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ABSTRACT
This article develops a new topology optimization scheme for finding opti-
mized joints for multiple components. As the optimized topologies for
each component are determined by several structural conditions, simul-
taneously optimizing the joint location as well as the optimized topology
is regarded as one of the difficult problems. Because joint connections
are normally defined at nodes, inevitably the optimized locations of joints
are mesh dependent. To contribute to these research topics, this research
presents a new method for controlling the optimized location of joints. In
particular, a joint dispersal constraint is developed in order to control the
number and optimized locations of optimized joints. With the developed
scheme, it is possible to find optimized joints as well as optimized topol-
ogy while maintaining a minimum distance between all joints. To show
the effectiveness of the present optimization scheme, several numerical
optimization problems are solved.
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1. Introduction

A new topology optimization method for designing optimized joints for multiple components is
developed in the present study. One of the important subjects in computational mechanics is to con-
sider the optimized connections as well as the optimized topologies for multiple components. Since
several structural conditions such as loading, boundary and material properties can strongly influ-
ence the optimized topologies, the optimization of joint location simultaneously with topologies is a
difficult design problem. Some relevant studies normally implement pseudo rigid springs making the
mechanical displacements at the nodes the same. Because the joint connections are normally defined
at nodes, the optimized topological layouts will be different depending on the mesh size as shown in
Figure 9 in Example 1. By refining the mesh, different layouts and the associated joints are observed.
The optimized locations of joints are inevitably affected by mesh dependency. In the case of friction
stir spot welding, as shown in Figure 1(a), maintaining the distance between each weld is impor-
tant (Rajadhyaksha 2016). To contribute to this research topic, this article presents a new method to
control the optimized location of joints. In particular, the joint dispersal (JD) constraint is developed
in order to control the number and optimized location of optimized joints. In the present study, the
JD constraint is presented to control the number and optimal locations of optimal joints maintaining
the maximum distance between them.

After the development of the structural topology optimization scheme, some relevant stud-
ies have been proposed for optimized joint design as shown in Figure 1(b). In Chickermane and
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Figure 1. (a) Friction stir spot welding maintaining the distance between welds (Courtesy of RIFTEC GmbH via
https://www.riftec.de/). (b) Schematic multi-component model with joint domain.

Gea (1996), a multi-component topology optimization scheme with optimization of the joint loca-
tion was proposed. These authors also considered the optimization of welding locations with the
employment of spring elements. In Jiang and Chirehdast (1996), Qing Li, Steven, and Xie (2001) and
Thomas, Li, and Steven (2020), the importance of the locations and patterns of the connections in
structural optimization was investigated and discussed. In Qing Li, Steven, and Xie (2001), the Evo-
lutionary Structural Optimization (ESO) method was employed for joint optimization. In Thomas,
Li, and Steven (2020), the Bi-Directional Evolutionary Structural Optimization (BESO) method was
applied for optimized topology and joint configuration. In Ambrozkiewicz and Kriegesmann (2021),
a spring element was employed tomodel welding and bolts. The initial number of joints is predefined
and the location of circular or ring spring patterns are considered during optimization procedure. Cir-
cular or ring spring patterns are considered. Aminimumdistance constraint is also provided to ensure
a minimum clearance of the fastener. In Yildiz and Saitou (2011), Guirguis et al. (2015) and Wois-
chwill and Kim (2018), interface modelling between components with quad and beam elements was
proposed. In Yuqing Zhou and Saitou (2018), the number of multiple components was controlled.
In Yuqing Zhou, Nomura, and Saitou (2018), an anisotropic composite was considered in structural
optimization. In Kang, Wang, andWang (2016) andWang et al. (2018), the level-set method and the
MMCapproachwere applied for structural optimizationwithmultiple components. In the concept of
the level-set method, interference between components is constrained. In Zhu et al. (2015), the node
mismatching issue was efficiently resolved by the Multi-Point Constraint (MPC). In Zhu, Zhang, and
Xia (2016), the die casting directionwas also imposed for structural optimization. In Zhu, Zhang, and
Beckers (2009) and Zhu andZhang (2010), an integrated layout design process dealingwith the topol-
ogy and the support layout was proposed. In Zhu, Zhang, and Beckers (2009), Zhu and Zhang (2010),
Zhu et al. (2008) and Zhang et al. (2012), a remeshing scheme was employed for the structural opti-
mization of multiple components. In Zhang et al. (2012), a structural optimization scheme with static
load and random excitation was developed. A self-connected material interpolation with multiple
dissimilar microstructures was proposed to handle multi-domain topology optimization in Luo, Hu,
and Liu (2021). Besides research regarding multiple components, the multimaterial optimization
scheme is also relevant because the determination and choice of the proper and optimized mate-
rial are important. In Liu, Shi, and Kang (2020) and Liu, Luo, and Kang (2016), the consideration of
multiple components was carried out with the help of the level-set method. In Liu and Kang (2018), a
remeshing scheme was considered along the interface. In Kim et al. (2020), tension/compression and
adhesive characteristics were modelled with single design variables. In addition, several studies with
multiple components and manufacturing constraints exist (Hao Zhou et al. 2019; Langelaar 2019;
Hur et al. 2019; Quhao Li et al. 2016). As the consideration of the multiple components in structural
topology optimization is important, this research also develops a new approach for the joint design
for multiple components.

The present study also considers structural optimization for joints among multiple components.
Spring elements are used to model the joint and the lengths of the joints are set to zero to ensure
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the connected component condition. From an engineering point of view, sufficiently strong stiffness
values are assigned for the stiffness values of the joints. During the optimization process, it is recog-
nized that the aggregation of the joints without any restriction in a certain area becomes a serious
issue as unwanted redundant constraints can occur. To remove and control this, it is possible to cal-
culate and constrain the distances between joints (Ambrozkiewicz and Kriegesmann 2021). In the
present approach, alternatively, the number of joints in a specific area is calculated and constrained
with the p-norm formulation. One joint design variable is assigned to the springs connected to the
nodes of each element in order to remove rigid body rotation, i.e. one design variable for four springs
in the case of a four-node plane element. To calculate the joint distance, the design domain or the
joint domain is divided into several joint subdomains and the maximum number of joints is con-
strained. The stiffness interpolation method in Yoon et al. (2008) is considered in order to increase
the convergence of the joint design variables. To show the validity of the present approach, several
two-dimensional problems, shell problems and three-dimensional problems are considered.

The remainder of this article is arranged as follows: Section 2 provides an overview of the topology
optimization formulationwithmulti-components and the jointmodel. The optimization formulation
with the joint modelling is presented with the Joint Dispersal (JD) constraint to control the location
of joints. Section 3 presents several numerical examples in order to validate the present approach.
The conclusions and findings are summarized in Section 4.

2. Topology optimization formulation for multiple components and joint modelling

This section develops the new joint modelling method and the minimum joint distance constraint
in topology optimization for multiple components. A new topological design method simultane-
ously optimizing the topology for multiple components and joints connecting between multiple
components is developed here.

2.1. Topology optimization formulationwith joint constraints

Mathematically, the control and region determination of joints can be described as constraints
in the topology optimization framework. These constraints called joint constraints in the present
study. Before presenting the joint constraints, the analysis theory and optimization formulation are
briefly summarized here. The topology optimization problem minimizing the compliance subject to
the volume constraint and the joint constraint is formulated based on the Solid Isotropic Material
with Penalization (SIMP) interpolation function and polynomial interpolation function in Yoon et
al. (2008). The finite element formulation is employed to solve the equilibriumequation in the analysis
domain � as follows:

∇ · σ (u) + b = 0 in �, σ = Cε, (1)

where the stress tensor, the displacement field vector and the body force are denoted by σ , u and
b, respectively. The body force term is neglected in the present study. The strain tensor and the
constitutive matrix are denoted by ε and C, respectively.

In Figure 2, the analysis domain � is divided into the m-subdomains �i (i = 1, 2, . . . ,m), where
the number of the subdomain is denoted by m. The overlap region between the i-th and the j-th
subdomains is defined by the joint domain, �i,j, as follows:

� = �1 ∪ · · · �i ∪ �j · · · ∪ �m, �i ∩ �j = �i,j. (2)

Note that the joint domain �i,j is the overlap region between the i-th and the j-th subdomains and
cannot be an empty set. The joint subdomain �i,j,k (k = 1, 2, . . . ,mi,j) is an arbitrary subset of joint
domains that will be discussed in Section 2.3, and the joint design variables, κ i,j

e , belong to the joint
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Figure 2. Definition of analysis domain, subdomain, joint domain, joint subdomain and joint design variable for general analysis
domain.

domain �i,j. The joint subdomain, �i,j,k, also belongs to the joint domain �i,j. The compliance
minimization problem can be formulated as follows:

Min
x

c = FTU

subject to :

Vi(γ ) =
∑

Inside �i

γ i
e ≤ Vi

max

Vi,j(κ) =
∑

Inside �i,j

κ
i,j
e ≤ Vi,j

max

ϕi,j ≤ 0

Ti
max ≤ T0

ηi,j ≤ 0

KU = F

x = [γ , κ]

(i, j = 1, 2, . . . ,m, i �= j).

(3)

The objective function, c, is set to the static compliance with respect to the design variable x. The
stiffness matrix, the displacement vector and the force vector are denoted by K, U and F, respec-
tively. Because the design domain � is divided into several subdomains �i and joint domains �i,j,
the volume constraints are composed of two parts, one is the maximum volume constraint in each
subdomain and the other is the constraint limiting the maximum number of joints in each joint
domain. The maximum volume is set to Vi

max and the maximum number of joints is set to Vi,j
max.

The maximum number of joint constraints is not considered for the example problems except for
Figure 7(a). The next constraint, ϕi,j, is the joint dispersal constraint, which is formulated to dis-
tribute the joints in the joint domain�i,j. The joint dispersal constraint is one of the contributions of
the present study and will be discussed in the next subsection. The one-component constraint, Ti

max,
and the no-overlap constraint, ηi,j, control the shape of each subdomain and are considered only in
three-dimensional problems. The one-component constraint and the no-overlap constraint will be
discussed in Section 3.4. The design variable x is also divided into two sets of design variables. The
first set consists of the topological design variables γ defining the topology of the structure in the
subdomains, and the second set consists of the joint design variables κ defining the joints in the joint
domains. The topological design variables γ in the subdomains are defined as follows:

γ = [[
γ 1
1 , . . . , γ

1
N1

]
, . . . ,

[
γ i
1, . . . , γ

i
e , . . . , γ

i
Ni

]
, . . . ,

[
γm
1 , . . . , γm

Nm
]]

i = 1, 2, . . . ,m, 0 ≤ γmin ≤ γ ≤ 1. (4)
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The design variable γ i
e denotes the e-th design variable in the i-th subdomain. The number of topo-

logical design variables for the i-th subdomain is Ni. The total number of subdomains is denoted by
m and the minimum value of the design variables γ i

e is set to 10−4. Similar to topological density γ ,
the normalized joint design variables κ in joint domains are defined as follows:

κ =
[[

κ
1,2
1 , . . . , κ1,2

N1,2

]
, . . . ,

[
κ
i,j
1 , . . . , κ

i,j
e , . . . , κ

i,j
Ni,j

]
, . . . ,

[
κ
m−1,m
1 , . . . , κm−1,m

Nm−1,m

]]
i, j = 1, 2, . . . ,m, i �= j, 0 ≤ κ ≤ 1. (5)

The normalized joint design variable κ
i,j
e denotes the e-th design variable in the joint domain �i,j.

Unlike topological design variables, the minimum value of the joint design variables is set to zero,
which can make completely unconnected regions be in a joint domain.

In the above optimization formulation (3)–(5), the k-th joint subdomain is defined as follows:

�i,j,k ⊂ �i,j, �i,j,1 ∪ �i,j,2 ∪ · · · ∪ �i,j,mi,j = �i,j, (6)

where the number of joint subdomains is denoted by mi,j; further details will be discussed in
Section 2.3. The formulation of the jointmodelling and the joint dispersal constraint will be discussed
in the next section.

2.2. Jointmodelling formultiple subdomains

This subsection develops a new formulation regarding the joint stiffness,Kjoint. The terms ‘connecting’
and ‘joining’ mean that, from an engineering point of view, the displacements of the connected nodes
should be set to be the same. In order to address the issue of the joint, this research considers the two
jointmodels in Figure 3. The concepts of ‘NSJ’ and ‘ESJ’ are proposed in the present research. The first
joint model, called the Node Spring Joint (NSJ) model here in Figure 3(a:left-bottom), is a method of
connecting nodes at the same locations with zero-length rigid springs. The other joint model, called
the Element Spring Joint (ESJ) model in Figure 3(a:right-bottom), is a method of connecting the
nodes of elements at the same location with multiple zero-length rigid springs. For example, the four
springs defined at one-quad elements have the same springs joining the displacements of the nodes
in the ESJ model. The stiffness of the joint depends on the design variables as follows:

Kjoint(γ , κ) =
m∑
i=1

m∑
j=1,i �=j

Ni,j∑
e=1

Ki,j
e , (7)

where Ki,j
e is the joint stiffness matrix connecting the i-th and j-th subdomains.

The NSJ modelling is straightforward to implement, but from an optimization point of view, a
singular problem causing a rigid body mode can occur as shown in Figure 3(c:top). On the other
hand, as one ESJ joint connects multiple nodes, it can remove a rigid body mode as shown in Figure
3(c:bottom). In this study, the ESJ method is employed for joint modelling and the stiffness values are
interpolated as follows:

Ki,j
e = f (κ i,j

e )γ i
Adjacentγ

j
AdjacentK

i,j
nominal (8)

f (κ i,j
e ) = (κ

i,j
e )n

1 + (1 − (κ
i,j
e )n) li,jmax

kstructurediagonal ×dim

. (9)

The above interpolation function in (9) can be beneficial to the convergence of the joint design
variables. Assigning a larger value for the maximum stiffness value causes a convergence issue in
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Figure 3. Schematics for the two joint modelling types in the joint domain: (a) the NSJ model approach connecting the individual
nodes with the same locations, the ESJ model approach connecting the individual elements with the same locations; (b) only-one-
rigid-spring model; and (c) rigid body motion for each joint model.

a topology optimization process when the SIMP method is implemented to calculate joint stiff-
ness. Therefore, this research proposes utilizing the above interpolation in Yoon et al. (2008). The
convergence of the joint design variables is improved with the above interpolation function.

The nominal stiffness of the spring is denoted by Ki,j
nominal, defined as follows:

Ki,j
nominal =

u1x u1y u2x u2y⎛
⎜⎜⎜⎝

li,jmax 0 −li,jmax 0
0 li,jmax 0 −li,jmax

−li,jmax 0 li,jmax 0
0 −li,jmax 0 li,jmax

⎞
⎟⎟⎟⎠ (10)

li,jmax = α
i,j
max × mean(diag(Ki

nominal), diag(K
j
nominal)), (11)

where the maximum stiffness of a joint is denoted by li,jmax. The maximum stiffness li,jmax is pro-
portional to the average value of the diagonal components of connected nominal stiffness. In
the present study, a value of 103 is chosen for α

i,j
max to prevent numerical error and to keep

the displacement error sufficiently small compared with ideal rigid springs. Detailed informa-
tion is described in the online supplemental data for this article, which can be accessed from
https://doi.org/10.1080/0305215X.2022.2089879.

2.3. Joint dispersal constraint and joint subdomains

As joints are defined at finite element nodes, the mesh dependency of optimized joints is inevitably
observed. With a refined quad element, the total number of possible joints may increase, and also
the gap between joints may decrease, which may cause the clustering of joints. The positions of
joints depend on an objective function and a number of joint constraints in the joint subdomain.
Therefore, an alternative approach evenly distributing joints may help a local optimizer to relieve the
mesh dependency. Indeed, this subsection develops a Joint Dispersal (JD) constraint to overcome the
mesh-dependency problem and keep a minimum distance between joints.
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Table 1. JD constraint values using various different joint design variables.

κ
i,j
e variables

∑
Inside �i,j,k κ

i,j
e maxInside �i,j,k κ

i,j
e ϕ i,j,k constraint value

{0, 1, 0, 0} 1 1 0 (active)
{0, 1, 1, 0} 2 1 1 (violated)
{0, 0, 0, 0} 0 0 0 (active)

Before explaining the JD constraint, the joint domain �i,j and the joint subdomain �i,j,k should be
defined. The joint domain between the subdomains�i and�j is defined as�i,j. Each joint domain is
further divided into several arbitrarily-shaped joint subdomains �i,j,k (k = 1, 2, . . . ,mi,j), which can
overlap the other joint subdomains. Joints in �(i,j) can be defined in several other joint subdomains
for the JD constraint ϕ(i,j,k) because the joint subdomains can overlap the other joint subdomains.
These characteristics of joint subdomains play an important role in controlling the distance between
joints.

ϕi,j,k =
∑

Inside �i,j,k

κ
i,j
e − max

Inside �i,j,k
(κ

i,j
e ) ≈

∑
Inside �i,j,k

κ
i,j
e −

⎡
⎣ ∑
Inside �i,j,k

(κ
i,j
e )

p1

⎤
⎦
1/p1

≤ 0. (12)

The above equation (12) states that the sum of the joint design variables must be less than or equal
to themaximum joint design variables inside the joint subdomain �i,j,k. With this condition, a max-
imum of one joint design variable is allowed for each joint subdomain in Table 1. To incorporate the
constraint into the gradient-based optimizer, a p-norm value with p1 = 20 is employed where the JD
constraint error is small enough (refer to the online supplemental data). The differentiation of the
above constraint with respect to the design variables can be obtained easily.

ϕi,j =

⎛
⎜⎝

⎡
⎣mi,j∑

k=1

(
ϕi,j,k

)p2⎤⎦
1/p2/

mi,j

⎞
⎟⎠ − ε1 ≤ 0, ε1 = 10−5. (13)

The above constraint (13) is defined at every joint subdomain and further aggregated to reduce the
number of constraints to ϕi,j. The joint subdomains are defined to be of circular shape with diameter
δmin at every joint in Figure 4(a).When the JD constraint (13) is ideally satisfied, the distances between
all joints must be greater than δmin. But, in Figure 4(b), when the δmin value is equal to a multiple of
the mesh size, the minimum distance between joints must be greater than the intended δmin value.
And to solve this side effect, the distance between joints should be less than the δmin value when the
δmin value is set to a value smaller than that in Figure 4(c). To resolve this side effect with circular joint
subdomain, some cares should be made. Due to the mesh dependency, all of the joint subdomain is
further divided into four domains as shown in Figure 5. In other words, the circular joint subdomains
for the JD constraint in Figure 5(a) is decomposed into the four modified circular shapes illustrated
in Figure 5(b) and the calculations of the joint subdomains are carried out for each joint subdomain.
A sensitivity analysis of the joint dispersal constraint is described in the online supplemental data.

3. Numerical examples

To show the topology optimization application considering joints connecting multiple components
with the JD constraint, this section presents several topology optimization results. The compli-
ance minimization problem is considered with the volume constraint and the joint dispersal con-
straint. The Method of Moving Asymptotes (MMA) algorithm (Svanberg 1987) is employed in the
optimization algorithm.
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Figure 4. Definitionof joint subdomains and its side effects: (a) assume that five joints are arranged in a line at equal intervals, δ = 1
and also that five joint subdomains, which are dotted circles of diameter δmin = 2, are assigned to each joint; (b) the satisfaction of
JD constraints is shown for various joint locations; (c) the side effect when the diameters of joint subdomains are 1.99.

Figure 5. A modification of the subdomain to overcome the effect of the boundary of the subdomain: (a) a conventional circular
joint subdomain causing an unprecise joint distance constraint; and (b) a presented shape with four overlapping subdomains to
represent the joint distance of a combination of semicircles.

3.1. Example 1: Cantilever design problemwith two subdomains

To illustrate the effect of the JD constraint on a multiple-component optimization problem, a two-
dimensional cantilever problem with two subdomains (�1 and �2) is considered in Figure 6(a).
The size of the optimization problem is assumed to be 24 by 8m with thickness 1m and it is
assumed that the two subdomains (16 by 8m) overlap in the central domain �1,2 (8 by 8m).
Each subdomain is discretized by 64 by 32 four-node quad elements. The left-hand side of the
first subdomain is clamped and a point load of 1000N is applied in the −y-direction at the right-
hand side of the second subdomain. With the topology optimization formulation and a single
subdomain, the optimized design in Figure 6(b) can be obtained with 1.1197mJ as the objective
function with 40% of the volume constraint. For the topology optimization with two components,
the total volume of the two subdomains in Figure 7 is set to be the same, i.e. 40% = 2 × (2/3) ×
(the volume ratio of each subdomain, i.e. 30%).

The optimized layouts without and with the joint dispersal constraint using the ESJ method are
shown in Figures 7(a) and 7(b), respectively. In Figures 7(a) and 7(b), the first illustration shows the
topological layout of the joints. The second and fourth illustrations show the topological layouts of
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Figure 6. Example 1: Cantilever beamproblem: (a) problemdefinition (two subdomains:�1 and�2, oneoverlapping joint domain,
�1,2); and (b) a topology optimization result with a single model and a 40% volume ratio (1.1197mJ).

Figure 7. Optimization results with joint interpolation function Ki,je = (κ
i,j
e )nKi,jnominal: (a) optimized layoutwithout the joint disper-

sal constraint (1.1264mJ); (b) optimized layoutwith the joint dispersal constraint (1.1491mJ).

each subdomain, and the third illustration shows the distribution of the joints. The black rectangular
boxes represent the joints connecting the two subdomains. The volume ratio of each subdomain is
set to 30%. The number of joint constraints, V1,2

max in (3), is set to 51 (5%) only in Figure 7(a) and is
not assigned for the joint domain in Figure 7(b). The SIMP interpolation function for joint stiffness
(Ki,j

e = (κ
i,j
e )nKi,j

nominal) is used only in Figure 7 to find the effect of the JD constraint. The polynomial
interpolation function (8) is used in all the remaining examples. By investigating the optimized layout
in Figure 7(a) without the joint dispersal constraint, it is observed that the joints are very clustered
with some unnecessary joints in the empty space of the joint domain. The distance between joints
is 0.25m, which is the same as the mesh size. With the joint dispersal constraint (δmin = 1m), the
minimum distance between joints can be controlled for the optimized layouts in Figure 7(b) and,
according to the JD constraint, the distance between joints is increased by 1m. But when the distance
between joints satisfies the JD constraint in Figure 7(b), there is a problem that some joints appears
in the empty region. To remove the joints from the empty region, the joint stiffness interpolation
function (8) is used in all remaining examples.

To find the effect of theminimum joint distance constraint value, the parameter δmin is adjusted by
1, 2, 3 and 4m in Figure 8. When the minimum joint distance parameters are getting increased, the
number of joints is decreased without limiting the maximum number of joints. In other words, the
optimization algorithm can decide the number of necessary joints and distribute them in the design
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Figure 8. Topology optimization results for cantilever problem with different minimum joint distance parameters (δmin).
(a) δmin = 1m. (b) δmin = 2m. (c) δmin = 3m and (d) δmin = 4m.

space while satisfying the minimum joint distance constraints. It is observed that, with the different
values for δmin, the topological layouts of each subdomain with some differences near the optimized
joints are obtained. The joints on the left-hand side of the joint domain appear at the right-hand side
by increasing the δmin value with a slightly increased compliance. This is because the design space is
further limited from an optimization point of view by adding the joint dispersion constraint.

The topological layout for different mesh sizes is shown in Figure 9. The optimization parameters
are the same as the parameters in Figure 8(a) with different numbers of degrees of freedom. As the
number of degrees of freedom increases, the locations of joints are changed while maintaining the
distances between joints. Using the joint dispersal constraint, a minimum distance between all joints
can be maintained regardless of the mesh size.

In the present study, the mass constraints are defined for each subdomain. Because the mass con-
straints affect the optimized layouts for each subdomain, the optimized joints are also influenced. For
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Figure 9. Topology optimization results for differentmesh refinements with δmin = 1m. The optimization parameters are the same
except for the mesh size. The total numbers of degrees of freedom are: (a) 4900; (b) 8580; (c) 19,012; and (d) 33,540.

example, Figure 10(a) shows optimization layouts with different mass ratios for the first subdomain
and the second subdomain; with 20% for the first subdomain, the optimized layout appears on the
left-hand side only. Indeed, the joints appear on the left-hand side of the optimized layout for the
first subdomain connecting with the optimized layout in the second subdomain. This phenomenon
is reversed by changing the mass ratios as shown in Figure 10(b). It is possible to impose a total mass
constraint, i.e. the summation of the masses of all subdomains. However, this increases the design
space from an optimization point of view.

As the presented algorithm uses a gradient based optimizer, some grey elements inevitably appear
for joints as well as layouts. Therefore, a postprocessing for layouts and joints is required. For example,
Figure 11(a) shows the joint distributions, i.e. f (κ1,2

e )γ 1
Adjacentγ

2
Adjacent, as well as the layout. Figure

11(b) shows the distributions of f values. It can be observed that the intermediate joints appear at the
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Figure 10. The effect of the mass constraint: (a) volume fraction: 20% for the first subdomain and 40% for the second subdomain;
and (b) volume fraction: 40% for the first subdomain and 20% for the second subdomain.

Figure 11. Joint distributions and joint values: (a) optimized layout of Example 1 (joint plot with f (κ1,2
e )γ 1

Adjacentγ
2
Adjacent) and the

design variables; (b) distributions of the design variableswith f (κ1,2
e ); and (c) postprocessed compliance (for comparison, six decimal

places and eight decimal places are employed for the design variable and compliance, respectively).

upper and bottom corners marked by circles in Figure 11(a). The intermediate design variables for
γ 1
Adjacent and γ 2

Adjacent are 0.418,638 and 0.999,830 for joint κ
1,2
9 ; for comparison, six digits after the

decimal point are employed. To investigate the effect of these intermediate joints, the postprocessing
setting γ 1

Adjacent and γ 2
Adjacent of the intermediate joints is carried out in Figure 11(c). As shown, the

compliance is slightly decreased. In addition, note that the maximum joint stiffness value is chosen
very high; in this example, 103 times larger than the nominal stiffness value of the plane element.
From an engineering point of view, the effect of the intermediate joint therefore can be neglected after
postprocessing. To remove these joints with intermediate stiffness values, some other techniques can
be employed.
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Figure 12. Example 2: The MBB problem: (a) problem definition with three subdomains (�1, �2 and �3), and two overlapping
joint domains (�1,2 and�2,3); and (b) a topology optimization result for the single model with 51.43% volume ratio (0.7015mJ).

3.2. Example 2: MBB problemwith three subdomains

For the second example, the Messerschmitt–Bolkow–Blohm (MBB) beam problem with three sub-
domains (�1, �2 and �3) and two joint domains (�1,2 and �2,3) is considered in Figure 12. A
1000N force is applied in the −y-direction at the centre of the upper domain. The bottom-left
corner of the first subdomain is fixed, and the bottom-right corner of the third subdomain is
fixed only in the y-direction. The optimized layout with a single domain is presented in Figure
12(b) with 0.7015mJ for its compliance. The volume ratio for the single subdomain is set to
51.43%, which is the same as the summation for the three subdomains, i.e. 51.43% = 3 × 3/7 ×
(the volume ratio of each subdomain, i.e. 40%).

Figure 13 shows the optimized layouts with the different joint distance values δmin. The volume
ratio of each subdomain is set to 40%. The optimized layouts satisfying the joint distance constraints
can be successfully obtained. The first illustration in each part figure shows the overall structure with
optimized joints. The second, fourth and sixth illustrations show the optimized topological layouts,
and the third and the fifth illustrations show the optimized joints. With larger distances between the
joints, some joints are dispersed, and the object value is increased accordingly as in the first exam-
ple. Unlike the case of the first example, the overall topological results of each subdomain change
slightly with increasing δmin value for the different positions of the joints. By investigating the opti-
mized layouts, it is observed that, with larger distances between the joints, the number of joints also
decreases.

3.3. Example 3: Kirchhoff’s shell problemwith two subdomains

The present optimization framework can be applied for the shell structure. To show the application,
Figures 14 and 15 show the optimization results for domains modelled by Kirchhoff shell elements.
The design domains are discretized with 64 by 32 four-node shell elements. The minimum joint dis-
tance value δmin and the maximum volume ratio Vi

max are set to 2m and 30%, respectively. With
the joint distance constraint, the two plates are designed with optimized joints. In order to model
the joints for shell elements having rotational degrees of freedom, it is necessary to modify the link
stiffness matrix (10) as follows:

Ki,j
nominal =

w1 θx1 θy1 w2 θx2 θy2⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

li,jtr 0 0 −li,jtr 0 0
0 li,jrot 0 0 −li,jrot 0
0 0 li,jrot 0 0 −li,jrot

−li,jtr 0 0 li,jtr 0 0
0 −li,jrot 0 0 li,jrot 0
0 0 −li,jrot 0 0 li,jrot

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)
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Figure 13. Topology optimization results for the MBB problem with different minimum joint distance parameters (δmin). All
distance values between joints are in metres. (a) δmin = 1m. (b) δmin = 2m. (c) δmin = 3m and (d) δmin = 4m.

li,jtr = α
i,j
max × mean(diag(Ki

tr), diag(K
j
tr))

li,jrot = α
i,j
max × mean(diag(Ki

rot), diag(K
j
rot)),

(15)

where the maximum connection stiffness is separated by translation part (li,jtr ) and rotation part (l
i,j
rot).

The translation stiffness is calculated by the average of the diagonal components of connected nom-
inal translation stiffness, and the rotation stiffness is calculate using the connected nominal rotation
stiffness. The α

i,j
max value is set to 103, which is the same as for previous examples.

For the bending load in Figure 14(a), theU-shapewith a sharp end and two supporting structures is
obtained for the single-subdomain result in Figure 14(b). In Figure 14(c), a sharp pin shape structure
appears in the second subdomain and three structures appear for the first domain to support the load
carried from the second subdomain. For the torsional load in Figure 15(a), the thick cantilever shape
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Figure 14. Example 3.1: Shell platewith a point load: (a) problemdefinitionwith two subdomains; (b) optimized result for a single-
subdomain model with a 40% volume ratio (71.8576mJ); and (c) for a two-subdomain model (78.4235mJ).

Figure 15. Example 3.2: Shell plate with a bending load: (a) problem definition with two subdomains; (b) optimized result for a
single-subdomain model with a 40% volume ratio (0.3330mJ); and (c) for a two-subdomain model (0.3450mJ).

with two supporting structures is optimized for the single-subdomain result in Figure 15(b). In the
case of the two-subdomain result in Figure 15(c), a thick bar-shaped structure appears in the second
subdomain. To resist the bending load effectively, a structure connected to the structure in the first
subdomain at the four different locations can be obtained. In themiddle of the structure, vertical bars
can be obtained to increase the torsional stiffness.

3.4. Example 4: 3D cantilever problemwith two subdomains

As a final example, the 3D cantilever problemwith two subdomains is considered in Figure 16 . In the
middle of the two subdomains, one joint subdomain is defined. The size of the optimization problem
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Figure 16. Example 4: 3D cantilever problemwith a point load: (a) problem definitionwith two subdomains; (b) single-subdomain
result with a 26.67% volume ratio; (c) results with a 20% volume ratio for each subdomain without a JD constraint; and (d) without
a no-overlap constraint but with a JD constraint (δmin = 0.5m).

is 1 by 3 by 1m and it is assumed that two subdomains 1 by 2 by 1m overlap in the central domain
�1,2. Each of the subdomains is discretized by 16 by 32 by 16 eight-node cube elements. The left-hand
side of the first subdomain is clamped and a point load of 1000N is applied in the −z-direction at
the right-hand side of the second subdomain. The volume ratio of each subdomain is set to 20%. The
nominal stiffness of the three-dimensional spring in (10) is redefined as follows:

Ki,j
nominal =

u1x u1y u1z u2x u2y u2z⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

li,jmax 0 0 −li,jmax 0 0
0 li,jmax 0 0 −li,jmax 0
0 0 li,jmax 0 0 −li,jmax

−li,jmax 0 0 li,jmax 0 0
0 −li,jmax 0 0 li,jmax 0
0 0 −li,jmax 0 0 li,jmax

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (16)

where the link stiffness is the same as in Equation (11) and the α
i,j
max variable is also set to 103.

Unlike in two-dimensional problems with links whose directions are aligned in the out-of-plane
direction, a one-component constraint and a no-overlap constraint are additionally considered in
three-dimensional problems. The one-component constraint means that the number of components
is controlled to be one. In three-dimensional problems, several components can appear. To overcome
this aspect, the virtual temperature approach developed is implemented. In Quhao Li et al. (2016),
the virtual temperature, T, is calculated and bounded to eliminate enclosed cavities in topology opti-
mization. Tomodify the virtual temperature approach to the one-component constraint, the following
modified heat conductivity, KT , and the heat source condition, Q, are considered.

KT (γe) = (
γmin + (γmax − γmin) γ 10

e
)
KT0

Q (γe) = γeQ0.
(17)
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Figure 17. Schematics for two additional constraints in 3D cases: (a) a one-component constraint; and (b) a no-overlap constraint.

With this condition, the virtual temperature can be calculated and bounded to maintain one compo-
nent. As an example, the optimum layout in Figure 17(a:left) with six distributed structures for the
first component (relatively dark grey colour) and five distributed structures for the second compo-
nent (relatively light grey colour) can be obtained. On the other hand, with the above equation (17),
it is possible to maintain one-component structures in Figure 17(a:right).

Tmax ≤ T0, (18)
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Figure 18. Example 4: (a) optimized result with 20% volume ratio for each subdomain; and (b) optimized joint distribution with
0.5mminimum joint distance (δmin = 0.5m), and with no-overlap constraint. All distance values between joints are also in metres.

where the virtual temperature and the upper bound of the virtual temperature are set as Tmax and T0,
respectively. The maximum temperature is obtained by the p-norm approach as follows:

Ti
max ≈

⎡
⎣ ∑
Inside �i,j

(
Ti
e
)p3

⎤
⎦
1/p3

. (19)

In the present study, the maximum temperature Tmax is obtained with the p-norm formulation with
p3 = 10 for the penalization. The upper bound of the temperature T0 is set to the temperature of
the solid domain. To dissipate the heat in Figure 16(a), temperature boundary conditions are applied
at the left-hand side of the first subdomain, and the point where the mechanical load is applied in
the second subdomain. In addition to this, a no-overlap constraint among components is imposed as
follows:

ηi,j =
∑

Inside �i,j

(γ i
eγ

j
e − ε2) ≤ 0, ε2 = 10−4. (20)

With the above no-overlap constraint, ηi,j, the overlapping domain can be removed as shown in Figure
17(b:right).

Figure 18(a) shows the optimized layout for the three-dimensional problem in Figure 16(a). The
nine joints can be distributed between the two components with δmin = 0.5m for the joint distance
constraint as illustrated in Figure 18(b). Without the joint dispersal constraint, the aggregation of
the joints appears as shown in Figure 16(c). Without the no-overlap constraint, the two components
overlap as shown in Figure 16(d) with the overlap domain. Note that the optimized layout without the
no-overlap constraint is stiffer than the optimized layout with the no-overlap constraint. A 3.0879mJ
compliance is obtained for the design in Figure 16(b), which is a 4.9% higher compliance than the
2.9368mJ compliance of the design in Figure 18(a).
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4. Conclusions

This study describes the development of topology optimization formulations for multi-component
joint connectivity.When solving amulti-component problem, the positions of joints have great influ-
ence on the overall shape, stability andmanufacturing condition of the structure. The design variables
determining the joints as well as the design variables for optimizing the topology are optimized.
From a finite element point of view, joints can be modelled using the rigid spring model. The opti-
mization formulation minimizing compliance subject to the mass constraint finds optimized joints
as well as optimized layouts simultaneously. Although the stiffness values of parts having topolog-
ical design variables of low density value are small, the joint design variables appear at the parts.
Thus, a post-processing procedure should be applied during the topology optimization procedure.
In addition, aggregated joints also appear. To overcome these difficulties, the concept of the joint
dispersal (JD) constraint is developed here. The JD constraint subtracts the p-norm from the sum-
mation at the joint subdomain. With this JD constraint, up to one joint can appear at the joint
subdomain. By imposing the JD constraint, it is possible to control the minimum distances between
joints. The joint design formulation and the JD constraint are extended to plate structures and three-
dimensional structures. To model the joint of a plate, the rotational degrees of freedom as well the
translational degrees of freedom are considered in the joint formulation. To validate the concept of
the JD constraint, several two-dimensional problems, two shell structure problems and one three-
dimensional problem are considered, while the presented JD constraint is calculated using only
the joint location and the topological density variable for the joint. This has some advantages over
implementing other optimization methods such as composite delamination, fatigue, etc. For a future
research topic, continuous-type joints are also one of the important subjects to consider. In addition,
joint accessibility in three-dimensional problems should be considered.

Nomenclature

� Analysis domain
�i The i-th subdomain (i = 1, 2, . . . ,m)
�i,j Joint domain between �i and �j (i, j = 1, 2, . . . ,m, i �= j)
�i,j,k The k-th joint subdomains for the JD constraint in �i,j (k = 1, 2, . . . ,Ni,j)
m Number of subdomains
mi,j Number of joint subdomains for the JD constraint in �i,j

Ni Number of topological design variables in subdomain �i

Ni,j Number of joints in joint domain �i,j

Ni,j,k Number of joints in joint subdomain �i,j,k

Vi Summation of volume in subdomain �i

Vi
max Maximum volume constraint value in subdomain �i

V(i,j): Summation of joint design variables in joint domain �(i,j)

V(i,j)
max: Maximum joint volume fraction in joint domain �(i,j)

ϕi,j Joint dispersal constraint in joint domain �i,j

ϕi,j,k Joint dispersal constraint in joint subdomain �i,j,k

δ Distance value between two joints
δmin Minimum joint distance value for JD constraint
ε1 Tolerance value for JD constraint
ε2 Tolerance value for no-overlap constraint
x Design variables x = γ i ∪ κ i,j

γ i Topological design variables in subdomain �i

κ i,j Joint design variables in joint domain �i,j

n Penalization factor of the stiffness interpolation
li,jmax Stiffness value of the spring joint
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α
i,j
max Stiffness parameter of the spring joint

JD Joint Dispersal
NSJ Node Spring Joint
ESJ Element Spring Joint
Ti
max The one-component constraint for a 3D problem in �i

ηi,j The no-overlap constraint for a 3D problem in �i,j

Disclosure statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Available Statement
The data that support the findings of this study are available from the corresponding author, G.H.Yoon, upon reasonable
request.

Funding
This work was supported by a National Research Foundation of Korea (NRF) grant funded by the Korea government
(MSIT) [NRF-2019R1A2C2084974].

References
Ambrozkiewicz, Olaf, and Benedikt Kriegesmann. 2021. “Simultaneous Topology and Fastener Layout Optimization of

Assemblies Considering Joint Failure.” International Journal for NumericalMethods in Engineering 122 (1): 294–319.
Chickermane,Hemant, andHaeChangGea. 1996. “Design ofMulti-Component Structural Systems forOptimal Layout

Topology and Joint Locations.” In International Design Engineering Technical Conference & Computers and Infor-
mation in Engineering Conference, Vol. 97591, Paper No. 96-DETC/DAC-1467, V003T03A073. New York: ASME
(American Society of Mechanical Engineers). doi:10.1115/96-DETC/DAC-1467.

Guirguis, David, Karim Hamza, Mohamed Aly, Hesham Hegazi, and Kazuhiro Saitou. 2015. “Multi-Objective Topol-
ogy Optimization of Multi-Component Continuum Structures Via a Kriging-Interpolated Level Set Approach.”
Structural and Multidisciplinary Optimization 51 (3): 733–748.

Hur, Doe Young, Yuki Sato, Takayuki Yamada, Kazuhiro Izui, and Shinji Nishiwaki. 2019. Level Set-Based
Topology Optimization with Manufacturing Constraint with Manufacturing Directions via Fictitious Physical
Model. Paper No. AIAA 2019-1467. Reston, VA: AIAA (American Institute of Aeronautics and Astronautics).
https://arc.aiaa.org/doi/abs/10.2514/6.2019-1467.

Jiang, Tao, and Mehran Chirehdast. 1996. “A Systems Approach to Structural Topology Optimization: Designing
Optimal Connections.” In International Design Engineering Technical Conference & Computers and Information in
Engineering Conference, Vol. 97591, Paper No: 96-DETC/DAC-1474, V003T03A044. New York: ASME (American
Society of Mechanical Engineers). doi:10.1115/96-DETC/DAC-1474.

Kang, Zhan, Yaguang Wang, and Yiqiang Wang. 2016. “Structural Topology Optimization with Minimum Distance
Control of Multiphase Embedded Components by Level Set Method.” Computer Methods in Applied Mechanics and
Engineering 306: 299–318.

Kim, Cheolwoong, HongKyoung Seong, Il YongKim, and JeonghoonYoo. 2020. “Single Variable-BasedMulti-Material
Structural Optimization Considering Interface Behavior.” Computer Methods in Applied Mechanics and Engineering
367: Article ID 113114. doi:10.1016/j.cma.2020.113114.

Langelaar, Matthijs. 2019. “Topology Optimization for Multi-Axis Machining.” Computer Methods in Applied Mechan-
ics and Engineering 351: 226–252.

Li, Quhao, Wenjiong Chen, Shutian Liu, and Liyong Tong. 2016. “Structural Topology Optimization Considering
Connectivity Constraint.” Structural and Multidisciplinary Optimization 54 (4): 971–984.

Li, Qing, Grant P. Steven, and Y. M. Xie. 2001. “Evolutionary Structural Optimization for Connection Topology Design
ofMulti-Component Systems.” Engineering Computations: International Journal for Computer-Aided Engineering 18
(3-4): 460–479. https://www.ingentaconnect.com/content/mcb/182/2001/00000018/f0020003/art00006.

Liu, Pai, and Zhan Kang. 2018. “Integrated Topology Optimization of Multi-Component Structures Considering
Connecting Interface Behavior.” Computer Methods in Applied Mechanics and Engineering 341: 851–887.

Liu, Pai, Yangjun Luo, and Zhan Kang. 2016. “Multi-Material Topology Optimization Considering Interface Behavior
Via XFEM and Level Set Method.” Computer Methods in Applied Mechanics and Engineering 308: 113–133.

https://doi.org/10.1115/96-DETC/DAC-1467
https://doi.org/10.1115/96-DETC/DAC-1474
https://doi.org/10.1016/j.cma.2020.113114


1476 J. H. KIM ET AL.

Liu, Pai, Litao Shi, and Zhan Kang. 2020. “Multi-Material Structural Topology Optimization Considering Material
Interfacial Stress Constraints.” Computer Methods in Applied Mechanics and Engineering 363: Article ID 112887.
doi:10.1016/j.cma.2020.112887.

Luo, Yunfeng, Jingyu Hu, and Shutian Liu. 2021. “Self-ConnectedMulti-Domain Topology Optimization of Structures
with Multiple Dissimilar Microstructures.” Structural and Multidisciplinary Optimization 64 (1): 125–140.

Rajadhyaksha, Rahul. 2016. A Definitive Guide to Design for Manufacturing Success—Spot Welding Design Guidelines.
17th ed. Mumbai, India: Geometric Limited. https://dfmpro.com/wp-content/uploads/2016/02/DFM-Guidebook-
Welding-Design-Guidelines-Issue-XVII.png.

Svanberg, Krister. 1987. “The Method of Moving Asymptotes—A New Method for Structural Optimization.” Interna-
tional Journal for Numerical Methods in Engineering 24 (2): 359–373.

Thomas, Simon, Qing Li, and Grant Steven. 2020. “Topology Optimization for Periodic Multi-Component Struc-
tures with Stiffness and Frequency Criteria.” Structural and Multidisciplinary Optimization 61: 2271–2289.
doi:10.1007/s00158-019-02481-7.

Wang, Xuan, Kai Long, Van-Nam Hoang, and Ping Hu. 2018. “An Explicit Optimization Model for Integrated Lay-
out Design of Planar Multi-Component Systems Using Moving Morphable Bars.” Computer Methods in Applied
Mechanics and Engineering 342: 46–70.

Woischwill, Christopher, and Il Yong Kim. 2018. “Multimaterial Multijoint Topology Optimization.” International
Journal for Numerical Methods in Engineering 115 (13): 1552–1579.

Yildiz, Ali R., andKazuhiro Saitou. 2011. “Topology Synthesis ofMulticomponent Structural Assemblies in Continuum
Domains.” Journal of Mechanical Design 133 (1). doi:10.1115/DETC2008-50037.

Yoon, Gil-Ho, Yoon Young Kim, Matthijs Langelaar, and Fred van Keulen. 2008. “Theoretical Aspects of the Internal
Element Connectivity Parameterization Approach for Topology Optimization.” International Journal for Numerical
Methods in Engineering 76 (6): 775–797. doi:10.1002/nme.2342.

Zhang, Qiao,Weihong Zhang, Jihong Zhu, and Tong Gao. 2012. “Layout Optimization ofMulti-Component Structures
Under Static Loads and Random Excitations.” Engineering Structures 43: 120–128. doi:10.1016/j.engstruct.2012.05.
013.

Zhou, Hao, Junyuan Zhang, Yuqing Zhou, and Kazuhiro Saitou. 2019. “Multi-Component Topology Optimization for
Die Casting (MTO-D).” Structural and Multidisciplinary Optimization 60 (6): 2265–2279.

Zhou, Yuqing, Tsuyoshi Nomura, and Kazuhiro Saitou. 2018. “Multi-Component Topology and Material Orientation
Design of Composite Structures (MTO-C).”ComputerMethods in AppliedMechanics and Engineering 342: 438–457.

Zhou, Yuqing, and Kazuhiro Saitou. 2018. “Gradient-Based Multi-Component Topology Optimization for Stamped
Sheet Metal Assemblies (MTO-S).” Structural and Multidisciplinary Optimization 58 (1): 83–94.

Zhu, Ji-Hong, Huan-Huan Gao, Wei-Hong Zhang, and Ying Zhou. 2015. “A Multi-Point Constraints Based Inte-
grated Layout and Topology Optimization Design of Multi-Component Systems.” Structural and Multidisciplinary
Optimization 51 (2): 397–407.

Zhu, J. H., andW.H. Zhang. 2010. “Integrated LayoutDesign of Supports and Structures.”ComputerMethods inApplied
Mechanics and Engineering 199 (9-12): 557–569.

Zhu, Jihong, Weihong Zhang, and Pierre Beckers. 2009. “Integrated Layout Design of Multi-Component System.”
International Journal for Numerical Methods in Engineering 78 (6): 631–651.

Zhu, Jihong, Weihong Zhang, Pierre Beckers, Yuze Chen, and Zhongze Guo. 2008. “Simultaneous Design of Compo-
nents Layout and Supporting Structures Using Coupled Shape and Topology Optimization Technique.” Structural
and Multidisciplinary Optimization 36 (1): 29–41.

Zhu, Ji-Hong, Wei-Hong Zhang, and Liang Xia. 2016. “Topology Optimization in Aircraft and Aerospace Structures
Design.” Archives of Computational Methods in Engineering 23 (4): 595–622.

https://doi.org/10.1016/j.cma.2020.112887
https://doi.org/10.1007/s00158-019-02481-7
https://doi.org/10.1115/DETC2008-50037
https://doi.org/10.1002/nme.2342
https://doi.org/10.1016/j.engstruct.2012.05.013

	1. Introduction
	2. Topology optimization formulation for multiple components and joint modelling
	2.1. Topology optimization formulation with joint constraints
	2.2. Joint modelling for multiple subdomains
	2.3. Joint dispersal constraint and joint subdomains

	3. Numerical examples
	3.1. Example 1: Cantilever design problem with two subdomains
	3.2. Example 2: MBB problem with three subdomains
	3.3. Example 3: Kirchhoff's shell problem with two subdomains
	3.4. Example 4: 3D cantilever problem with two subdomains

	4. Conclusions
	Disclosure statement
	Data Available Statement
	Funding
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile ()
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings false
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.90
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 300
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [493.483 703.304]
>> setpagedevice


