduli for solid and void (air),
respectively. The permittivity values of solid and void are likewise
denoted by es and ea, respectively.

In this paper, we use the SIMP (Solid Isotropic Material with
Penalization) interpolation functions for the interpolation between
air and conductor:
eðcÞ ¼ ðes � eaÞcn þ ea; ð42Þ

CðcÞ ¼ ðCs � CaÞcn þ Ca; ð43Þ

~eðcÞ ¼ ð~es � eaÞcn þ ea: ð44Þ
The same penalty n is used for each interpolation function. It is
important that the penalization term for the electrostatic force
(i.e., the permittivity e(c)) and the generalized permittivity ~eðcÞ are
at least as big as for the Young’s modulus. Otherwise, there may
be problems with localized pull-in similar to the problems appear-
ing in dynamic and self-weight problems [26,27]. We use n = 3 for
all examples. The ratio ~es=ea is fixed to 105 which is sufficiently large
to satisfy the equal potential condition on the surfaces of
conductors.

4.2. Local optima issue

As we are dealing with nonlinear multiphysics systems, we ob-
serve many local optima and instabilities on the mesh-scale. Con-
sequently, the present results are not global optima and other
designs may be obtained with different settings. By comparing
objective functions, the results presented are the best ones ob-
tained for a number of different starting guesses and parameter
settings.
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Fig. 13. A simple 1D optimization problem. The goal is to maximize the displace-
ment at A. Optimal designs are c = (0,1,1,1), (1,0,1,1), (1,1,0,1) or (1,1,1,0).

4070 G.H. Yoon, O. Sigmund / Comput. Methods Appl. Mech. Engrg. 197 (2008) 4062–4075
To illustrate the problem of multiple local minima, we consider
the optimization problem in Fig. 13. The goal is to maximize the
work performed on the left spring with stiffness k. There are four
design variables ci that can take values 0 or 1 denoting air or mate-
rial, respectively. Since the electrostatic force and the displacement
at A are maximized for minimum gap size, the ith optimal design
will be one for all design variables except zero for the ith design
variable. Even for this simple 1D example the number of local op-
tima equals the number of finite elements. This problem is even
worse for 2D problems.

4.3. Implementation

The monolithic modeling approach and the topology optimiza-
tion algorithm are implemented in the commercial FE-package
COMSOL which is called from a MATLAB script. In this environ-
ment, a semi-automated analytical sensitivity analysis using the
adjoint method can be easily implemented as described in Refs.
[5,10]. The Method of Moving Asymptotes (MMA) is used as the
optimizer for all examples [28]. For the first examples we use the
sensitivity filter [2] to regularize the design problems.
⊕

−

30 mμ

10 mμ
10 mμ
10 mμ

130 mμ

100 mμ

2.5 mμ

Design domain

A

⊕

−

30 mμ

10 mμ
10 mμ
10 mμ

130 mμ

100 mμ

2.5 mμ2.5 mμ

Design domain

A

a

Fig. 14. Displacement minimization problem (Young’s modulus of solid: 153 GPa, Poisson
volume constraint: 30%, applied voltage: 10 V). (a) Problem definition considering elect

Fig. 15. Optimization results for the design problems in Fig. 14. (a) An optimized de
optimized design for purely mechanical modeling (U = 2.0534 
 10�12 lm2 considering
5. Topology optimization examples

5.1. Numerical example 1 – displacement minimization for
electromechanically coupled system

For the first numerical example, we consider the displacement
minimization problem shown in Fig. 14. The goal is to optimize
the reinforcement on top and bottom of a fixed beam in order to
minimize the displacement of point A. As a reference problem
we solve an equivalent purely mechanical problem with fixed dis-
tributed load at the bottom edge of the fixed beam. The optimiza-
tion problem for both cases may be written as,

Min U ¼ v2
a ;

subject to M 6 M0;
ð45Þ

where M and M0 are the actual and the allowable mass,
respectively.

Fig. 15 shows the optimized designs considering electrostatic
force and equivalent pure structural pressure as a reference. The
design including electromechanical coupling in Fig. 15a only fills
little of the lower design domain with material to avoid building
up extra electrostatic forces which are inversely proportion to
the second power of the gap distance. The stiffener in the left part
of the lower design domain appears because advantage in stiffness
exceeds disadvantage in electrostatic force. For the purely structur-
ally loaded beam in Fig. 15b, there is no penalization from intro-
ducing material in the lower part of the design domain. Hence,
the obtained structure is much stiffer than for the electromechan-
ically coupled beam. But as expected, the objective function of
Fig. 15b considering the electromechanical coupling is 21 times
higher than that of the design of Fig. 15a. This example clearly
shows the importance of considering electromechanical coupling
in the design.
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’s ratio of solid: 0.17, relative permittivity of solid: 10, relative permittivity of air: 1,
romechanical coupling and (b) problem definition with pure structural pressure.

sign considering electromechanical coupling (U = 9.4719 
 10�14 lm2) and (b) an
electromechanical coupling).



Fig. 16. Voltage and electric Maxwell’s stress tensor of Fig. 15. (a) Voltage and y-component of Maxwell’s stress tensor of Fig. 15a, and (b) voltage and y-component of
Maxwell’s stress tensor of Fig. 15b.
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Fig. 16 shows the voltage distribution and the y-component of
Maxwell’s stress tensor for the optimized designs from Fig. 15. It
is observed that the potential is constant (white) within the struc-
tural parts and that the area with large y-component of Maxwell’s
stress tensor in Fig. 15b is larger.

5.2. Numerical example 2 – inverter design

5.2.1. Force inverter design with a predefined air gap
As a second numerical example we consider the micro force-in-

verter shown in Fig. 17 [11]. The objective function is to maximize
the force applied to the output spring (ks) which simulates a work
piece and again there is a constraint on the mass:

Min U ¼ �ks � vA;

subject to M 6 M0;
ð46Þ

where vA is the vertical displacement of point A.
a

Fig. 17. Problem definition for the electrostatic force inverter design. (Young’s modulu
relative permittivity of air: 1, the spring constant: ks = 40 lN/lm, mass constraint: 30%,
purely mechanical design problem as a reference.
Because of the predefined air gap between the design domain
and the bottom electrode, most of the electrostatic force will be
developed here. Therefore, it is reasonable to compare the opti-
mized design with one obtained considering purely mechanical
pressure as shown in Fig. 17b. Fig. 18 shows the designs obtained
using the two design problem definitions. The two layouts and
their objective functions are very similar.

5.2.2. Force inverter design without a predefined air gap
In the previous example, we among others found the following:

1. Not surprisingly, topology optimization considering purely
mechanical loads can be used for electrostatic systems having
predefined air gaps.

2. If there is a predefined air gap, direction, magnitude, and actu-
ation area of electrostatic forces are fixed. Therefore, if the
objective is to find optimized designs with predefined air gaps,
we do not have to use the present monolithic approach.
b

s of solid: 153 GPa, Poisson’s ratio of solid: 0.17, relative permittivity of solid: 10,
applied voltage: 50 V). (a) Design domain with a predefined 5 lm air gap and (b) a



Fig. 18. Optimized designs for the force inverter example with a fixed air gap. (a)
An optimized design considering electrostatic loads (U = �0.0346 lN), and (b) an
optimized design considering purely structural loads (U = �0.0389 lN and U =
�0.0421 lN considering electromechanical coupling).

Fig. 19. An optimization without a predefined air gap. (a) Design domain and (b) an
optimized design with objective function U = �1.5833 lN and voltage distribution.
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Hence, it is of more interest to consider an optimization prob-
lem without the predefined air gap as shown in Fig. 19a. Without
the predefined air gap, electrode area, direction and magnitude
of electrostatic force should be optimized. This case can only be
solved using the suggested monolithic approach. Fig. 19b shows
the resulting optimized design. In terms of objective function, this
design is superior to the design in Fig. 18a. However, the mechan-
ical behavior of the actuator is difficult to understand because of
the intricate electrodes patterns that appear in the entire design
domain. Also, the electrode gaps are determined by the size of
Fig. 20. Design examples with the circular actuation window at the bottom of design
U = �0.5226 lN without W(x)) and (b) and optimized design having 10 lm radius for W
the elements – i.e., an obvious and strong mesh-dependence since
the actuation force is proportional to the inverse of the square
of the gap size.

These problems may be solved by two means. First we present a
simple but heuristic method to limit the actuation area by manip-
ulating the Permittivity of the linear elasticity equation as shown
in Eq. (47). The idea is that we define an actuation area XA inside
the design domain where the electrostatic force may be developed.
The Maxwell’s stress tensor is set to zero outside the actuation
window by the filter function W(x) defined in Eq. (49). If the actu-
domain. (a) An optimized design having 5 lm radius for W(x) (U = �0.4610 lN,
(x) (U = �0.7172 lN, U = �0.7331 lN without W(x)).
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ation window equals the design domain, it corresponds to the pre-
viously solved problems. Using this window XA, we limit the actu-
ation area for electrostatic forces but not the direction of the
electrostatic force:Z

0X
dST � TdX ¼ �

Z
tX

dSðu; duÞT � ~TEdX; ð47Þ

~TE ¼ WðxÞTE; ð48Þ

WðxÞ ¼
1 x 2 Xa;

0 x 62 Xa:

�
ð49Þ

The size and position of the window can be empirically chosen con-
sidering manufacturability and design space limits. For example, if
there are some specific areas where actuation is not allowed inside
a MEMS actuator design domain, window number, size and position
can be selected accordingly. A risk associated with the use of the
actuation window is that important electrostatic forces may be ig-
nored. For the following examples, however, this does not appear
to be a problem.

Fig. 20 shows the optimized designs for two different actuation
windows denoted by circles. Obviously, the objective functions
Fig. 21. An optimized design using the erod

Fig. 22. Design examples with the circular actuation window and the erode filter (rfilte

U = �0.2589 lN without W(x)) and (b) an optimized design having 10 lm radius for W(x
with the filtered Permittivities are lower than that of Fig. 19, but
we obtain much clearer designs.

5.2.3. Feature size control using a morphology based filter
The previously presented inverter designs have been physically

questionable since gap sizes equal element sizes and hence the
numerical results cannot be trusted. Also, the optimized designs
will be difficult to manufacture due to intricate and small details.
The mentioned problems can probably not be resolved by simple
postprocessing of the designs since even small changes in the
gap regions will affect the performance drastically. Therefore, it
is better to introduce a minimum length-scale in the design pro-
cess by a filtering method.

There are two main kinds of filters in structural optimization. So
far we used the sensitivity filtering method that modifies sensitiv-
ities by averaging over neighboring elements. Another kind of filter
is the density filter which averages densities over neighboring ele-
ments. Clearly, the sensitivity filter is not capable of controlling
gaps for the present design problem. Apparently, the gain obtained
in objective function for small gap sizes exceeds the filtering effect.
e filter (rfilter = 1.6 lm, U = �0.2974 lN).

r = 1.6 lm). (a) An optimized design having 5 lm radius for W(x) (U = �0.2518 lN,
) (U = �0.2538 lN, U = �0.2559 lN without W (x)).



Fig. 24. Problem definition for the electrostatic gripper design. (Young’s modulus of
solid: 153 GPa, Poisson’s ratio of solid: 0.17, relative permittivity of solid: 10, rel-
ative permittivity of air: 1, the spring constant: ks = 20 lN/lm, mass constraint:
30%, applied voltage: 50 V).
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A new type of density filters called morphological filters based
on the density filter was recently proposed in [29]. The morphol-
ogy filters overcome problems with grey transition zones seen
for conventional filters. The basic idea of these filters is to employ
image processing operators such as Erode and Dilate to ensure fea-
ture size control without grey transition regions. Here we use the
erode filter which is good in preventing holes (and gaps) with fea-
tures smaller than the filter radius (rfilter). The erode filter defines
the density of the center element to be the minimum of the densi-
ties of the neighboring elements. However, in order to obtain a dif-
ferentiable function the min operator is converted to a continuous
one using a Kreisselmeier-Steinhauser formulation:

~qe ¼ 1� log
P

i2Ne
ebð1�qiÞP

i2Ne
1

 !,
b; ð50Þ

where ~qe is the eth filtered density which is used for the analysis
and Ne is the index of the neighbor elements. Using a continuation
method, b is gradually increased during the optimization iterations
as suggested in [29]. Remark that for b close to zero, the filter cor-
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Fig. 23. Affect of applied voltage. (a) A layout with 12.5 V, (b) a layout with 25 V,
and (c) responses of these designs with respect to voltage.

Fig. 25. An optimized design with the erode
responds to the usual density filter with equal weighs and as b in-
creases it approaches the min operator.

In Fig. 21, we use the erode filter (rfilter = 1.6 lm) for the inverter
design without a prescribed air gap. As seen, the erode filter pro-
vides a simpler design compared to the design in Fig. 19 and most
importantly, the gap size no longer corresponds to one element but
rather to two times the filter radius as seen in the insert of Fig. 21.
In Fig. 22, we solve the problem with the zone control as well as
the morphology filter and also here we observe mesh-independent
feature sizes.

5.2.4. Voltage effects
To study the effect of the applied voltage, we rerun the example

from Fig. 22b with 12.5 V and 25 V as actuation voltages. The
resulting topologies are seen in Fig. 23. The topological differences
are hard to see and in the objective function vs. actuation voltage
graph in Fig. 23c, it is noted that also the performances only change
slightly for the three different designs. For larger actuation voltages
such as 100 V, we experience pull-in effects that hinder
convergence.

5.3. Numerical example 3 – Gripper design

As a final example, we consider the gripper design problem
sketched in Fig. 24. Here the goal is to maximize the work per-
formed on the horizontal spring. The resulting design obtained
using the erode filter is seen in Fig. 25. Again we can observe that
the gap size is defined by the filter size and that the method is effi-
cient in optimizing electromechanical actuators.
filter (rfilter = 1.6 lm, U = �0.1271 lN).
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6. Conclusions

This paper suggests a topology optimization procedure for elec-
tromechanically coupled systems including design dependent elec-
trostatic loads. First of all, unlike in standard structural
optimization problems, alternating governing equations become
an important issue. The electric equation and the linear elasticity
equation for structural displacements must be interpolated in be-
tween depending on design variables. Moreover, the efficient
implementation of the interaction boundary conditions also be-
comes an important issue.

To resolve these issues in topology optimization, we derive a
new monolithic formulation from continuum mechanics. The key
point of the idea is that the electric and elastic fields are computed
in both air and conductor. The coupling between the two governing
equations in the deformed domain is achieved by transforming the
differential operators from the deformed domain to the unde-
formed domain and vice versa using the deformation tensor. More-
over, to satisfy the equal potential condition on surfaces of
conductors, we introduce a generalized Permittivity formulation
for the electric equation. By assigning a high generalized-Permit-
tivity value for the conductor, we can satisfy the equal potential
condition on its surface.

The validity of the proposed approach is verified by simple one-
dimensional analysis examples and by solving complex MEMS in-
spired topology optimization problems. The method is prone to lo-
cal minima and is strongly mesh-dependent. We avoid these
issues, partly by introducing an ‘‘actuation windows” inside the de-
sign domain which restricts the actuation area and partly by use of
image-morphology based erode filtering that sets a minimum size
constraint for gap sizes.

With this paper we believe that we have paved the way for solv-
ing problems involving complicated multi-physics couplings
involving boundary dependent loads. As suggestions for future
work we suggest to include pull-in voltage and geometrical nonlin-
earities. This will make the resulting structures more realistic and
reliable. Also, it will be interesting to apply the idea to other multi-
physics problems with design dependent loads.
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