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As the static safety of mechanical structure is one of important criteria in engineering design process, it
has been one of important topics to consider the static failure of a structure in topology optimization
(TO). With the help of some recent relevant researches, some difficult issues in considering static failure
are solved. However, this research found that the singularity issue which refers the difficulty of obtaining
global optima with the KKT condition is not serious and mathematically relaxed for reinforcement TO
design. And it is found that the existing qp-relaxation stress interpolation scheme to resolve the singu-
larity issue in TO just shows the local optima issue in reinforcement TO design with different penalization
factors in Solid Isotropic Material with Penalization (SIMP). In order to explain this feature, the TO prob-
lems for simple benchmark truss structures are revisited. Several two-dimensional examples only with
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in-plane load are solved to confirm the validity of the present study.
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1. Introduction

This research considers the reinforcement design by topology
optimization (TO) considering the stress failure constraint. After
the development of TO, it has been widely applied for various engi-
neering applications from microstructures to megastructures and
from single physics system to multi-physics systems [1-10]. How-
ever, the stress based topology optimization problem (STOM) min-
imizing volume subject to local stress constraints has been
considered as one of the most difficult problems due to the singu-
larity issue, the many constraint issue and the highly nonlinear
constraint issue. With the help of many important contributions,
nowadays, it is possible to consider these stress constraints in TO
and the stress constraints in multi-physics system. However, STOM
is still regarded as one of important engineering problems and it
should be extended to consider fatigue constraint [4,11-37]. One
may think that this STOM also can be applied to the reinforcement
design which finds out an optimal reinforcement design to con-
strain the maximum stress value. But applying STOM for the rein-
forcement design is not clear about the three issues: the singularity
issue, the many constraint issue and the highly nonlinear con-
straint issue Particularly we found that the singularity issue needs
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an in-depth study and the role of the existing qp-relaxation
method devised by many important relevant researches for the
STOM also needs an in-depth investigation whether that method
is valid or not for the STOM designing reinforcement structures
[11,12,14,16,17,24,30,31,36-41].

The reinforcement structure increasing structural safety by
adding some materials (reinforcements) to basic structures is com-
mon in civil and mechanical designs [42,43]. One merit of the
usage of the reinforcement structure may be the non-destruction
of basic structure and the increase of the safety. However, the rein-
forcement requires some extra materials and costs and the impro-
per choice of the reinforcement structure can cause extra damages
to basic structures. For examples, steel rib walls in ship building
also can be regarded as reinforcements too (see Fig. 1).

To conduct the STOM minimizing volume subject to local stress
constraints, it is very important to use the gp-relaxation method
for the singularity issue with the P-norm approach for the local
behavior of the stress constraints. The gp-relaxation method
adopts the different penalization factors for the Young’s modulus
in the forward analysis and in the stress evaluation analysis; we
do not have to limit to the penalization factors of the SIMP polyno-
mial functions. Without this gp-relaxation method, the nominal
stress values are decreased with smaller design values and what
a gradient based optimizer face for TO with void and solid domains
is that no-structure becomes a global optimum. In case of the rein-
forcement design, we found that this argument becomes unclear
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Fig. 1. Reinforcement structures in some architectures and machines: (a) rib structure in the automotive bonnet, (b) rib structure attached to roof and (c) plastic rib

structures used in electronic device.

and obscure because of the existing of the basic (or base) structure
in Fig. 1. To our best knowledge, the stress behaviors of reinforce-
ment structures are not rigorously studied in TO. To address this
unclear point, this research reinvestigates the singularity issue
and the idea of the gp-relaxation method. In the present study,
the in-plane load is only considered but the conclusions and find-
ings can be applied for reinforcement structure with a combination
of different types of loads.

The paper is organized as follows: In Section 2 and Section 3, the
finite element formulation for reinforcement design is presented.
The new singularity issue of reinforcement design with the exist-
ing gp-relaxation method is studied and some examples will be
presented. Section 4 will provide several optimization examples
to show the validity and effectiveness of the present stress interpo-
lation issue. Finally, our findings are summarized in the conclusion.

2. Reinforcement design with finite element method and non-
singularity issue

2.1. 2-dimensional finite element model with in-plane load

This section introduces a brief FE analysis for the reinforcement
structure design considering the local stress constraints. To con-
sider it in the FE framework, the following static finite element
equations are employed [44]. Note that the thicknesses of rein-
forced structures can be increased and the central plane of rib
may not be coplanar with the central plane of the original struc-
ture, i.e., Fig. 1(c). Then the plane stress distribution in the rib along
thickness direction may not be uniform even with in-plane load.
The non-uniform stress distributions due to this side effect should
be considered and this issue becomes critical in topology optimiza-
tion when the stress distributions along thickness direction are not
negligible for layerwise structure or functionally graded material
(FGM) characterized by the variation in composition and structure
gradually over volume.

KU =F (1)
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where the global stiffness, the global displacement, and the global
force vector are denoted by K, U and F, respectively. The global stiff-
ness matrix is further decomposed into the two terms, Ky for the
reinforcement structure and Kp for the basic structure as shown
in Fig. 2. The e-th elementary stiffness matrices for the reinforce-
ment structure and the basic structure are Kg . and Kz, respectively.
The design variable, y,, is assigned with the SIMP (Solid Isotropic
Material with Penalization) penalization, n to interpolate the consti-
tutive matrix, Cg, = y"Co, for kg, .

2.2. Non-singularity problem of the reinforcement in simple truss
design problem

From our best knowledge, there is no precedent research about
the singularity issue in reinforcement design. Therefore, this sub-
section investigates the singularity issue in the truss reinforcement
design. The singularity issue in the stress based TO refers the diffi-
culties in numerically finding the global optimum with the KKT
condition [12]. To resolve this difficulty, many researches have
been conducted [4,11-25,27-37].

With basic structure and reinforcement structure, each struc-
ture can have different stress interpolation functions, i.e., here
the different penalization factors of the SIMP based interpolation
function. In other words, the stresses are evaluated by (6).
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Fig. 2. The concept of the basic structure and the reinforcement structure with in-plane load.

Ope — CQEe (61 )

Ore = VCo&, (6.2)

The stresses of the e-th element of the reinforcement and the
basic structure are denoted by o3, and og., respectively. No to
mention, the strains of the two structures are equal to €. The pen-
alty factor, ng, was set to 0.5 for the singularity issue in the relevant
researches [21,24,26].

In the present study, we find out that the singularity issue is not
serious for the reinforcement design. In here, it doesn’t mean that
there are no singular topologies. The meaning of “serious” is that
an alternative material interpolation function can be adopted with
0.5 or 3 for ns to overcome the singular topologies. To illustrate
this, first of all let us consider the simple truss structure in Fig. 3
with two elastic trusses. In this 1-D example, the two springs (or
trusses) and the displacement at the right side is set to u.
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With this configuration, the mechanical stress values at the two
structures are computed as follows:
Forward analysis:

u

e=1 (7.1)
ER = ERU '\/;s, EB = EBU (72)
n A ,
kg = yREr,ko, kg = Ep,ko, ko= T (Hook’s law : (kg + kg)u = P)
(7.3)
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Fig. 4. Stress curves with the respect to the density variable (P=1N, Ego=1Pa, Ego=1Pa,L=1m, ko =1 N/m, n = 3, n, = 0.5): (a) the stress g at the basic structure and (b) the

stress oy at the reinforcement structure with gp-relaxation method (ns = 0.5).
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where the length of the structure, the displacement, the strain,
Young’s modulus of the basic structure, Young's modulus of the
reinforcement and the force are represented as L, u, &, Egg, Erp and
P, respectively. The above equations of (7) are for the forward anal-
ysis for the displacement and the equations of (8) are for the stress
ratio of the two layers. The stiffness values of the basic structure
and the reinforcement structure are kg and kg, respectively. Note
that due to the singularity issue in the STOM, the gp-relaxation
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Fig. 5. Stress curves with the respect to the density variable (P=1N, Egg=1Pa, Ego=1Pa,L=1m, ko=1N/m, n =3, ng= 3): (a) the stress g} at the basic structure and (b) the

stress oy at the reinforcement structure with gp-relaxation method (n = 3).
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Fig. 6. A benchmark numerical example: (a) the three bar trusses structure problem, (b) feasible resign of the trusses example with ns = 3 and (c) feasible resign of the trusses
example with ns = 0.5 (The benchmark problem is explaining the singularity issue in TO (see [12] and references therein). Note that the upper bound of the stress is also

penalized (g, < y0VY)).
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method is employed for the equations of (8) (n =3 and n, = 0.5)
that have been used for most STOM researches [21,24,26]. Then
the stress values in (8) are plotted with respect to the various den-
sity values in Fig. 4.

Fig. 4 with 0.5 for n; shows that the stress values of the two
structures become identical (0.5 N/m?) for y, = 1. And the stress
value of the reinforcement structure become zero for 7y, =0.
Although the stress curve in Fig. 4(b) is not monotonically
increased or decreased, it can interpolate the stress values for void
and solid of the reinforcement. On the contrary, Fig. 5 shows the
stress curves of the two layers with 3 for n.

Fig. 5(b) shows the stress behavior of the reinforcement with 3
for n;. Compared to the stress values with 0.5 for ny, first of all the
stress behaviors, o, are different, i.e., from concave to convex.
With void for the reinforcement layer, the stress value of the rein-
forcement structure is approaching to zero and it becomes equal to
the stress of the basic structure with the solid reinforcement layer.
This simple study shows that both 0.5 and 3 (for ns) values can be
used to interpolate the stress value of the reinforcement.

2.3. Singularity issue example: three bar trusses example

For the sake of the numerical illustration of the singularity issue
in TO, the optimization problem in (9) for the three bar trusses also
can be considered; minimizing volume subject to stress
constraints.

NE
Min > "yAcL
e=1

st. Ky)U;=F, j=12,...m, 9)
U

O'ej<V250-97 j:1727"'7m7
0<y, <1

where the density of the e-th element, the area of the e-th ele-
ment and the length of the e-th element are denoted by 7,, A, L.,
respectively. The global stiffness matrix, displacement vector
under the j-th load case and the j-th load case are represented as
K, U; and F;, respectively (The number of load case is denoted as
m). The e-th stress under the j-th load case, upper stress limit
and penalty value are denoted as o,;, 6V and p, respectively. In
spite of the simplicity of the problem, this problem is known to
be very difficult in terms of optimization because the large feasible
domain is linked with the line to the global optimum as shown in
Fig. 6(b).
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Fig. 8. Patch stacking method for the reinforcement and the basic structure: (a)
boundary condition for both structures: the reinforcement and the basic structure
and (b) boundary condition for only the basic structure.

In case of the reinforcement design, the stiffness matrix may be
reformulated as follows:

A E() 1 -1 A '))nEo 1 -1
Kp, = -2 kg, = —2=¢ 10
UL [_1 1 } T L {_1 1 } 19
For the sake of simplicity, the following values are employed.
Li=L3=v2, Li=1 A=1 E.,=1, ¢/=04, n=3
(11)
The displacement and the stress are computed as follows:
0 V2
Ui=q 1 o Uz—{”f?“} (12)
"J;- I+ 0
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Fig. 7. Feasible region for the numerical example: the reinforcement stress constraint: (a) with ng=3 and (b) with ng=0.5.
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Fig. 9. L-shaped bracket problem (The total number of elements in the design domain: 3600, F: 1000 MN (the number of applied node: 4), maximum allowable stress:
358 MPa, Young's modulus: 210 GPa, Poisson’s ratio: 0.3): (a) design domain and geometric and boundary conditions, (b) stress distributions of the reinforcement and the
basic structure with solid domain of the reinforcement and (c) stress distributions of the reinforcement and the basic structure with void reinforcement domain.
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Note that the stress value, gg.; and g, are the stress values of
the e-th element for the j-th load case. With all the values, the fol-
lowing optimization minimizing volume subject to stress con-
straints can be formulated. Note that the stress values of the
basic trusses and the reinforcement trusses are constrained
simultaneously.

Min 2v2y, +7,

. (15.1)
St. g<0,i=1,2,...,6

g, =011 — 0.4yF,
g, = or11 — 0.4,

g, =0 — 0.4)%,
g5 = ora1 — 047,

g3 =012 — 0.4,
86 = Or12 — 04')),115
(15.2)

With the same value for n and ng without basic structure, it is
known that the singularity issue becomes serious for TO since it
is difficult to get global optimum with same penalty value for n
and n, (see [12] and references therein). For the reinforcement
structure design, however, it is not problematic. Fig. 7 shows the
stress curves with respect to the two design variables with 3 and
0.5 for ns. Unlike the singular problem in Fig. 6, simply there is
no singular point in the feasible domain regardless of the penaliza-
tion value. All global points can be reached by the KKT condition;
note that a gradient based optimizer can find out either the global
optimum or the local optimum in Fig. 6.

3. Topology optimization formulation and sensitivity analysis
3.1. Topology optimization formulation

The following formulation is considered to conduct the contin-
uum STOM for reinforcement. The objective function is the mass
usage for reinforcement and the constraints are the maximum
von-Mises stress constraints as follows:
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Object function (V/V,)

Iteration number
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Fig. 10. Optimal reinforcement layout (Max allowable stress: 358 MPa, the volume of the optimal layout: 39.81% of the total reinforcement volume and the penalty values for
the stiffness and the stress: n=3, ny;=0.5): (a) an optimal design and stress distribution of the basic structure and the reinforcement and (b) the optimization history.
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NE

Mini;nize V() = Jev.(7 : filtered density)
e=1
Subject to Spax < S° (16)

where Sp.x = max(S.),e=1,...,NE
¥ = E(y) with the density filter =

where the total volume, the e-th element volume, the von-Mises
stress of the e-th element and maximum allowable stress are
denoted by V, v., S, and S*, respectively. The NE design variables
are y. As the maximum operator in the above formulation is non-
differentiable, the P-norm approach is considered with the correc-
tion factor.

1
) ) NE b
Smax = Clrer<SPN> — Clter <ZS€?E> (17)
e=1
. Siter—l .
Cr=g—m (1) O<a<] (18)
(Sew)

where C*', S® 'p and « are the correction factor at the iter-th
optimization iteration, the real maximum value of von-Mises
stress at the iter-th optimization iteration, the p value and the
damping factor, respectively. The p value used for p-norm approx-

imation is set to 3 and the value of o is set to 0.5 in this research.

3.2. Sensitivity analysis

It is essential to derive the sensitivity value of the von-Mises
stress. With the adjoint variable, 2, the following sensitivity analy-
sis can be formulated.

d(SpN> B<SPN> 8<SPN> 8_53 J6, %8(5”\,) 858* 00, du

Ge ~ 0 05, 06, e e 05, dop OU dj, D)
The Lagrange multiplier is computed by the following:
2NE T
Ty _ a(SpN> 859x 869x
K. = ; 8Se: \ 90, OU (20)

The final sensitivity values of the p-norm stress can thus be
obtained.
d(SPN> a<SpN> 8<SPN> 853 % T dK

Be ~ 0 T 05, 96, T T @, 0 (21)

3.3. Multi-material and material dependent boundary condition

It was noticed that it is possible to use different material for
reinforcement and sometimes it is also desirable to compose mate-
rial dependent boundary condition [45-47]. To consider them, the
patch stacking method in Fig. 8 which is our previous contribution
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Fig. 11. An optimal reinforcement layout (Max allowable stress: 358 MPa, the volume of the optimal layout: 30.34% of the total reinforcement volume and the penalty values
for the stiffness and the stress: n =3, ng=3): (a) an optimal layout and stress distribution of the basic structure and the reinforcement and (b) the optimization history.
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[45-47], is implemented here. The ideas of the patch stacking
method are that the FE elements for reinforcement are juxtaposed
to the FE elements for the basic structure and the material bound-
ary conditions are also applicable as shown in Fig. 8(a).

4. Numerical examples

To show the validity of the developed approach, this chapter
solves several benchmark STOM problems. For the optimization
algorithm, the method of moving asymptotes is employed [48].

4.1. Example 1: L-bracket problem

For the first numerical example, we consider the L-shape
bracket problem in Fig. 9 whose optimal layouts have been pre-
sented by other relevant researches [21,24,26,30,31]. One of the
differences compared with the other researches is the juxtaposing
the reinforcement layer on the basic structure in Fig. 9 and the
optimization procedure finds out a reinforcement structure
attached to the basic structure to constrain the stress values. The
specific configurations of the design domain and the boundary
conditions are illustrated in Fig. 9(a).

In Fig. 9(a), the upper part with the gray color and the bottom
structure with black color represent the reinforcement structure
and the basic structure, respectively. Note that only the reinforce-
ment domain is set to a design domain. In the standard STOM
problem for void or solid design, a design with the rounded corner
at the reentrance corner should be obtained (see [21,24,26,30,31]
and references therein). With the present reinforcement design
formulation, it is expected that some optimal reinforcement
designs can be obtained. Before optimization, the von-Mises stress
distributions of solid and void design are plotted in Fig. 9(b) and
(c). With those results, the maximum allowable stress is set to
358 MPa for the optimization.

Fig. 10 shows the optimal design considering the stress distri-
butions of the reinforcement with the gp-relaxation method
(n=3, ns;=0.5) and the basic structure. Both the stress values of
the reinforcement structure and the basic structure are equal for
solid reinforcement structure. Otherwise, the stresses of the basic
structure are larger than the stresses of the reinforcement in the
design domain. The stress concentration phenomena are well mod-
eled at the reentrance corner and the optimization algorithm does
gather more material at the reentrance corner; because of the basic
structure, a rounded reinforcement design is not anymore
preferred.
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Fig. 12. Optimal layouts with material dependent boundary conditions (Max allowable stress: 358 MPa, the penalty values for the stiffness and the stress: n =3, n; = 0.5): (a)
with clamp boundary condition for the reinforcement structure and (b) the clamp boundary condition for the basic structure.
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In Fig. 11, we also test the same penalization values with the
stiffness, i.e., n = 3, n; = 3 to check the singularity issue for the rein-
forcement design. The volume ratio of the reinforcement is 30.34%
of the total reinforcement volume. The overall optimal shapes in
Fig. 10 and Fig. 11 are almost similar and the design in Fig. 10 uses
more mass due to the different stress interpolation (n =3, ny = 0.5).
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In the intermediate density, the maximum stress with 0.5 for n; is
higher than the maximum stress with 3 for n;. So, the more mass is
used to reduce the stress level. Although there is a slight difference
in the amount of material used, the singularity issue is not serious
in the reinforcement design since we can get similar optimal
results with 0.5 or 3 for n;.
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Fig. 13. Optimal layouts with material dependent boundary conditions (Max allowable stress: 358 MPa, the penalty values for the stiffness and the stress: n =3, n; = 0.5): (a)
with clamp boundary condition for the basic structure and (b) additional boundary condition for the reinforcement structure.
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Fig. 14. The bridge structure problem (The total number of elements in the design domain: 2178, F: 20,000 MN, maximum allowable stress: 300 MPa, Young's modulus:
210 GPa, Poisson’s ratio: 0.3).
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4.1.1. Multiple materials and material-dependent boundary condition

For further study, multiple material and material-dependent
boundary conditions are considered. Fig. 12(a) and (b) show the
optimal layouts with the clamp boundary conditions only for (a)
the reinforcement structure and (b) the basic structure. There are
small different because the same material is used for the reinforce-
ment structure and the basic structure. But a closer investigation of
the designs along the boundary reveals that there is no reinforce-
ment structure at Fig. 12(b).

To investigate the effects of material dependent boundary con-
dition, Fig. 13 shows the optimal layouts with the different bound-
ary conditions. Due to the different locations of the clamp
boundary conditions, the significant differences in optimal layout
can be obtained.

4.2. Example 2: Bridge problem

For the second example, the bridge problem is considered in
Fig. 14. The both sides of the design domain are clamped and a dis-
tributed downward load with 715 MN is applied at the each node
(the number of applied nodes of the load is 28).

As in the first example, there is the basic structure and the pre-
sent STOM algorithm should design the reinforcement structure.

Figs. 15 and 16 show the reinforcement designs with n=3,
ns=0.5 and with n = 3, ny = 3, respectively.

Unlike the first example, the two designs have some differences.
First of all, the design in Fig. 15 doesn’t have the four arms connect-
ing the center structure to the four corner edges but the design of
Fig. 16 has the connecting arms. However the two designs have
some similarities including the three internal holes and the bar
structures at the bottom and the upper part.

4.2.1. Effects of the maximum allowable stress

To see the effect of the maximum allowable stress in the STOM,
Fig. 17 shows the three different optimal layouts with three differ-
ent maximum allowable stress values, i.e., 260 MPa, 280 MPa and
320 MPa. As expected, with a low maximum allowable stress, a
thicker reinforcement design is obtained where lighter designs
are obtained with lager maximum allowable stress values.

4.2.2. Multiple materials and material-dependent boundary condition

The results with the patch stacking method for the second pre-
sent example are shown below. In the first case, the left side of the
reinforcement and the right side of the basic structure are clamped.
And the second case, the left side of the basic structure and the
right side of the reinforcement are clamped. The results are opti-
mized according to the boundary conditions (see Fig. 18)
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Fig. 15. Optimal reinforcement layouts (Max allowable stress: 358 MPa, the volume of the optimal layout: 37.63% of the total reinforcement volume, the penalty values for
the stiffness and the stress: n =3, ny=0.5: (a) optimal layout and stress distribution of the basic structure and the reinforcement and (b) the optimization history.
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volume, the penalty values for the stiffness and the stress: n = 3, ny = 3): (a) an optimal layout and stress distribution of the basic structure and the reinforcement and (b) the
optimization history.
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Fig. 17. Effect of the maximum allowable stress as constraint: (a) the difference of the optimal result with respect to maximum allowable stress and (b) the difference of
converged volume.
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for the first boundary condition and (b) the second boundary condition.

5. Conclusions

The present research studies the stress discrepancy issue and
the stress interpolation function for the optimal reinforcement
layer design under in-plane load. With the existing gp-relaxation
method using the different penalization factors for the forward
analysis and the stress analysis, it is found that another type of
stress discrepancy between the stress values of the reinforcement
by different ns values exist. In other words, with 0.5 for n,, the
stress curve is convex but with 3 for n; it is changed to concave.
This discrepancy can lead different optimal layouts of reinforce-
ment structure. In our numerical examples, more materials are
needed to design the reinforcement with the convex stress curve
with 0.5 for ns than with the concave stress curve with 3 for n,.
To illustrate this issue and obtain physically reasonable reinforce-
ment design, the present research studies the stress behaviors of a
simple structure consisting with two elastic springs that represent
basic structure and reinforcement structure. We can conclude that
the singularity issue is not serious for the STOM for reinforcement
structure design and similar optimal results can be obtained with

0.5 or 3 for n,. The stress constraints with zeros for the design vari-
ables are not considered in optimization algorithm by multiplying
the design variables to the p-norm of the stress values of reinforce-
ment design. By increasing or decreasing the maximum allowable
stress values, thinner and thicker optimal reinforcement structures
can be obtained. For future research topics, the study should be
extended for plate, curved shell or multilayered composite
structures.
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