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Topology Design of Compliant
Mechanism Design With Multiple
Component Modeling Connected
by Various Joints
This study presents a novel framework for the optimal design of compliant mechanisms, spe-
cifically addressing the structural drawbacks of conventional single-point or de facto
hinges. The hinges often lead to structural instability and stress concentration while deriv-
ing maximum motion. To overcome these issues, we introduce a new method that can design
stable and elastic domains connected by either revolute or prismatic joints. The new
method, called sequential analysis based on the reaction force, can successfully eliminate
weak hinge points while optimizing joint locations. The efficiency of developed methodology
is validated through several numerical examples, yielding compliant mechanisms with sup-
pressed hinges. [DOI: 10.1115/1.4065459]
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1 Introduction
In this study, a novel topology optimization technique designed

to maximize displacement is developed in multi-component
systems with joint connections. Traditional compliant mechanisms
often employ hinge and de facto hinge structures, illustrated in
Fig. 1, to facilitate maximum motion. However, these hinges are
susceptible to stress concentration, compromising structural integ-
rity. Several prior studies have partially addressed this issue by
employing the pseudo-rigid body model (PRBM) to replace
hinges with revolute joint, as shown in Fig. 2. To overcome the
challenges associated with identifying hinge locations during opti-
mization, the sequential analysis based on the reaction force
(SARF) method is proposed. This approach optimizes structural
integrity and flexibility by substituting hinges with various joint
configurations, thereby reducing stress concentrations. The
method has implications for enhancing the durability and function-
ality of multi-component systems.
Since the inception of topology optimization, various studies

have focused on designing compliant mechanisms with flexible
hinges, often exploring element-wise stiffness variables. For
example, Refs. [1,2] developed methods for maximizing motion
in compliant versus rigid-body mechanisms. Stanford and Beran
[3] proposed a compliant mechanism to optimize the motion of flap-
ping wings. A comprehensive review paper, Jagtap et al. [4], high-
lighted diverse applications of compliant mechanisms in various

objects like bottle lids, pliers, staplers, etc. The optimization of
compliant mechanisms using genetic algorithms was explored
using building blocks and actuators in Refs. [5,6]. In Ref. [7], the
beam-based compliant mechanisms for both standard and nonstan-
dard compliant mechanism are developed. However, a consistent
challenge in these models is the vulnerability of hinges to stress
concentrations and large deformations.
The most representative method for replacing hinges is the

PRBM, which replaces the flexible hinges with adequate torsional
springs in Refs. [8–10]. In Refs. [11,12], the torsion springs are
modeled with the PRBM and the deformation trajectories are
checked. In Ref. [13], the periodically corrugated hinges are ana-
lyzed and replaced with the multiple joints. To design various
type of joints, the revolute, spherical, and prismatic joint types
are considered to obtain six degrees-of-freedom compliant parallel
manipulators in Ref. [14]. The other method is the method to sup-
press the hinges during the topology optimization procedure. To
restrain the hinges in the review paper [15], the hinges are catego-
rized into two types as shown in Fig. 1; one is the one-node hinge,
and the other is the de facto hinges. The one-node hinge is the hinge
that is only connected to the same nodes, and can be rotated easily.
The de facto hinge refers to relatively thin areas where bending
occurs, but not at one-node hinges. Because the filtering methods
are commonly utilized in compliant mechanism, almost one-node
hinges remain to the de facto hinges with additional materials.
Because the one-node hinges can be detected easily compared to

the de facto hinges, the studies about one-node hinges are first pro-
posed. In Ref. [16], the hinge-free condition for one-node hinges is
implemented to the translation-invariant wavelet shrinkage method.
This condition finds the one-node hinge structures and reinforces
the one-node hinges with continuous formulation. In Refs. [17,18],
the one-node hinges are suppressed with using special finite
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elements, one is special triangulation elements and the other is mod-
ified quadrilateral elements. Similar to the modified elements, in
Ref. [19], the honeycomb discretization method is proposed for
hinge-free compliant mechanism. In Ref. [20], morphology-based
black and white filters are introduced to make the element densities
to zero or one, which can reduce the one-node hinges successively.
Various density and sensitivity filtering methods are suggested to
avoid the gray elements, which can suppress the one-node hinges,
but several de facto hinges are still shown. To avoid both de facto
hinges including one-node hinges, various methods are proposed
because detecting de facto hinges is difficult compared with the
one-node hinge cases. In Ref. [21], both strain energy and mutual
strain energy are considered as a multi-objective function to
reduce de facto hinges; which are associated with structural stiffness
and flexibility respectively. Li and Zhu [22] considered both the
maximization of output displacement and the minimization of struc-
tural compliance as a multi-objective function in the level-set
method. De Leon et al. [23] incorporated the maximum allowable
stress as a constraint function to suppress de facto hinges, although
it does not completely eliminate de facto hinges. To ensure struc-
tural stiffness, Xia and Shi [24] introduced length scale control to
guarantee a minimum structural thickness using the skeleton
method. As the addressing de facto hinges is important, this study
introduces a new approach to both mitigate these hinges and
design various joints within multi-component structures.
To mitigate issues related to de facto hinge structures, including

one-node hinges, the SARF method is proposed. The SARF method
involves separate analyses for multi-component systems, where
each component is connected only to joints which are connected
to the boundary conditions. Arbitrary unit forces, called SARF
forces, are applied at the output nodes of the last (mth) component
in the x and y directions. Using finite element analysis, the SARF
compliance is computed for each component, and its boundary reac-
tion forces are subsequently computed. The reaction forces are
reversed and applied as external forces on the previous ((m− 1)th)
component. This process is repeated sequentially for each compo-
nent back to the first. The sum of all computed SARF compliances
is considered as the objective function to be minimized during opti-
mization procedure. This SARF method can increase the stiffness of
each component while maintaining the overall motion of the
system, effectively suppressing weak hinge structures.
The remainder of this paper is organized as follows. Section 2

outlines topology optimization formulations for single and multi-
component models, introducing the SARF method designed to
eliminate both hinge and de facto hinge structures. Section 3

validates the proposed method through several numerical examples.
The paper concludes with a summary in Sec. 4.

2 Topology Optimization Formulation for
Multi-Component Without Hinge Structure
This section shows the new SARF method for multi-component

compliant mechanism with suppressed de facto hinge structures.

2.1 Topology Optimization Formulations for
Multi-Component. The topology optimization problem with min-
imize compliance or maximize output displacement with respect to
the volume constraint is formulated. The element stiffness is inter-
polated based on the solid isotropic material with penalization
(SIMP) method for Q4 elements in subdomains and polynomial
interpolation function [25] for spring joint elements in joint
domains. To determine the equilibrium equation in the analysis
domain Ω, the following finite element approach is utilized:

∇ · σ u( ) + b = 0 inΩ, σ = Cε (1)
where the stress tensor and the displacement field vector are denoted
by σ and u, respectively. The body force term (b) is neglected in this
study. The strain tensor and the constitutive matrix of the structures
are denoted by ε and C, respectively.
The multi-subdomain model is depicted in Fig. 3. The analysis

domain Ω is separated and modeled as mth subdomains Ωi (i =
1, 2, . . . , m) where the number of subdomains is denoted by m.
The overlapping area between the ith subdomain Ωi and jth subdo-
main Ωj is defined as the joint domain Ωi,j, as follows:

Ω = Ω1 ∪ · · ·Ωi ∪ Ωj · · · ∪ Ωm, Ωi ∩ Ωj = Ωi,j (2)
The joints, represented by red circle pairs with gray edges, can be

defined anywhere within the joint domain area. The joint subdo-
main Ωi,j,k is defined as a set of arbitrary shape, capable of encom-
passing multiple joints. These joint subdomains may overlap with
each other and are considered to calculate the joint dispersal (JD)
constraint φi,j. The JD constraint ensures that the minimum distance
between optimized joints is greater than the δmin value. Further
details on the JD constraint will be discussed later. The global stiff-
ness matrix is obtained by summing the stiffness matrices of both

Fig. 2 Illustrative figures for thin hinge and joint structures with
deformed shape: (a) deformed shape with hinge structure and
(b) deformed shape with revolute joint structure

Fig. 1 Schematic figures for (a) one-node hinge and (b) de facto
hinge structures in the conventional compliant mechanism Fig. 3 The definitions of analysis domain, subdomain, joint

domain, joint subdomain, and joint design variable for general
analysis domain

Fig. 4 The definition of zero-length spring joint connecting the
ith and jth subdomains
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the subdomain and joint components, as follows:

K = Ksubdomain +K joint (3)

Ksubdomain =
∑m
i=1

∑Ni

e=1

γ3eK
i
nominal (4)

where Ni denotes the number of elements in the ith subdomain. The
stiffness matrix for the subdomain is computed by summing all the
finite elements, using the SIMP method with a penalty value of
3. The nominal stiffness of the subdomain denoted by Knominal rep-
resents the stiffness matrix for Q4 elements with density of 1.
As illustrated in Fig. 4, the joints consist of the simple zero-length

spring element, which connect and transfer the strain energies
between each subdomain. The stiffness matrix of a single joint is
controlled using the combination of the interpolation function
f (κi,je ), the densities of adjacent elements γiAdjacent and γjAdjacent,
and the nominal stiffness of the joints Ki,j

nominal in Eq. (5).

K joint =
∑m
i=1

∑m
j=1,i≠j

∑Ni,j

e=1

Ki,j
e (5a)

Ki,j
e = f (κi,je )γiAdjacentγjAdjacentKi,j

nominal (5b)
where Ni,j denotes the number of joint elements in the joint domain
Ωi,j. The stiffness values of joint elements are modified using the
interpolation function f (κi,je ), which is influenced by the joint
design variable κi,je in the following Eq. (6).

f (κi,je ) =
(κi,je )n

1+ (1− (κi,je )n) α
i,j

dim

(6a)

γiAdjacent = mean(γie1 , γie2 , γie3 , γie4 )
γjAdjacent = mean(γje1 , γje2 , γje3 , γje4 )
Ki,j

nominal = c uixu
i
yu

j
xu

j
y

(6b)

Ki,j
nominal =

uix uiy ujx ujy
li,j 0 −li,j 0
0 li,j 0 −li,j

−li,j 0 li,j 0
0 −li,j 0 li,j

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (6c)

li,j = αi,j ×mean(diag(Ki
nominal), diag(Kj

nominal)) (6d)
The variable dim in Eq. (6a) represents the number of dimensions

which is two for 2D problem and three for 3D problem. The inter-
polation function f (κi,je ) has advantage in achieving convergence (0
or 1) for the joint design variables. Using a larger value for
maximum stiffness can result in convergence problems during the
topology optimization process when the SIMP method is used to
compute joint stiffness. For more detailed information on the inter-
polation function, see Ref. [25]. The adjacent design variables for
connected subdomains (γiAdjacent and γjAdjacent) are calculated using
the average value of adjacent design variables, as described in
Eq. (6b). These adjacent design values ensure that joints discon-
nected from the subdomains are eliminated. The nominal stiffness
matrix term, Ki,j

nominal, is calculated using the stiffness matrix for
springs in both the x and y directions. The maximum spring stiffness
value, li,j, is determined by multiplying the constant αi,j with the
diagonal term of the nominal stiffness matrix of the connected sub-
domains. In this paper, the value of αi,j is set to 103 for all numerical
examples, indicating that the maximum stiffness of the joints is 103

times greater than the stiffness of the subdomains.

Because the stiffness in both the x and y directions for the joints is
identical and sufficiently strong, the joints can behave as revolute
joints. These revolute joints can be transformed into prismatic
joints (single-degree-of-freedom kinematic pairs) by making
minor adjustments to the stiffness ratio between the x and y direc-
tions, as follows:

Ki,j
nominal =

uix uiy ujx ujy
li,jx 0 −li,jx 0
0 li,jy 0 −li,jy

−li,jx 0 li,jx 0
0 −li,jy 0 li,jy

⎛
⎜⎜⎝

⎞
⎟⎟⎠ (7a)

li,jx = αi,jx ×mean(diag(Ki
nominal), diag(Kj

nominal))
li,jy = αi,jy ×mean(diag(Ki

nominal), diag(Kj
nominal))

(7b)

In the equations above, the values αi,jx and αi,jy represent the stiff-
ness multiplier in the x and y directions for the joints, respectively.
When αi,jx is sufficiently smaller than αi,jy , the joint behaves as a
y-directional prismatic joint, allowing sliding along the y-axis.
The application and solution involving these prismatic joints will
be discussed in Sec. 3.
The joints connecting subdomains are predefined in the post-

processing process. The location of these joints remains invariant
throughout the optimization process, although the stiffness of
each joint can be adjusted by the joint design variable. Joints are
considered disconnected if their stiffness value is zero (or close to
zero). On the contrary, joints with a sufficiently high stiffness
value are considered revolute or prismatic joints. Consequently,
changing the joint design variables can influence the determination
of the optimized joint locations.
For applying the multi-component modeling to the compliant

mechanism scheme, the topology optimization formulation for
single- and multi-subdomain cases is defined separately. In the con-
ventional compliant mechanism scheme for single-subdomain case,
the topology optimization problem can be formulated as follows:

Maximize
γ

uout = LTU

Subject to :
V(γ) ≤ V0

KU = F
0 < γmin ≤ γ

(8)

In case of the conventional compliant mechanism for single sub-
domain in Eq. (8), the output displacement uout is considered as the
objective function and maximized subject to a volume constraint V .
The objective vector L is configured with value of 1 at the output
degrees-of-freedom, while all other components are set to zero.
The optimization formulation described above is applicable only
to the single-subdomain case. For multi-subdomain scenario, the
optimization formulation is defined as follows:

Minimize
x

CSARF = ∑m
i=1 C

i
SARF

Subject to :
uout| | ≥ utarget
φi,j ≤ 0∑m

i=1 V
i(γ) ≤ V0

KU = F
x = [γ, κ]

0 < γmin ≤ γ ≤ 1, 0 ≤ κ ≤ 1
i, j = 1, 2, . . . , m, i ≠ j

(9)

In the multi-subdomain optimization formulation in Eq. (9),
unlike the single-subdomain cases, the summation of the SARF
compliance value CSARF is considered as objective function and is
minimized. The detailed information for SARF compliance will
be discussed in Sec. 2.2. In the single-subdomain case described
in Eq. (8), the objective function uout is now considered as the
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displacement constraint, which must exceed the target displacement
value utarget. Achieving a lower SARF compliance value tends to
result in a structure with suppressed hinges. But, selecting a specific
reference value for SARF compliance is challenging, because it is
highly dependent on the shape and characteristics of the model.
Therefore, in the case of multiple subdomains, SARF compliance
is considered as the objective function, while the output displace-
ment uout is treated as a constraint. The target displacement value
utarget can be obtained from the objective function with single sub-
domain as described in Eq. (8). Minimizing the SARF compliance
value subject to the output displacement constraint aims to achieve
the desired output displacement while suppressing hinge structures.
The JD constraint, denoted as φi,j, is implemented to the multi-

subdomain optimization problem, which ensures that the
minimum distance between each joint is greater than a specified
value, δmin. This JD constraint is applied to permit a maximum of
one joint within each joint subdomain. The enforcement of this
one joint condition is mathematically represented in Eq. (10a),
which involves the summation of joint design variables minus the
maximum joint design value in each joint subdomain Ωi,j,k . To
adapt the maximum function for numerical computation, it is imple-
mented as a p-norm with a sufficiently large p-value (specifically,
p1 = 20). The JD constraint value, φi,j, is defined using additional
p-norm function with p2 = 6 as shown in Eq. (10b), effectively
ensuring that only one joint remains within each joint subdomain.
To extend this principle to maintain a minimum distance between
each joint, every joint subdomain is defined as circles with a dia-
meter of δmin, centered on all joints, as illustrated in Fig. 5. If the
one joint condition in Eq. (10a) is satisfied across all joint subdo-
mains, it guarantees that the minimum distance between topological

joints greater than δmin. This constraint is crucial in preventing the
clustering of joints in small area, thereby aiding in managing the
structural complexity. For a more comprehensive understanding
of the JD constraint, please refer to Ref. [26].

φi,j,k =
∑

κe∈Ωi,j,k

κe −
∑

κe∈Ωi,j,k

(κe) p1
⎡
⎣

⎤
⎦

1
p1

≤ 0 (10a)

φi,j =
∑Ni,j

k=1

φi,j,k
( ) p2[ ] 1

p2

− 10−5 ≤ 0 (10b)

The volume constraint
∑m

i=1 V
i for multi-subdomains limits the

total volume of all subdomains. Since the constraint is applied to
the volume summation rather than each individual subdomain, the
volume ratio among the subdomains can change during the optimi-
zation process. The design variable set x contains the subdomain
design variable γ and the joint design variable κ. Those variables
affect the element stiffness matrices for the quad elements and
joint elements, respectively.
In this study, the optimization problems are solved in two steps.

First, a single-subdomain optimization is conducted to get the
maximum output displacement value, which can be a reference
value for the target displacement value in the next multi-subdomain
problem. The first step is essential to define the baseline of output
displacement for multi-subdomain problems, where the primary
goal of this study is to suppress hinge structures using the SARF
compliance as the objective function. Although minimizing the
SARF compliance increases structural stiffness, it might reduce
output displacement, hence a displacement constraint is applied as
constraint. Moreover, this approach allows to compare the deforma-
tion patterns of de facto hinges and joint structures. Since they are

Fig. 6 Definition of multi-subdomainmodel for compliant mech-
anism. m subdomains are connected sequentially with joints to
calculate the output displacement.

Fig. 5 The definition of the circle-shaped joint subdomains to
implement the JD constraint

Fig. 7 Definitions of the SARF multi-subdomain model for calculating the SARF compliance
value: (a) in the last mth subdomain, external forces are applied to calculate the reaction
forces at the connected subdomain and (b) the calculated reaction forces, when reversed in
direction, are considered as the external forces in the ith subdomain (i <m)
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expected to be similar, the first step is crucial for verifying the accu-
racy of the joint locations in the optimized model.

2.2 Compliant Mechanism With Suppressed Hinge
Structure. In this section, the new multi-subdomain model for
SARF method is defined to calculate the SARF compliance value
in Eq. (9), aiming to suppress hinge structures. As stated in the pre-
vious section, the analytical model is modeled in two different ways
and is analyzed separately for each. First, all subdomains are
assumed to be connected sequentially with spring joints, as
described in Fig. 6. In this multi-subdomain model, the output dis-
placement uout is calculated using the input force Fin, which is same
as the compliant mechanism. Second, the subdomains are separated
from each other and solved using the external forces, starting from
the mth subdomain down to the first subdomain, as described in
Fig. 7. In Fig. 7(a), the joints between the (m− 1)th and mth sub-
domains are connected to the mth subdomain with temporarily
fixed boundary condition, and the external forces (Fext) are
applied to the output node. The external forces at the mth subdo-
main are defined as unit forces in the x and y directions. After fin-
ishing the calculation of the reaction force at the mth subdomain,
the reversed reaction forces are now considered as the external
forces for the (m− 1)th subdomain (Fig. 7(b)). Those sequential
analysis processes are repeated one by one until the first subdomain.
The SARF compliance value is calculated using those method in
Fig. 7. A lower SARF compliance value indicates that the stiffness
values of each subdomain are increasing, suppressing the formation
of hinge structures. Since the SARF compliance value is calculated
using only the separated subdomains and connected joints, the
overall stiffness of the model shown in Fig. 6 may be lower due
to these joint connections. These can achieve an optimized shape
with both free-hinge structures and revolute joints, resulting in a
high uout value. Because the two different analytical method is con-
ducted simultaneously during the optimization process, all parame-
ters are independent from each other, except for the design variables
γ and κ. Therefore, the unit forces in the x and y directions are
chosen for the external force to calculate the SARF compliance
value. The SARF compliance value and the global stiffness equa-
tion in the ith subdomain can be defined as follows:

CSARF =
∑m
i=1

Ci
SARF (11a)

Ci
SARF = Fi

R

( )T
Ui

R (11b)

Ki
RU

i
R = Fi

R (12a)

Ki
R = Ki

R,bb Ki
R,bf

Ki
R,fb Ki

R,ff

[ ]
, Ui

R = Ui
R,b

Ui
R,f

[ ]
,

Fi
R = Fi

R,b

Fi
R,f

[ ]
(12b)

From the above formula, CSARF is the summation of the SARF
compliance of all subdomains. The subscript R and superscript i
in Eq. (11b) indicate values corresponding to the ith subdomain,
as shown in Fig. 7. The degrees-of-freedom in the global stiffness
Eq. (12a) can be divided into those that correspond to the temporar-
ily fixed boundary conditions (indicated by the subscript b) and the
remaining free parts (indicated by the subscript f) in Eq. (12b). Due
to the boundary condition, the displacement vector (Ui

R,b) and the
force vector (Fi

R,b) are zero vectors. As a result, the SARF compli-
ance value from Eq. (11b) and the global stiffness equation from
Eq. (12a) can be rewritten as follows:

Ci
SARF = Fi

R,f

( )T
Ui

R,f (13)

Ki
R,ffU

i
R,f = Fi

R,f (14)
And the reaction force vector (Ri

b) at the boundary
degrees-of-freedom can be expressed using the submatrix of the
stiffness matrix as follows:

Ri
b = Ki

R,bfU
i
R,f (15)

The force vector (Fi
R,f ) for the ith subdomain can be defined as

the reversed reaction force vector.

Fi
R,f = −Ri+1

b if i < m
Fext if i = m

{
(16)

To apply the SARF compliance value in the optimization
process, differentiating Eqs. (11b) and (16) with respect to the
design variables yields the following expressions:

∂Ci
SARF

∂x
= ∂ Fi

R,f

( )T
∂x

Ui
R,f − Ui

R,f

( )T ∂Ki
R,ff

∂x
Ui

R,f (17)

∂Fi
R,f

∂x
= − ∂Ri+1

b
∂x if i < m

0 if i = m

{
(18)

Calculating the derivative of Fi
R,f in Eq. (17) is highly challeng-

ing since the force vector is a function of the design variables. As
shown in Eq. (16), the force vector Fi

R,f can be categorized based

Fig. 8 Example 1: the design domains for displacement inverter problem with (a) single sub-
domain and (b)multi subdomain. The joints do not exist in the single subdomain, while 13 × 17
joints are predefined in the multi-subdomain problem. The SARF forces are applied at the
output node in the multi-subdomain problem.
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on whether i < m or i = m. Since external force vector Fext is inde-
pendent of the design variables, the derivative of Fi

R,f can be
expressed as shown in Eq. (18). To differentiate Ri+1

b , substituting
i+ 1 for the superscript i and applying the Lagrange multiplier, λi+1

with Eq. (14), Eq. (15) can be rewritten as follows:

Ri+1
b = Ki+1

R,bfU
i+1
R,f + λi+1 Ki+1

R,ffU
i+1
R,f − Fi+1

R,f

( ) (19)
After differentiating the above equation with respect to the design

variables, and substituting −Ki+1
R,bf Ki+1

R,ff

( )−1
for λi+1 to eliminate

the derivative terms of Ui+1
R,f , the equation can be simplified as

follows:

∂Ri+1
b

∂x
= ∂Ki+1

R,bf

∂x
Ui+1

R,f +Ki+1
R,bf Ki+1

R,ff

( )−1

×
∂Fi+1

R,f

∂x
− ∂Ki+1

R,ff

∂x
Ui+1

R,f

( )
(20)

As shown in above equation, the derivative term of reaction force
Ri+1

b can be expressed in terms of the derivative term of Fi+1
R,f . By

substituting the above equation into Eq. (18) for the case of
i < m, the derivative term of Fi

R,f can be expressed in terms of the
derivative term of Fi+1

R,f . Starting with the zero vector for the deriv-
ative of Fm

R,f , the derivative term of Fi
R,f can be calculated sequen-

tially from i = m down to i = 1.
Due to the computational intensity and time-consuming nature of

directly calculating the inverse of Ki+1
R,ff in Eq. (20), it is common to

use matrix decomposition techniques that efficiently solve linear
equation. Using matrix decomposition techniques, the inverse of
Ki+1

R,ff can be efficiently calculated via KR,bf . Specifically, for i = 1

(the first subdomain), the computational time for Ki+1
R,bf Ki+1

R,ff

( )−1

can be reduced by pre-multiplying UR,f from Eq. (17) with KR,bf .
This reduces the dimensions of the matrix from b × f to 1 × f,
thereby accelerating the time required for computing the inverse
matrix.

3 Numerical Examples
To show the validity of the SARF method in topology optimiza-

tion for multiple components connected by joints, this section
solves several optimization problems. The analysis domain is
divided into several subdomains connected by zero-length joints
and it is intended to make the subdomains stiffer without hinge
but with joint. Joints causing actuation for compliant mechanism
are modeled by the zero-length spring elements. The SARF
forces (FSARF) are applied at the output displacement nodes in the
last subdomain, i.e., the mth subdomain for the topology optimiza-
tion for mechanism with m components. The forces defined at the x
and y directions are applied for the calculation of each compliance
and the minimization of the summation of the compliance is consid-
ered as the objective function. Indeed, we would like to emphasize
that through this approach the components become stiffer without
hinge but with joints. The material properties are set to the same

values for all examples, i.e., 1 for elastic modulus and 0.3 for Pois-
son’s ratio. Four nodes quad elements with plane stress and eight
nodes brick elements are implemented in 2D and 3D problems,
respectively. To address the well-known checkerboard problem in
topology optimization, a sensitivity filter has been applied across
all numerical examples. For 2D problems, the filtering distance is
set to 1.6× the element size, while for 3D problems, a distance of
1.75× the element size is utilized, both exceeding the diagonal
length of each element. While the sensitivity filter comes with chal-
lenges such as ambiguous and non-smooth boundaries. Numerous
studies have introduced to relax these issues in topology optimiza-
tion, such as the density filter with a heaviside function [27], the
moving morphable component approach [28], and the level-set
method [29], among others. However, given that this study
focuses on suppressing de facto hinges, which are relatively thin
structures, methods to address the non-smooth boundary phenome-
non have not been considered. The method of moving asymptotes is
implemented as an optimization algorithm [30].

3.1 Example 1: Displacement Inverter. The displacement
inverter problem is first considered in Fig. 8. In Fig. 8(a), the single-
subdomain design is considered as a reference design for the displa-
cement inverter problem, which the output displacement (uout) is
maximized. On the other hand, in Fig. 8(b), the multiple subdo-
mains are considered with 221 predefined joints. Similar to the
single-subdomain problem, the fixed boundary condition, the
input node, and the input spring are applied only at the first subdo-
main, while the output spring is connected to the second subdomain.
As mentioned, the force of magnitude 1 is applied to the output
node in the x and y directions. In the multiple subdomain case,
the SARF compliance value is considered as an objective function
with the output displacement and joint dispersal constraints. The
input and output springs modeling the stiffness of a workpiece
are connected to the input and output nodes with spring stiffness
of 1 and 10−2 respectively. The 30% of volume fraction is consid-
ered in both problems. Through the topology optimization, it is ben-
eficial that the number of the hinges is determined by the
optimization algorithm in addition to the layouts. It is our intention
to control the location and number of hinges. From an engineering
point of view, the hinge or joint structures have some importance in
additive manufacturing with the size limitation.

3.1.1 Topology Optimization With Single Subdomain. To
show the effect of the developed method, the single-subdomain
problem in Fig. 8(a) is first considered. The maximization of the
output displacement (uout) is pursued by topology optimization.
The optimization results are shown in Fig. 9 with the optimized
layout, deformed shape (displacement scale of 1), and the von-
mises stress distribution. As noted, some de facto hinges appear ran-
domly denoted by the red dotted circles; it is possible to manually
interpret them in realization.
It is observed that the optimized von-mises stresses are concen-

trated in the four locations, where the boundary points, the input
node, and the hinge structures. The maximum von-mises stress
value (1.288 × 10−1) appeared near the input node, while the

Fig. 9 The optimized layout and the von-mises stress distribution for the single-
subdomain displacement inverter problem (the displacement scale of the deformed
shape: 1)
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stress values near the hinge structures (9.004 × 10−2 and
6.868 × 10−2) are also nonphysically high. It is possible to reduce
those stress concentrations by eliminating the thin hinge or joint
structure. The strain energies are calculated to check the energy
transfer between the input and the output nodes in Table 1. The
summation of deformed energies including both input/output
spring ((1/2)kinu2in, (1/2)koutu2out) and the model/joint deformation
((1/2)∑model

e UT
eKeUe, (1/2)

∑ joint
e UT

eKeUe) is exactly same as
the input energy value ((1/2)Finuin). The most of the input energy
is used for deformation of the input spring, which is 4.667 × 10−1

(96.615% of the input energy). Only 4.667 × 10−1 (1.361% of
the input energy) is transferred to deform the output spring. The
deformation of the subdomain part only consumes the strain
energy about 9.776 × 10−3 (2.024% of the input energy) resulting
in the output displacement of 1.1467. These values are treated as
the reference value for comparison with the following examples.

To suppress that hinge structure and the non-physical stress dis-
tributions, the SARF method is applied compared with the target
displacement constraint condition using the Fig. 8(b). The optimiza-
tion formulation in Eq. (9) is implemented at the multi-subdomain
problem. The SARF compliance value is minimized and considered
as an objective function, and the output displacement value (uout) is
implemented as a constraint function which is greater than specific
target displacement value (utarget). All other optimization parameters
except the target displacement value are set as the same values.
With the present optimization scheme, the optimization results in
Fig. 10 can be obtained. The utarget values are set as 0.8, 1.0,
1.14673, and 1.2 in Figs. 10(a)–10(d) respectively. In Fig. 10(c),
the utarget value of 1.14673 is the optimized output displacement
from the single-subdomain result. To compare the von-mises
stress distribution, the von-mises stress for Fig. 10(c) is shown in
Fig. 11 which the uout value is same as the single-subdomain

Table 1 Resultant strain energy values for displacement inverter with single-subdomain problem in Fig. 9

Type 1
2
Finuin

1
2
kinu

2
in

1
2
koutu

2
out

1
2

∑model

e

UT
eKeUe

1
2

∑joint
e

UT
eKeUe

Value 0.4831 0.4667 6.575 × 10−3 9.776 × 10−3 N/A
Ratio (%) 100 96.615 1.361 2.024 N/A

Fig. 10 Hinge-free multi-subdomain topology optimization results for minimizing SARF compliance value. The output displa-
cement constraint values (utarget) are set as (a) 0.8, (b) 1.0, (c) 1.14673, (d) 1.2, and (e) the responses with respect to the target
displacement. The minimum joint distance value (δmin) is set as 4. The scale factor for deformed shape is set as 1.
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result. The von-mises stress distributions for other cases are illus-
trated in the Appendix. The followings are what we find out:

– In Figs. 10(a) and 10(b), it is observed that the two joints are
optimized in the de facto hinge locations in the single-
subdomain result in Fig. 9, and the de facto hinges are elim-
inated in the optimized shapes with the uniform thickness bar
shapes.

– Because the joints are modeled with a zero-length spring ele-
ments, the optimized joints are deformed as rotational pin
joints similar to the conventional hinge structures. The min-
imization of the SARF compliance makes the stiffness of
each subdomain stronger, while the target displacement con-
straint makes the stiffness of the assembled model weaker.
Due to these contradictory two conditions, the hinges in
each model are suppressed and the role of the conventional
hinges is supplanted by the joints in the optimization process.

– As the optimization results, the uout values are converged to
the utarget values. As the utarget values increases from 0.8 to
1.0, the height of the optimized shape near the boundary con-
dition is reduced to converge the increased utarget values with
same input force Fin.

– In the case of the larger utarget values in Figs. 10(c) and 10(d),
the optimization results are significantly changed as follows.
Almost hinge structures are suppressed around the optimized
joint location, but some de facto hinges are not eradicated
around the input force node and output node denoted as
the dotted red circles. And the case of the utarget is 1.2, the
optimized output displacement is converged as 1.19087
which violates the displacement constraint.

– In the case of the same uout value in single- and multi-
subdomain cases, the two de facto hinge structures are
replaced by two-pin joint structures. This makes the von-
mises stress distribution around the joint (3.657 × 10−2 in
Fig. 11) is decreased about 59.38% compared with the
stress value around the hinge structure (9.004 × 10−2 in
Fig. 9). The decreased stress has the advantage for the
stress failure and fatigue life.

The minimization of the SARF compliance try to make the de
facto hinge structure suppressed, however, some de facto hinges
are not eradicated around the input force node and output node
denoted as the dotted red circles. The remaining hinge structures
can be explained by the following two reasons. The first reason is
that the target displacement constraint values are set as too large
value, leading to infeasible region to suppress the hinge structures.
Additionally in the second reason, in order to get rid of the hinge,
the SARF compliance must be smaller. As illustrated in
Fig. 10(e), hinge structures begin to appear when the target displa-
cement value reaches 1.1. It is important to note that the SARF com-
pliance value does not change significantly as the hinges appear.
Although SARF compliance generally increases as the target displa-
cement value rises, there is a nearly flat region between 1.05 and
1.075, where no hinge structures are observed. The specific thresh-
old value for completely suppressing hinge structures is not clearly
defined and may vary across different optimization models.
The joint domain is intentionally positioned between two subdo-

mains with a specific offset from the boundary conditions and the
output node. This configuration prevents the second subdomain
from being directly connected to the boundary conditions and the
output node from being connected to the first subdomain. To eval-
uate the effect of these offsets, the multi-subdomain model with the
extended joint domain is optimized, as illustrated in Fig. 12. In this
model, 17 × 17 predefined joints connect the first and second sub-
domains. All optimization parameters are identical to those used
in the multi-subdomain optimization result shown in Fig. 10(b).
With this extended joint subdomain, the optimized result is
shown, where the second subdomain is essentially empty, and
only one joint is optimized at the output node. The optimized
shape is similar to the result in the single optimization result,
while the de facto hinge structures are shown. To avoid such
local optima in multi-subdomain optimization, joints are placed
with some spacing from both the boundary condition and the
output node in all examples.

Fig. 11 The von-mises stress distribution with multi-subdomain
problem in Fig. 10(c)

Fig. 12 Multi-subdomain topology optimization result with an extended joint domain area that
extends to the boundary conditions and output nodes: (a) model definition and (b) corre-
sponding optimized result are shown, respectively. Except for the joint domain, all optimiza-
tion parameters remain consistent with those in Fig. 10(b). In the second subdomain, all
optimized design variables converge to the value γmin.
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3.1.2 Topology Optimization With the SARF Method With
Prismatic Joint. As stated, the present SARF method has the
advantage in designing compliant part and joint part, simulta-
neously. To show the potential application of the present develop-
ment, this subsection considers the topology optimization with
continuum structure and prismatic joint simultaneously. The engi-
neering problem considered in this subsection is set as topology
optimization for compliant mechanism with prismatic joint. For
the sake of illustration, only the prismatic joint allowing the sliding
in the x-direction or y-direction is considered in Fig. 13(a). To
implement the prismatic joints, the values of the joint stiffness mul-
tipliers (αi,jx and αi,jy ) in the sliding direction are set to 10

−6 times the
value in the perpendicular direction in Eq. (7). The target displace-
ment values at output nodes in both cases are set as uout = 0.7, and
the other optimization parameters and the optimization algorithms
are set as the same except the joint stiffness multiplier.

In Fig. 13(b), the prismatic joint allowing sliding in the
x-direction is considered and optimized. The first and the second
subdomains are optimized as shown in the bottom of Fig. 13(b).
The prismatic joints in the x-direction appear at the sliding joint
part (left-top and left-bottom) and at the rotating joint part (center-
top and center-bottom) marked with the dashed red box. The inves-
tigation of the motions of the prismatic joints at the sliding joint part
reveals that the prismatic joints mainly allow the sliding in the
x-direction. In the two prismatic joints at the rotating joint part,
the relative displacement in the top side joint is larger than the rel-
ative displacement in the bottom-side joint, which results in the rel-
ative rotation. With these relative motions, the optimized shape
differs from that of the revolute joint case shown in Fig. 10(a).
This is because the prismatic joints in Fig. 13(b) are unable to
resist the input force directed along the x-axis. In Fig. 13(c), the pris-
matic joints sliding in the y-direction are optimized. The optimized

Fig. 13 Example 1 results with prismatic joint: (a) the problem definition, optimized layouts with the prismatic joints sliding in
the (b) x-direction and (c) y-direction

Table 2 Resultant strain energy values for displacement inverter problem with the x-direction (Fig. 13(b)) and y-direction (Fig. 13(c))
prismatic joints

Case Type 1
2
Finuin

1
2
kinu

2
in

1
2
koutu

2
out

1
2

∑model

e

UT
eKeUe

1
2

∑joint
e

UT
eKeUe

x-dir Value 0.4890 0.4783 2.450 × 10−3 5.892 × 10−3 2.382 × 10−3

Ratio (%) 100 97.807 0.501 1.205 0.487
y-dir Value 0.4933 0.4867 2.450 × 10−3 4.132 × 10−3 2.030 × 10−5

Ratio (%) 100 98.662 0.497 0.838 4.116 × 10−3
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prismatic joints are concentrated in a narrow area between the first
and second subdomains with given condition to minimize the objec-
tive function. Compared to the x-direction prismatic joint result, the
joints work as sliding in the y-direction. But, the detailed locations
of the prismatic joints before and after the actuation show that the

significant displacements do not occur. The optimized shape
closely resembles the revolute joint scenario depicted in
Fig. 10(a). A significant number of optimized joints are tightly clus-
tered between the first and second subdomains, ensuring that the
output displacement constraint is satisfied.

Table 3 Resultant strain energy values for displacement inverter with multi-subdomain problems in Fig. 10

Case (utarget) Type 1
2
Finuin

1
2
kinu

2
in

1
2
koutu

2
out

1
2

∑model

e

UT
eKeUe

1
2

∑joint
e

UT
eKeUe

0.8 Value 0.4915 0.4832 3.200 × 10−3 5.149 × 10−3 7.263 × 10−8

Ratio (%) 100 98.301 0.651 1.048 1.478 × 10−5

1.0 Value 0.4886 0.4774 5.000 × 10−3 6.172 × 10−3 1.095 × 10−7

Ratio (%) 100 97.713 1.023 1.263 2.241 × 10−5

1.1467 Value 0.4831 0.4667 6.575 × 10−3 9.784 × 10−3 2.184 × 10−7

Ratio (%) 100 96.613 1.361 2.203 4.520 × 10−5

1.2 Value 0.4819 0.4645 7.091 × 10−3 1.033 × 10−2 2.261 × 10−7

Ratio (%) 100 96.386 1.471 2.143 4.692 × 10−5

Fig. 14 Example 2: the design domains for gripper problem with (a) single subdomain and (b)multi subdomain. The joints do
not exist in the single subdomain, while 13 × 13 joints are predefined in the multi-subdomain problem. The SARF forces are
applied to the output nodes in the multi-subdomain problem.

Fig. 15 The optimized layout and von-mises stress distribution for the single-subdomain
gripper problem without SARF method. The displacement scale of the deformed shape is 1.

Fig. 16 Hinge-free multi-subdomain topology optimization result for minimizing SARF com-
pliance value with utarget changes. The utarget is set as (a) 1.0 and (b) 1.32053 respectively.
The minimum joint distance value (δmin) is set as 4. The scale factor for deformed shape is
set as 1.
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The resultant strain energy values with prismatic joints are shown
in Table 2. When comparing these results from the perspective of
the strain energy, some differences can be found in the joint
domain area. In the x-direction prismatic joint case, the strain
energy ratio of the joint domain is greatly increased compared
with Table 3. Because all joints in the second subdomains are
deformed in the right direction, the x-directional deformation of
joints is large enough and the strain energy is increased. Therefore,
it is crucial to ensure that the Ex value should not be decreased
excessively to maintain numerical stability. If the Ex is set as very

small value, the numerical stability will be decreased. On the
other hand, the deformation of joints with the y-direction prismatic
joint is quite small compared with the x-direction prismatic joint
case. Because the joints are optimized closed to the output node,
the y-directional deformation of joints are relatively small, thus
exhibiting small strain energy value in joint domain. Although it
may also be possible to optimize the direction of prismatic joint
to maximize the output displacement value, it is not pursued here
as the purpose of the present study is to show the concept of the
SARF method.

3.2 Example 2: Gripper. For the next example, the gripper
design in topology optimization is considered in this subsection.
The problem definitions for single and multi subdomain including
the material properties and the geometry are given in Fig. 14. The
output displacements in the ±y directions are calculated at the
two output nodes in the right corner nodes. The design variables
in 4 × 4 area are set to non-design area with minimum density,
γmin. The unit forces in the ±y directions are applied to the input
nodes with input spring with stiffness of 1, while the output
springs with stiffness of 5 × 10−3 are attached to the output

Fig. 17 The von-mises stress distribution with multi-subdomain
problem in Fig. 10(b)

Table 4 Resultant strain energy for single subdomain (Fig. 15) and multi-subdomain (Fig. 16) problems

Case Type 1
2
Finuin

1
2
kinu

2
in

1
2
koutu

2
out

1
2

∑model

e

UT
eKeUe

1
2

∑joint
e

UT
eKeUe

Single Value 0.9623 0.9261 8.719 × 10−3 2.752 × 10−2 N/A
Ratio (%) 100 96.235 0.906 2.859 N/A

Multi (1.0) Value 0.9730 0.9468 5.003 × 10−3 2.124 × 10−2 2.410 × 10−7

Ratio (%) 100 97.303 0.514 2.183 2.477 × 10−5

Multi (1.32053) Value 0.9642 0.9297 8.723 × 10−3 2.579 × 10−2 2.396 × 10−7

Ratio (%) 100 96.420 0.905 2.675 2.485 × 10−5

Fig. 18 Example 2 results with the prismatic joints: (a) the problem definition, optimized layouts with the prismatic joints
sliding in the (b) x-direction and (c) y-direction
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nodes. To avoid the singularity error during optimization process,
the displacement of y is fixed in the single left-center node, which
does not affect to the deformation of the compliant mechanism
because of the symmetrical shape of subdomain. The 169 revolute
joints are predefined and the SARF forces are applied in the+x and
±y directions at the output nodes only at the multiple subdomain
problem.
An optimization gripper layout and its von-mises distribution

with a single subdomain are shown in Fig. 15. As observed in the
first example, several de facto hinge structures denoted by the red
dotted circles can be found with output displacement of 1.32053
and the hinge structures play a crucial role in maximizing output
displacement utilizing the flexibility of the hinge. In addition, the
von-mises stress values are highly concentrated around the hinge
structures and the boundaries. To control the hinge structures sup-
pressed, the minimizing SARF compliance with target displacement
of 1.0 with multi subdomain problem in Eq. (9) is optimized with
four revolute joints in Fig. 16(a). The designs in the first and the
second subdomains with the revolute joints are free from the
hinges and the compliant substructures can be designed success-
fully. Unlike the single-subdomain problem with some hinges,
thin and elongated structures are interconnected to suppress any
hinge structure. When the target displacement value is set identi-
cally to the output displacement of the single subdomain result,
the four revolute joints with similar location are optimized and
four hinges occur, as depicted in Fig. 16(b). The optimized shape
with large target displacement value(utarget = 1.32053) is consider-
ably similar compared to the optimized shape with lower value
(utarget = 1.0), but the stiffness of the optimized structure is
weaker to make large output displacement. The resultant von-mises
stress distribution in multi-subdomain problem with identical
output displacement is illustrated in Fig. 17. Although the concen-
trated von-mises stress values closed to the input forces and the left-
center hinge structures are not significantly decreased, the stress
value near the hinge is dramatically decreased. The strain energy
distribution for single and multi subdomain is given in Table 4.
Similar to the previous displacement inverter problem, most of
the input energy is used to deform the input spring and less then
1% of energy is transferred through the output spring. The sum of
the strain energy in the joints is negligibly small value, which indi-
cates that the joints perform as ideal revolute joints.
As stated in the previous example, the optimization using the

SARF method can be extended to the prismatic joint in the x and

y directions, i.e., prismatic joints. As shown in Fig. 18(a), the opti-
mization parameters, except for the joint stiffness, are identical to
those for revolute joints problem in Fig. 14(b). The target displace-
ment value is set as 0.7 at the output nodes. The optimized results
using the x- and y-directional prismatic joint can be found in Figs.
18(b) and 18(c) respectively. The structural stiffness values con-
necting the prismatic joints are being reduced to minimize the defor-
mation of the prismatic joints in both problems. Therefore, the
sliding deformations of joints depicted in Fig. 18(b) are relatively
small, and the most deformations are transferred through the joint
stiffness in the y-direction. Contrary to the optimized results with
prismatic joints in the x-direction, the sliding deformations of the
joints are obvious with prismatic joints in the y-direction. In the
two optimization results using the prismatic joints, no distinct

Table 5 Resultant strain energy values for gripper problemwith the x-direction (Fig. 18(b)) and y-direction (Fig. 18(c)) prismatic joints

Case Type 1
2
Finuin

1
2
kinu

2
in

1
2
koutu

2
out

1
2

∑model

e

UT
eKeUe

1
2

∑joint
e

UT
eKeUe

x-dir Value 0.9835 0.9673 2.451 × 10−3 1.378 × 10−2 6.878 × 10−6

Ratio (%) 100 98.349 0.249 1.401 6.993 × 10−4

y-dir Value 0.9785 0.9574 2.451 × 10−3 1.776 × 10−2 8.496 × 10−4

Ratio (%) 100 97.848 0.251 1.815 8.683 × 10−2

Fig. 19 Example 3: the design domains for 3D displacement inverter problem with (a) single subdomain and (b) multi subdo-
mains (9 × 7 × 9 joints with interval and the SARF force defined each subdomains)

Fig. 20 The optimized layout for the single subdomain 3D dis-
placement inverter problem without the SARF method. Elements
with density below 0.5 are excluded in the density distribution.
The isosurface with density 0.4 is considered to post-processed
figure. The input and output displacement values are 0.967010
and 1.08563 respectively.
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hinge structures are observed, excluding the areas with weaker stiff-
ness near the joints. The optimized strain energy distributions are
summarized in Table 5. Due to the minor joint deformations in
the prismatic joint problem in the x-direction, the total strain
energy in the joint domain is negligibly small compared to that in
the prismatic joint problem in the y-direction. Due to the greater
sliding occurring at the prismatic joint in the x-direction, the
strain energy of the subdomain is increased to satisfy the same
target displacement constraint.

3.3 Example 3: Displacement Inverter in 3D. As the final
example, the 3D displacement problem with higher degrees-
of-freedom to verify the applicability of the present SARF
method. In Fig. 19,8 × 8 × 8 cubic-shape analysis domain is discre-
tized by 48 × 48 × 48 brick elements. Similar to the displacement
inverter problem in the example 1, the input force of magnitude
1, denoted as Fin, is applied in +y-direction at the center of the
left side. The −y-direction output displacement, denoted as uout,
is computed at the center of the right side. The input and output
springs are connected at the input node and output node, with the
stiffness of 1 and 0.01 respectively. Four fixed boundary conditions
of size 1 × 1 are applied to the corner of the left side. The 567 spring
joints are predefined at the joint domain of size 8 × 6 × 8 with inter-
val of 1, and operates as spherical joints in the multi-subdomain
problem. The SARF forces with the x, y, and z directions are
applied at the output nodes to minimize the SARF compliance
values. The 20% of volume fraction is considered in both problems,
and the JD constraint with distance of 2 is considered in multiple
subdomain problem. The numbers of freedom are 352,947 and
705,894 for single- and multi-subdomain problem respectively.
First of all, in the single-subdomain results in Fig. 20 is optimized

using Fig. 19(a), which results with the four linear-shape de facto
hinges marked by the red circles. To straightforwardly check the
density distribution, the element with density below 0.5 (elements
with low stiffness) are omitted in the figure showing optimized
density distribution figure. The figure is refined by depicting the
post-processed density distribution using an isosurface with 0.5
density level. It is important to note that this post-processed
density distribution is only used for visualization purposes and not
for finite element analysis. The three figures with different view
directions are shown in bottom three figures. The output displace-
ment reaches to 1.0856 with 0.9670 for the input displacement.

Fig. 21 The hinge-free optimized layout for multi-subdomain
optimization with minimizing the SARF compliance value (the
target displacement constraint utarget: 0.8, the minimum joint dis-
tance value (δmin): 2, the input displacement: 0.979099, the output
displacement: 0.800013)

Fig. 22 Sensitivity analysis result for the objective value (CSARF)
with respect to design variables (x) in example 1 with coarse
mesh

Fig. 23 The von-mises stress distributions for assembled model in Fig. 10. The concentrated stress
values are denoted in the bottom-side figures: (a) utarget = 0.8, (b) utarget = 1.0, (c) utarget = 1.14673,
and (d) utarget = 1.2.
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To suppress de facto hinge structures, the multi-subdomain
problem in Fig. 19(b) is considered. The target displacement
value is set as 0.8, and the minimum distance of the JD constraint
is set as 2 at the multi-subdomain problem. As shown in Fig. 21,
the hinge-free optimized layout with two subdomains is derived
with eight joints. In the optimized density distribution figure
(left-top) in Fig. 21, the elements with density below 0.5 are
excluded in optimized density distribution figure, and the isosurface
with density 0.5 level is shown in the other post-processed density
distribution figures. The eight optimized joints with the minimum
distance of 2.24 are connecting between the first and the second
subdomains, and the de facto hinges are successfully eradicated.
The optimized output displacement is 0.800013 with 0.979099
for the input displacement. Note that the output displacement
value is decreased compared to the single result as the hinge struc-
tures are removed and replaced with the joint elements. Unlike the
prior 2D problem, the elements overlapping around the joints ar
optimized; such overlap is physically untenable. The joint stiffness
matrix relies on adjacent densities from the connected subdomains,
thereby precluding the removal of elements around the joints in
both the first and second subdomains. These phenomena are antic-
ipated and will be considered at future research.

4 Conclusions
This study describes the compliant mechanism with suppressed

hinge using multicomponent and joint connectivity. One unified
flexible component is designed by the topology optimization frame-
work for compliant mechanism. To maximize the motion, often
some unphysical features such as the checkerboard, thin structure,
and the hinge are often obtained. A few studies understanding
their features and roles have been carried out and many innovative
approaches have been proposed. Based on the present study, it is
our new finding that this issue becomes serious for compliant mech-
anism design for multiple components. As more than two compliant
structures are considered for the compliant mechanism design for
multiple components connected by the real joints, i.e., not only
the low pair joint but also high pair joint, the unphysical features
are frequently observed. To resolve this, the present study develops
a new approach called the SARF method setting the sum of the
compliance values of each components. In this approach, the reac-
tion forces through joins are defined and the artificial compliance
values for each component are computed and considered in the opti-
mization formulation. In addition, the present SARF method bears
the benefit that the optimal location and the type of joints can be
designed in multiple components. In the present study, not only rev-
olute joint but also prismatic joint can be considered and optimized.
For future research, it would be beneficial to develop a new numer-
ical approach capable of incorporating the additive manufacturing
characteristics or another manufacturing characteristics.
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Fig. 24 Topology optimization results for different mesh discre-
tizations with suppressed hinge structure. The output displace-
ment constraint value is set as 0.8, and all optimization
parameters, except the mesh size, remain identical to those in
Fig. 10(a). The total numbers of degrees-of-freedom are: (a)
9604, (b) 37,636, (c) 84,100, and (d) 148,996.

Fig. 25 Topology optimization results for different minimum
joint distance value. The output displacement constraint value
is set as 0.8, and all optimization parameters, except the δmin
value, remain identical to those in Fig. 10(a). The minimum joint
distance values are set as (a) 8, (b) 12, (c) 14, and (d) 16.
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Appendix A: Sensitivity Analysis for SARF Compliance
The sensitivity analysis of SARF compliance is conducted using

a displacement inverter example, as illustrated in the model shown
in Fig. 8(b). In the sensitivity analysis, 16 × 16 coarse meshes and
13 × 17 joints are used for two subdomains and joint subdomain
respectively. The initial density values are set to 0.5. All the other
parameters are set as same value in Fig. 10(a). The analytical sen-
sitivity is calculated using Eq. (17) for the design variables, while
the sensitivity according to the finite difference method (FDM) is
numerically computed with a Δx value of 10−6. The results of the
sensitivity analysis for both the subdomains and the joint domain
are presented in Fig. 22, and the absolute error values between
the analytical and FDM are negligibly small with the maximum
error value of 9.498 × 10−5.

Appendix B: Von-Mises Stress Analysis for Various
Target Displacement Values
The von-mises stress distributions from the multi-subdomain dis-

placement inverter example in Fig. 10 are shown in Fig. 23. With an
increase in the target displacement value, there is a corresponding
increase in the concentration of von-mises stress values.
However, these stress values remain lower compared to the von-
mises stress concentration observed in the single-subdomain
problem depicted in Fig. 9.

Appendix C: The Effect of the Mesh Discretization for
Displacement Inverter Example
The impact of mesh discretization on the developed method is

evaluated using different mesh sizes, as shown in Fig. 24. The
multi-subdomain displacement inverter problem depicted in
Fig. 10(a) is considered as the baseline model. All optimization
parameters remained consistent with this baseline model, except
for variations in mesh size. Specifically, the mesh size was
doubled in Fig. 24(a), multiplied by a factor of 1/1.5 in
Fig. 24(c), and halved in Fig. 24(d ). Note that the optimized
result presented in Fig. 24(b) corresponds to the same model as
the baseline model depicted in Fig. 10(a). As the number of
degrees-of-freedom increases, there are small changes with small
and thin branches in optimized shapes. However, the optimized
joint locations remain consistent across all cases, except for the
case in Fig. 24(a). This demonstrates that, through the application
of the developed method, de facto hinge structures are effectively
suppressed regardless of the mesh discretization.

Appendix D: The Effect of the Joint Dispersal Constraint
for Displacement Inverter Example
In displacement inverter problem in Fig. 10(a), the minimum

joint distance value from the JD constraint is set as 4 while the dis-
tance between two optimized joints is 12. The JD constraint does
not impact to Fig. 10(a) problem. To show the effect of the JD con-
straint to the hinge-free compliance mechanism, the JD constraint
value is increased from 8 to 16, as illustrated in Fig. 25. As the
joint distance value increases, the minimum distance between two
optimized joints increases, except that the δmin is 8. Although the
minimum joint distance is increased to 8, the optimized result is
almost identical to the optimized result in Fig. 10(a).
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