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This paper presents a novel model order reduction (MOR) method called the transient
quasi-static Ritz vector (TQSRV) method for efficient transient finite element (FE) analysis.
Comparing with frequency response analysis, linear transient FE analysis with a fixed time
step takes less computation time as an effective dynamic stiffness matrix assembled before
time marching procedure is factorized once. Nevertheless as the number of degrees of free-
dom of a FE model has been dramatically increased for accurate engineering simulation,
even the state-of-the-art computer and software often face their limitations. For fast but
accurate transient FE analysis, we present a new MOR scheme called the TQSRV method
with Krylov bases spanned at multiple angular velocities and several lowest eigenvectors.
By calculating transient responses of reduced FE models and comparing it with the
responses of full FE models, the effectiveness and accuracy of the TQSRV method are
demonstrated.

� 2014 Elsevier Inc. All rights reserved.
1. Introduction

In this research, a new mathematical model order reduction scheme named as the transient quasi-static Ritz vector
method (TQSRV method) is developed for efficient transient finite element analysis [1,2]. Despite the recent radical devel-
opments of high performance computer hardware and computer aided engineering software, it is still difficult and challeng-
ing to efficiently calculate the responses of complex manifold structures such as automotive, ship, and complex acoustic
system as shown in Fig. 1 with fine incremental time (transient FE analysis) or fine incremental frequency interval (fre-
quency response analysis or FRA). For FRA, the issue in the computational time can be overcome efficiently and effectively
by applying the elaborated model order reduction (MOR) schemes such as Guyan reduction, the mode superposition method
(MS method), the Ritz vector method (RV method), the quasi-static Ritz vector method (QSRV method) and the multifre-
quency quasi-static Ritz vector method (MQSRV) method [3]. Compared with the number of the researches of the MOR
method for FRA, it is likely that there are few researches applying the MOR methods to transient FE analysis for the compu-
tational efficiency [4–7]. In [4], the concept of the reduction bases was proposed with Ritz vectors in transient FE analysis. In
[5], the load-dependent method and the mode-displacement method are proposed based on the superposition of eigenvec-
tors. For the efficient seismic analysis of elasto-plastic, a computational algorithm based on the pseudo-force method and the
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Fig. 1. Transient FE analysis for complex manifold structure.
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tangent spectrum method was proposed in [6]. In [7], the reduced order model with open-source software, MOR4ANSYS, was
used to calculate the transient response of MEMS devices. In [8], the quasi-static Ritz vector (QSRV) method was proposed
and by extending their ideas, a new MOR idea was developed and applied for frequency dependent acoustic analysis in [3,9].
In addition the developed MOR techniques also have been used for structural optimization (See [10–12] for more details) and
for the damage detection and health monitoring of large-scale structure (See [13] and references therein). Furthermore in
electrical engineering, there are many relevant researches applying the concept of the MOR method for efficient analysis
[14–23]. This research focuses on the new development of a novel MOR method named as the transient quasi-static Ritz vec-
tor (TQSRV) method whose bases are Krylov subspace bases and eigenvectors for efficient transient FE analysis. Thus this
research focuses the following subjects.

Research object 1: The development of the new reduction bases of the TQSRV method with Krylov subspaces and
eigenvectors.

Research object 2: The efficient transient FE analysis with the present TQSRV method including the contact condition.
The currently available MOR methods such as MS, RV, QSRV and MQSRV methods need more contributions from math-

ematicians and engineers for the application toward transient FE analysis [1]. Unlike FRA procedure requiring quite a lot
inversions of effective stiffness matrices, commonly implicit or explicit transient FE analysis for linear structure with a fixed
time step only requires one time effective stiffness matrix factorization [4,6,24]. Therefore compared with the existing solu-
tion procedures of FRA without any MOR method, it is generally possible to conduct transient FE analysis efficiently. How-
ever, with a manifold FE model having a lot of degrees of freedom, it also takes a lot of time to compute transient response
with implicit or explicit time marching procedure. Recently with the help of the advanced computer hardware, a multithread
parallelization process can be employed to reduce the computational burden involved with transient analysis or FRA with
vector addition, vector–vector multiplication, vector–matrix multiplication, and forward substitution and backward substi-
tution. On the other hands, in order to shorten the computational time involved at the time-marching procedure of transient
FE analysis, this research finds out that the concept of the MOR method developed mainly for FRA can be employed. As the
existing MOR schemes are not effective in transient FE analysis from accuracy and computation point of view, we develop a
new MOR method named as the TQSRV method as shown in Fig. 2. The conventional MOR schemes being developed for FRA
not for transient FE analysis, they are not necessary accurate enough to be applied from engineering point of view. Further-
more we consider its application for the contact finite element analysis.
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Fig. 2. The Ritz vector method and the multifrequency Ritz vector method for frequency response analysis and its application to the transient contact finite
element analysis.



Table 1
the standard procedure of Newmark scheme.

Set initial position, velocity and acceleration
Calculate and factorize the effective stiffness matrix KEff ðLU decompositionÞð Þ
for time step

tnþ1 ¼ tn þ Dt

Calculate the current effective force FEff
nþ1

� �
calculate the current displacements KEff X¼nþ1FEff

nþ1

� �
update the accelerations
update the velocities

end
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The present TQSRV scheme shares the basic concepts with the established MOR schemes that structural responses in time
domain can be spanned or approximated with ‘‘good’’ bases with a few unknown variables. As the other MOR schemes con-
cerns, it is an important subject to systematically calculate the ‘‘good’’ bases playing a critical role in expanding original
structural response accurately. In the present TQSRV method, the bases of the MQSRV method and the MS method are inte-
grated together; the Ritz bases of the MQSRV method are the pseudo static displacements calculated at multi-frequencies
and the bases of the MS method are some lowest eigenvectors of a FE model. By combining the bases of the two schemes,
we found that they can provide considerably much more accurate predictions for transient structural responses of complex
FE models than the common MOR methods.

The layout of the paper is composed as follows. First of all, the basic concepts of the some MOR schemes such as the RV
method, the QSRV method and the MQSRV method and the MS method are presented after the short descriptions of the tran-
sient FE formulation based on the Newmark scheme which is one of implicit FE schemes. After that the TQSRV method by
combing the bases of the MQSRV method and the MS method is presented. Using some analysis benchmark examples of two
and three dimensional structures, the efficiency and characteristics of the present TQSRV method are numerically studied
and compared. And the new application of the present TQSRV method for the transient FE analysis with the contact condition
is presented. Finally our findings and some topics for future research are summarized and discussed in the conclusion.

2. Transient FE analysis and MOR scheme

2.1. Transient FE analysis

Without loss of generality, the time varying response of a linear solid structure with time varying force Fis calculated by
the second Newton’s equation as follows:
M€Xþ C _Xþ KX ¼ F; ð1Þ
where M, C and K represent the mass matrix, the damping matrix and the stiffness matrix with appropriate boundary con-
ditions, respectively [5,22]. The time-varying displacements, velocities, and accelerations of a structure are denoted by X; _X,
and €X, respectively. Because the studying of geometrically or materially nonlinear structure is too involved a subject to be
considered for the MOR scheme, M, C and K are assumed to be independent on structural displacements and not to be chan-
ged with respect to time; the application for contact nonlinearity is developed later. For the sake of simplicity, the Rayleigh
damping is assumed with the damping coefficients ar and br in Eq. (2).
C ¼ arMþ brM: ð2Þ
To solve this second order differential Eq. (1), the Newmark scheme which is a single-step implicit time integration scheme
or a classical time-stepping algorithm popular in structural analysis is implemented [5,22]. In this Newmark scheme, the
current displacements and the velocities are approximated as follows:
tnþ1 ¼ tn þ Dt; ð3Þ

Xnþ1 ¼ Xn þ Dt _Xn þ Dt2 1
2
� b

� �
€Xn þ b€Xnþ1

� �
; ð4Þ

_Xnþ1 ¼ _Xn þ Dt ð1� cÞ€Xn þ c€Xnþ1

� �
; ð5Þ
where the structural displacements, the velocities and the acceleration at time tn are denoted by Xn; _Xn, and €Xn, respectively.
The time indication, tn, is used for the nth time step and the time increment is Dt (See [5,22] for more details). The param-
eters, b and c, control the characteristics of Newmark scheme such as the accuracy, the numerical stability, and the amount
of algorithm damping of Newmark scheme. Depending on the magnitudes of the variables, b and c, several algorithm



G.H. Yoon et al. / Applied Mathematical Modelling 39 (2015) 2740–2762 2743
variations such as the average acceleration, the linear acceleration, the Fox-Goodwin, and the Hilber–Hughes–Taylor method
can be possible. Substitution of (4) and (5) into (1) for Xn and _Xn provides the standard procedure of the Newmark algorithm
(Table 1).

In detail, the following equations are used for the stiffness matrix, the vectors and the corrector (update) procedures of
Table 1.
€X0 ¼M�1 F0 � KX0 � C½ � _X0

� �
; ð6Þ

KEff Xnþ1 ¼ FEff
nþ1; ð7Þ

KEff ¼ Kþ 1

b Dtð Þ2
Mþ c

b Dtð ÞC; ð8Þ

FEff
nþ1 ¼ Fnþ1 þM

1

b Dtð Þ2
Xn þ

1
b Dtð Þ

_Xn þ
1

2b
� 1

� �
_Xnþ1

( )
þ C

c
b Dtð ÞXn þ

c
b
� 1

� �
_Xn þ Dt

c
2b
� 1

� �
€Xn

� �
; ð9Þ

€Xnþ1 ¼
1

bDt2 Xnþ1 � Xnð Þ � 1
bDt

_Xn �
1

2b
� 1

� �
€Xn; ð10Þ

_Xnþ1 ¼ _Xn þ Dt 1� cð Þ€Xn þ cDt€Xnþ1 : Same as the Eq: ð5Þ; ð11Þ
where the effective stiffness matrix, the effective force at the (n + 1)th time step and the external force of the (n + 1)th time
step of Newmark scheme are denoted by KEff ; F

Eff
nþ1, and Fnþ1 ,respectively. The external force at the 0th time step is F0.

It is important to notice that unlike FRA, the Newmark procedure only requires one matrix inversion or the LU decom-
position of the dynamic stiffness matrix. In practice due to the memory shortage, it is common to use the LU decomposition
rather than to save the inverse matrix of the dynamic stiffness matrix. Therefore compared with FRA whose stiffness matri-
ces are dependent on exciting angular velocity, it is regarded that the structural response of a transient FE analysis can be
effectively calculated in transient FE analysis. Nevertheless if we are concerned about a FE model with a lot of DOFs, the time
marching procedure from (7)–(11) also takes a lot of time and the computation times becomes problematic.

2.2. Introduction of the MOR scheme

For accurate response calculations, the number of degrees of freedom of a computational model has been significantly
increased. Therefore we can easily image refined FE or FD meshes hard to be solved even by the most advanced and
state-of-the-art computational system within a moderate computation time. In FRA analysis, often these limitations are
overcome by the introduction of a MOR scheme reducing the size of assembled stiffness and mass matrices but not decreas-
ing the number of degrees of freedom [6–8,14,16,19–23,25–34]. So far many MOR schemes have been developed such as
Guyan reduction method [34], the MS method [1], the RV method, the QSRV method, the MQSRV method and Proper Orthog-
onal Decomposition method. Except the Guyan reduction scheme, the other MOR schemes are similar to each other. By
approximating the original structural response with the approximated response, WQ , the MOR methods reduce the size
of linear algebra system by transforming a large set of system equations into a small set of equation [3,10]. From a mathe-
matical point of view, the approximated response, XA, of the original response X can be defined as follows:
AX ¼ B; ð12Þ

X ffi XA ¼ WQ ; ð13Þ

W ¼ ½u1;u2; . . . ;und
�ðnd 6 nsÞ; ð14Þ
where A and B denote an arbitrary ns � nssystem matrix and a ns � 1 force vector that vary depending on a mechanical sys-
tem of interest; the number of degrees of freedom of a system is ns and the number of retained degrees of freedom is nd. In
(13), W is the frequency dependent basis vector of order nd and Q are the retained unknown variables for the basis ui. By pre-
multiplying WT into the original dynamic Eq. (12), the following reduced equation with the order nd is obtained:
WTAW
� 	|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nd�nd

Q|{z}
nd�1

¼ WTB|ffl{zffl}
nd�1

: ð15Þ
By solving the above reduced system with the order nd for Q , the approximate solution XA is recovered using Eq. (13). In most
MOR methods, to reduce the computation time, it is common to use a small number of bases (nd � nsÞ.



2744 G.H. Yoon et al. / Applied Mathematical Modelling 39 (2015) 2740–2762
2.2.1. The mode superposition method (MS method)
From an engineering and scientific point of view, one of the most popular reduction bases, W, of Eq. (14) may be the eigen-

vectors of an original dynamic system. In the MS method, several lowest eigenvectors are selected depending on frequency
domains of interest, called cutoff frequency (See [1,10] or any finite element book about dynamic analysis). One of the ben-
efits of this MS method is that the eigenvalues of a reduced system are exactly same as those of the original dynamic system.
Therefore, engineer or scientist can predict the accuracy of the reduced dynamic system by considering the number of eigen-
vectors and can easily increase the accuracy of the MS method in FRA by considering additional eigenvectors.

In the MS method, for the jth natural angular velocity xj and the associate jth eigenvectors uj (j ¼ 1; :::;ndÞ, the following
eigenvalue problem with a mass stiffness matrix, M, and a stiffness matrix, K, is solved.
uT
j K�x2

j M
h i

u¼j 0 ðj ¼ 1; . . . ; nd; nd 6 ns; RankðKÞ ¼ nsÞ; ð16Þ

x1 6 x2 . . .xnd�1 6 xnd
; ð17Þ
With the retained nd bases, the transformation matrix W can be defined as follows:
MSmethod : W ¼ ½u1;u2; . . . ;und
�; ð18Þ

WTMW ¼ Ind�nd
; ð19Þ

WTKW ¼

x2
1 � � � 0

..

. . .
.

0
0 0 x2

nd

2
664

3
775; ð20Þ

WTCW ¼ arInd�nd
þ br

x2
1 � � � 0

..

. . .
.

0
0 0 x2

nd

2
664

3
775: ð21Þ
By solving the simple algebraic Eq. (22), the structural response X for the excitation frequency x can be obtained. Note that it
is a response for FRA not for transient analysis and the transient response cannot be calculated analytically.
XðxÞ ffi XAðxÞ ¼
Xnd

e¼1

qeue ; qe ¼
uT

e Fx

x2
e �x2 þ ðar þ brx2

e Þx i
; ð22Þ
where Fx is the force vector at the excitation frequency. To denote the solution and the approximate solution in frequency
domain, XðxÞ and XAðxÞ are employed.

Although the MS method is very simple and robust for most engineering problems, the convergence is relatively slow due
to the requirement of many eigenmodes. When only some of eigenmodes are included and transient response is mainly rep-
resented by pseudo-static loading, this approach may fail to give an precise solution. This can be illustrated by assuming a
system with the solution in the form of the combination of a single particular frequency and a constant.
Xp ¼ A sinðxptÞ|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
Dynamic

Contribution

þ B|{z}
Static

Contribution

; ð23Þ
where arbitrary constants are A and B and the particular angular velocity contributing the dynamic response Xp is xp.
Although the first dynamic contribution of the above solution can be described by only one angular velocity, xp, the MS
method requires many eigenmodes to represent the static contribution because of the step response B. To overcome this
shortage, the mode acceleration method was proposed as a computational variation of the static correction method. The
basic formulation of the method is to include some additional terms as (24) in order to improve the approximated responses
for low frequencies.
X ffi XA ¼ WQ þ Xcorrect with _Xcorrect ¼ €Xcorrect ¼ 0; ð24Þ
where the correction term is denoted by Xcorrect . The correction term is given as
Xcorrect ¼ K�1 �
Xnd

j¼1

uju
T
j

x2
j

 !
F�1: ð25Þ
2.2.2. The quasi-static Ritz vector method (QSRV method: shifted Ritz vector method)
As an alternative of the MS method, the Ritz vector (RV) method and the quasi-static Ritz vector (QSRV) method have

been developed [16,22,34]. The QSRV method constructs its reduction bases W by considering the external force F, the mass
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matrix M, and the stiffness matrix K [8,10,33]. The order m Krylov subspace jm generated by an arbitrary matrix A and an
arbitrary vector B is the linear subspace as follows:
jmðA;BÞ ¼ spanfB;AB;A2B; . . . ;Am�1Bg: ð26Þ
For the practical computational implementation of the QSRV method with the Krylov subspace of (26), the bases are gener-
ated through the following procedures [8,10,33,35].
u�1 	 ðK�x2
c MÞ�1

F ðLU decompositionÞ; ð27Þ

u¼1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�T1 Mu�1
q u�1; ð28Þ

Krylov subspace : u�j 	 ðK�x2
c MÞ�1ðMuj�1Þ ðLU decompositionÞ; ð29Þ

Orthogonalization : u��j 	 u�j �
Xj�1

k¼1

ðuT
kMu�j Þuk; ð30Þ

Normalization : u¼j
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��Tj Mu��j
q u��j ; ð31Þ
where xc is the center angular velocity of interest. If xc is set to zero, the QSRV method becomes the RV method exactly.
Here it should be emphasized that the above procedures are formulated based on the mass orthogonalization and the mass
normalization process. We found that the following RV procedures from (32) to (36) are also possible without the mass ort-
honormalization process.
u�1 	 ðK�x2
c MÞ�1

F ðLU decompositionÞ; ð32Þ

u¼1
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�T1 u�1

q u�1 ðWithout the mass normalizationÞ; ð33Þ

u�j 	 ðK�x2
c MÞ�1ðMuj�1Þ ðLU decompositionÞ; ð34Þ

u��j 	 u�j �
Xj�1

k¼1

ðuT
ku
�
j Þuk ðWithout the mass orthogonalizationÞ; ð35Þ

Normalization : uj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��Tj u��j

q u��j ðWithout the mass normalizationÞ: ð36Þ
After building the bases of the QSRV method, the structural response X is approximated again.
X ffi XA ¼ WQ : ð37Þ
2.2.3. The multifrequency quasi-static Ritz vector method (MQSRV method)
Recently for the engineering application of Krylov subspace bases to frequency dependent acoustic system, the multifre-

quency quasi-static Ritz vector method was proposed [3,10]. It is a basic mathematical assumption of the Krylov subspace
method that mass and stiffness matrices remain constants in time or in frequency. With this assumption, the moment
matching theory can be applied for the power series of the response with respect to angular velocity. Often however there
are some mechanical systems whose mass matrix, stiffness matrix and force vector are frequency dependent and Krylov
subspace bases may not be applicable to these frequency dependent systems. For the MOR application of frequency depen-
dent systems, the combinations of Krylov subspace bases constructed at multiple center frequencies were proposed as
follows:
us;1 	 Kðxc;sÞ �x2
c;sMðxc;sÞ

� ��1
Fðxc;sÞ ð38Þ

us;j 	 Kðxc;sÞ �x2
c;sMðxc;sÞ

� ��1
ðMðxc;sÞus;j�1Þ ð39Þ

xc;s ¼
xs;start þxs;end

2

� �
; s ¼ 1; . . . ;nf ; j ¼ 1; . . . ;nd;s ð40Þ
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where the starting frequency, the ending frequency, and the center frequency of the sth frequency domain are denoted by
xs;start;xs;end, and xc;s, respectively and where the total number of considered frequency domains is nf. The number of bases
calculated for the sth frequency domain is denoted by nd;s. Although almost all the procedures are the same as those pro-
posed in [3,15,22,24], the stiffness and mass matrices and the force vector are made to be dependent on the angular speed.
The orthonormalization procedure is not applied due to the frequency-dependent mass matrix. Finally, using the above sim-
plified procedure, the following bases are constructed for the bases of the MQSRV method.
Q ¼ u1;1
���u1;nd;1|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

the 1st domain

;u1;2
���u1;nd;2|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

the 2nd domain

���u1;nf�1
���u1;nd;nf�1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

the nf�1 domain

u1;nf
���u1;nd;nf|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

the nf domain

2
664

3
775 ð41Þ
3. Transient quasi-static Ritz vector (TQSRV) method for linear structural analysis

This section is devoted to present a novel set of reduction bases of the TQSRV method for fast transient FE analysis of a
complex system. Although the explicit or the implicit solution method employs the LU decomposition or similar decompo-
sition methods to avoid repeating factorizations or inversions of effective dynamic stiffness matrices, the transient solution
procedure of complex system still takes a lot of computation time even with an advanced engineering software and hard-
ware [4,6–8,33]. Therefore it is our proposition that the MOR scheme can be applied to make the time marching procedure
faster.

3.1. The reduction basis for the TQSRV method

Based on our previous contributions and some trials, it is our proposal to combine the reduction bases of the MQSRV
method and the reduction bases of the MS method together for a transient FE system as follows:
Q ¼ u1;1 . . .und;1 ;1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Krylov subspace atthe 1st frequency domain

. . . u1;nf . . . und;nf ;nf|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Krylov subspace atthenffrequency domain

2
664

3
775 [ ½ueigen�modes� ð42Þ

nd;total ¼ nd;1 þ nd;2 � � �nd;nf�1 þ nd;nf þ number of eigenvectors ð43Þ
where the mass orthogonalized bases of the MQSRV method for the ith base at the sth center angular velocity are
denoted by ui;s. The number of bases at the sth center angular velocity is denoted by nd;s. Some eigenvectors orthogonal-
ized with the MQSRV bases are denoted by ueigen�modes. The reason of the above combined bases is that Krylov subspace
bases at multifrequencies are effective in a wide range of frequency domains and eigenvector bases are also appropriate
in approximating transient motion of structural part. Therefore it is our natural choice to combine these reduction bases
for a new MOR method for transient structural system even with the additional computation times for the bases
calculation.

Before calculating the bases of the present TQSRV method, at first, the effective way to select center frequencies of the
MQSRV method should be considered. The accuracy of an approximated transient solution in frequency domain is improved
near to the center frequencies of the present TQSRV method. In other words, the absolute differences between an approx-
imated transient solution of the present TQSRV method and a transient response without the MOR method in frequency
domain decrease near at the selected center frequencies. In addition to the selection issue of appropriate center frequencies,
the normalization and the orthogonalization of Krylov subspace bases and eigenvectors should be considered. To our
best knowledge, in the RV method, the QSRV method, and the MQSRV method, it is an option to apply the so-called
mass-orthogonalization process. As eigenvectors are included in the TQSRV method, it is vague whether it is necessary to
apply the mass-orthonormalization process or the mathematical orthonormalization process. From some numerical tests,
it can be concluded that the mass-orthonormalization is not essential with the eigenvectors and the Krylov subspace bases.
This feature will be demonstrated in the numerical section. Finally the following procedure can be developed for the base
generation of the TQSRV method.

For the first step, it is assumed that the center angular velocities and the number of bases at each center angular velocities
are determined by an engineer or a scientist for a mechanical system of interest. Then at the first center angular velocity
domain, the following bases which are same as those of the QSRV method are constructed with the mass orthonormalization
process. The first base u1;1 at the first center angular velocity, xc;1, is generated as follows:
u�1 	 ðK�x2
c;1MÞ�1

F; ð44Þ

u1;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u�T1 Mu�1

q u�1: ð45Þ
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Then the next bases are calculated by the following process.
u�j 	 ðK�x2
c;1MÞ�1ðMuj�1;1Þ ðj ¼ 2; � � � ;nd;1Þ; ð46Þ

u��j 	 u�j �
Xj�1

k¼1

uT
k;1Mu�j

� �
uk;1; ð47Þ

uj;1 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��Tj Mu��j

q u��j : ð48Þ
The auxiliary vectors before the mass orthogonalization (47) and before the mass normalization (48) are denoted by u�j and
u��j , respectively. For the remaining angular velocity domains, the mass orthogonalization and the normalization process
with the previous Krylov subspace bases are added to the base generation procedures of the QSRV method. The first base
at the sth center angular velocity domain (s > 1) is generated as follows:
u�1 	 ðK�x2
c;sMÞ

�1
F at the sth center angular velocityðxc;sÞ; ð49Þ

u��1 	 u�1 �
Xs�1

p¼1

Xnd;p

k¼1

uT
k;pMu�1

� �
uk;p Added orthogonalization procedure; ð50Þ

u1;s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��T1 Mu��1

q u��1 ; ð51Þ

fsjfrom 2 to nf for the center angular velocity domain indexg: ð52Þ
Note that the procedure (50) is the newly added orthogonalization process that makes the 1st auxiliary Krylov subspace
basis at the sth angular velocity domain orthogonal to the previous Krylov subspace bases of the first angular velocity
domain to the (s � 1)th angular velocity domain. After the above steps, the following bases at the sth angular velocity domain
are generated
u�j 	 K�x2
c;sM

� ��1
ðMuj�1;sÞ at the sth center angular velocity ðxc;sÞ; ð53Þ

u��j 	 u�j �
Xs�1

p¼1

Xnd;p

k¼1

uT
k;pMu�j

� �
uk;p Added orthogonalization procedure; ð54Þ

u���j 	 u��j �
Xj�1

k¼1

uT
k;sMu��j

� �
uk;s; ð55Þ

uj;s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u���Tj Mu���j

q u���j ; ð56Þ

fjj from 2 to nd;s for the j th base index at the sth center angular velocity domaing: ð57Þ
Table 2
The Newmark scheme with the present TQSRV method.

Calculate the reduction bases (UÞ
Calculate the reduced initial position, the reduced velocity and the reduced acceleration

Calculate the reduced effective stiffness matrix KMOR
Eff

� �
for time step

tnþ1 ¼ tn þ Dt

calculate the current force (FEff
nþ1Þ and the reduced force (FMOR

Eff Þ
calculate the reduced displacements (Q :

nþ1KMOR
Eff Q¼nþ1FMOR

Eff Þ
update the reduced accelerations ( €Q nþ1; €Xnþ1 ¼ U €Q nþ1Þ
update the reduced velocities ( _Q nþ1; _Xnþ1 ¼ U _Q nþ1Þ

end
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Once again note that the orthogonalization process of (54) is newly added in order to make the auxiliary base, u�j , orthogonal
to the generated bases at the previous angular velocity domains. And the orthogonalization process and the normalization of
the QSRV method of (55) and (56) are performed.

The above generated bases with the mass normalization and the mass orthogonalization processes are good enough to
approximate the original response of a finite element model. However, it is found that the inclusion of the bases of the
MS method additionally can increase the accuracy of the approximated solution.

Therefore, the following eigenvalue problem is solved for the nd;eig eigenvectors.
eigu
T
j K� eigx2

j M
h i

eiguj ¼ 0 ðj ¼ 1 . . . nd;eig ;nd;eig 6 nsÞ; ð58Þ
where the jth eigenvector and the jth eigen angular velocity are denoted by eiguj and eigxj, respectively. After that the fol-
lowing orthogonalization process and the normalization process are applied to the eigenvectors before combining to the cal-
culated bases of the MQSRV method.
u��j 	 eiguj �
Xnf

p¼1

Xnd;p

k¼1

ðuT
k;pMeigujÞuk;p Added orthogonalization procedure; ð59Þ

uj;s ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��Tj Mu��j
q u��j s ¼ nf þ 1; j ¼ 1; . . . ;nd;eig ð60Þ
After calculating the above bases of the TQSRV method, the standard reduction process is applied for the Newmark process.

3.2. The Newmark procedure with the TQSRV method

Similar to the application of the other MOR methods, the set of bases of the TQSRV method developed in the Section 3.1 is
multiplied before the governing equations but in the time domain (See Table 2). Because the sizes of the active stiffness
matrix and the force and the displacement vectors are reduced to nd;total of (61) that is much smaller than the size of the ori-
ginal mechanical system, ns, the time marching procedure of the Newmark scheme can be accelerated significantly.
nd;total ¼
Xnf

k¼1

nd;k þ nd;eig ; ð61Þ

KMOR
Eff|fflffl{zfflffl}

nd;total�nd;total

¼ UT|{z}
nd;total�n

KEff|{z}
n�n

U|{z}
n�nd;total

; FMOR
Eff|ffl{zffl}

nd;total�1

¼ UT|{z}
nd;total�n

FEff
nþ1|ffl{zffl}

n�1

ðnd;total << nsÞ; ð62Þ

KMOR
Eff Q nþ1 ¼ FMOR

Eff ð63Þ

€Q nþ1 ¼
1

bDt2 Q nþ1 � Q n

� 
� 1

bDt
_Q n þ

1
2
� b

� �
€Q n

� �
; €Xnþ1 ¼ U €Q nþ1; ð64Þ
(a)

o

cF

pen

conta

k

ning
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Fig. 3. The stiffness nonlinear spring model for contact. (gap: g, the spring constant: k and the contact spring constant: ks).



Table 3
The Newmark scheme considering the contact phenomenon.

Set initial position, velocity and acceleration
Calculate the effective stiffness matrix (KEff Þ
for time step

tnþ1 ¼ tn þ Dt

calculate the current displacements XTemp
nþ1 : KEff XTemp

nþ1 ¼ FEff
nþ1

� �
while contact

calculate the contact force FContact
nþ1

� �
calculate the current displacements XTemp

nþ1 : KEff XTemp
nþ1 ¼ FEff

nþ1 þ FContact
nþ1

� �
end
set the temporary displacements

to the current displacements X¼nþ1XTemp
nþ1

� �
update the accelerations
update the velocities

end

Table 4
The Newmark scheme considering the contact with the present TQSRV method.

Calculate the reduction bases (UÞ
Calculate the reduced initial position, the reduced velocity and the reduced acceleration

Calculate the reduced effective stiffness matrix KMOR
Eff

� �
for time step

tnþ1 ¼ tn þ Dt

calculate the force FEff
nþ1

� �
and the reduced force FMOR

Eff

� �
calculate the reduced auxiliary displacements Q Temp

nþ1 : KMOR
Eff XTemp

nþ1 ¼ FMOR
Eff

� �
while contact

calculate the contact force FContact
nþ1

� �
and the reduced contact force FContact;MOR

nþ1

� �
calculate the current displacements Q Temp

nþ1 : KMOR
Eff XTemp

nþ1 ¼ FMOR
Eff þ FContact;MOR

nþ1

� �
end

set the auxiliary displacements to the current reduced displacements Q¼nþ1Q Temp
nþ1

� �
update the reduced accelerations €Q nþ1

� �
update the reduced velocities _Q nþ1

� �
end

Fig
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_Q nþ1 ¼ _Q n þ Dt 1� cð Þ €Q n þ cDt €Q nþ1; _Xnþ1 ¼ U _Q nþ1; ð65Þ
Xnþ1 ¼ uQ nþ1;
_Xnþ1 ¼ U _Q nþ1; €Xnþ1 ¼ U €Q nþ1: ð66Þ
Not that rather than the backward and the forward substitutions of the LU decomposition of the effective stiffness matrix or
a direct matrix inversion, the inversion of a small size matrix, KMOR

Eff , is formulated and the displacement, the velocity and the
acceleration updates are also performed in the reduced space in (65). The recoveries of (66) in the real space are performed
after the reduced Newmark scheme only if necessary. Therefore although a large finite element model is considered, the
above Newmark scheme based on the TQSRV method can make the time marching procedure faster significantly.
(a)                                                     (b) 

1 m

0.1 m
3200 GPa, =0.33, =7890 Kg/mE ν ρ=

Measure point
(X displacement )

0.01

1000
tΔ =

2 tΔ0 tΔ 3 tΔ 4 tΔ 0.01

F

F

. 4. A beam structure with a shock wave. (a) An analysis definition (discretized by 120 � 3 QUAD elements) and (b) a force history in time.
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Fig. 5. Analysis results with the present TQSRV method without the eigenvectors. (a) The TQSRV method with the mass orthogonalization (Full Newmark
analysis: 3.8704 s, TQSRV analysis: 0.6872 s (0.3659 s for bases generation, speedup = 5.6321), center frequencies [0:2000:200000] rad/s, number of bases:
101, 0 eigenvector, nd;s=1, (b) (TQSRV analysis: 0.6866 s (0.3587 s for bases generation, speedup = 5.6371) and, center frequencies [0:2000:200000] rad/s,
number of bases:101, 0 eigenvector, nd;s = 1).
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3.3. The extension for a transient finite element procedure with contact condition

As an extension of the above TQSRV method, it is possible to consider the transient analysis of a mechanical system with
contact condition [34]. In the contact analysis, the contact location among structural parts and the magnitude of contact
force should be determined that is a very complex task in the FE procedure [1,2]. Because the implementation of all the com-
plex contact algorithms is out of the scope of the paper, the simple nonlinear spring approach of Fig. 3 is implemented as
Table 3.
KEff Xnþ1 ¼ FEff
nþ1 þ FContact

nþ1 ð67Þ
Now the above procedure (Table 3) can be accelerated by the present TQSRV method as Table 4. Unlike the procedure of
Table 3, the updates of (67) are performed for every time step in order to check the contact condition in Table 4.

4. Numerical examples

To verify the accuracy and numerical characteristics of the present TQSRV method compared with the existing MOR
methods, this section contains several illustrative mechanical examples implemented in the MATLAB environment.

4.1. Example 1: 2D structure with impact

For the first numerical example, a simple beam structure with a shock wave in Fig. 4 is considered. The analysis domain
1 m by 0.1 m is discretized by 120 by 3 QUAD finite elements. Young’s modulus, Poisson’s ratio and mass density are set to
200 GPa, 0.33 and 7890 kg/m3, respectively. For a measurement, the x-displacement at the top right node is recorded for the
impulse force at 3 Dt .
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Fig. 6. Analysis results with the present TQSRV method with the eigenvectors. (a) The TQSRV method with the mass orthogonalization (Full analysis:
3.8704 s, TQSRV analysis: 0.7739 s (0.3995 s for bases generation) and, center frequencies [0:2000:200000] rad/s, number of bases:101 + 6, 0 eigenvector,
nd;s = 1), (b) the TQSRV method without the mass orthogonalization (TQSRV analysis: 0.9002 s (0.3800 s for bases generation) and, center frequencies
[0:2000:200000] rad/s, number of bases:101 + 6, 0 eigenvector, nd;s = 1).
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In Fig. 5, the present TQSRV method without the eigenvectors are tested with and without the mass orthogonalization
from 0 s to 0.01 s with 10�5 s interval. For the TQSRV method, the equal sampled center frequencies from 0 rad/s to
200000 rad/s with 2000 rad/s interval are used and only one basis is generated at each center frequency; the total number
of the bases is 101 and they can be regarded as the multifrequency quasi-static Ritz vectors. Mathematically one Krylov sub-
space basis at a specific center frequency only can accurately represent a constant response but as observed in [3] but the
Krylov subspace bases of the other center frequencies also become the acceptable bases for the specific center frequency.
0 20 40 60 80 100 120
0

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2 x 10
-5

Number of center frequency

L2
 n

or
m

 re
sp

on
se

 e
rro

r

WO eigenmode
W eigenmode

Fig. 7. Test of center frequency domains (Center frequency: [0 2000] rad/s, [0 2000:2000:2000 � 5] rad/s, [0 2000:2000:2000 � 10] rad/s, [0
2000:2000:2000 �5 0] rad/s, [0 2000:2000:2000 � 100] rad/s).



0 0.5 1 1.5 2 2.5
x 10

4

0

20

40

60

80

100

120

140

160

Number of degrees of freedom
C

om
pu

ta
tio

n 
tim

e 
(s

)

WOMOR
TQSRV
Basis generation

Fig. 8. Speedup test with various meshes without the eigenmode.

2752 G.H. Yoon et al. / Applied Mathematical Modelling 39 (2015) 2740–2762
Without the TQSRV method referred as the full Newmark analysis, it takes 3.8704 s where the present TQSRV method
takes 0.6872 s (0.3659 s for the basis generation and 0.3213 s for the reduced Newmark scheme) with the mass orthogonal-
ization and 0.6866 s without the mass orthogonalization (0.3587 s for the basis generation and 0.3279 s for the Newmark
scheme). As illustrated, the almost identical solutions can be obtained over 5 speedup.

On the other hands, the same FE analysis with the additional lowest six eigenvectors is tested in Fig. 6 with and without
the mass orthogonalization. It takes a longer time to calculate the eigenvectors compared with the computational time in
Fig. 5 but it is observed that it improves the accuracy of the TQSRV method. This also implies that the combined bases of
the Krylov subspace bases, the eigenvectors or some other bases if exist require the proper orthogonalization process for
the efficient transient FE analysis.

Fig. 7 shows the effect of the number of center frequencies on the accuracy of the present TQSRV method; the L2 norm
errors between the responses of the full Newmark analysis and the TQSRV method are calculated by increasing the center
frequencies. As expected, by increasing the number of center frequencies, the higher vibration components of the structural
displacements can be represented and naturally the prediction accuracy of the TQSRV method is improved. Furthermore the
consideration of the eigenvectors increases the accuracy of the present TQSRV method too especially with the bases at the
lower center frequencies.

To test the improvement of the speedup with respect to the size of degrees of freedom, Fig. 8(a) shows the speedup of the
present TQSRV method by increasing the number of degrees of freedom. As expected, the more complex the model is, the
faster the TQSRV method can solve.

In Fig. 9, the same problem is solved by the MS method. As reported in other relevant researches, the MS method shows
the slow convergence because it requires many eigenmodes. In this example, even the 3340 eigenmodes are not sufficient
when the rank of the system is 3360. With the 3360 eigenmodes, the original transient responses can be obtained but the
time required is 1847 s when 17.4945 s is required with the full analysis.
4.2. Example 2: transient FE analysis for von Mises stress of a beam

For the second numerical example, the transient FE analysis of a beam structure with a constant force (100 lb) in Fig. 10 is
considered [2]. The analysis domain 20 in by 1 in is discretized by 40 QUAD FEs. Young’s modulus, Poisson’s ratio and mass
density are set to 30 MPsi, 0.33 and 7:4� 10�4 lb s2=in4, respectively. For a mechanical response, the von Mises stress values
at the 21th element are calculated with and without the TQSRV method.

Fig. 11 shows the stress values with the various time step conditions of the TQSRV method. Compared with the analytical
solution in [2], the undershoots and the overshoots appear in both the full Newmark scheme and the TQSRV method inev-
itably. In Fig. 11(a), with Dt ¼ 2:5� 10�6 s for the time incremental step, the full Newmark scheme takes 0.0173 s where the
TQSRV method with 51 bases takes 0.1102 s. As the model is too simple, the TQSRV method takes a longer computation time
than the full Newmark scheme. In Fig. 11(b), with the same conditions of (a), simply the time increment is decreased to
Dt ¼ 2:5� 10�8 s. Thus the full Newmark scheme takes about 68 s where the TQSRV method takes 2 s resulting the speedup
over 29. In Fig. 11(c), the number of the TQSRV bases is reduced to 26 and the resulting speedup is over 54. This example
shows that the TQSRV method can calculate structural stress values as well as displacements and for a simple FE model,
the TQSRV method does not show its computational efficiency as the other MOR methods do.

In Fig. 12, the MS method is applied for the same problem. As shown as the bases of the MS method are the eigenvectors,
more than 160 bases should be used. As reported in other relevant researches, the MS method shows the slow convergence
because it requires many eigenmodes. Furthermore as the reduced effective matrices are full matrices, it takes much more time
in this problem.
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Fig. 9. The stress analysis results with the MS method. (a) the response with the 1000 eigenvalues, Dt ¼ 1:0� 10�5 s, full FE analysis: 17.4945 s, the MS
method: 128.4263 s, and (b) the response with the 3340 eigenvalues, Dt ¼ 1:0� 10�5 s, full FE analysis: 17.4945 s, the MS method: 1421.0102 s, (c) the
response with the 3360 eigenvalues, Dt ¼ 1:0� 10�5 s, full FE analysis: 17.4945 s, the MS method: 1847.4719 s.
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Fig. 10. Transient FE analysis for the von Mises stress for a constant force [2].
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Fig. 11. The stress analysis results with the present TQSRV method. (a) The response with center angular velocity: [0 10000:10000:500000] rad/s, the
number of bases: 51, Dt ¼ 2:5� 10�6 s, full FE analysis: 0.0173 s, the TQSRV method: 0.1102 s, Speedup: 0.1569, (b) the response with center angular
velocity: [0 10000:10000:500000] rad/s, the number of bases: 51, Dt ¼ 2:5� 10�8 s, Full analysis: 68.8576 s, the TQSRV method: 2.3556 s, Speedup:
29.2302, and (c) the response with center angular velocity: [0 20000:20000:500000] rad/s, the number of bases: 26, Dt ¼ 2:5� 10�8 s, Full analysis:
68.8576 s, the TQSRV method: 1.2632 s, Speedup: 54.5104).
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Fig. 12. The stress analysis results with the MS method. (a) The response with the 51 eigenvalues, Dt ¼ 2:5� 10�6 s, full FE analysis: 0.0173 s, the MS
method: 0.0926 s, (b) the response with the 100 eigenvalues, Dt ¼ 2:5� 10�6 s, full FE analysis: 0.0173 s, the MS method: 0.1687 s, (c) the response with the
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Fig. 14. The contact simulation between two rectangular plane stress boxes. (m1;m2 : E ¼ 200 GPa; m ¼ 0:3;q ¼ 7500 Kg=m3Þ.

Fig. 15. The collision simulations with the center frequency ½0 : 1000 : 10000� rad/s. A FE model with DOF: 1764, Time Step: 60000,
CFREfull ¼ 0:1539%;CFRETQSRV ¼ 0:3795%, Full: 23.46 s, TQSRV: 11.34 s, Speedup: 2.050.
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4.3. Example 3: Simple contact analysis

4.3.1. The calculation of the simplified contact spring ðkcÞ
To model the simplified contact model among elastic objects, the contact spring modeling is implemented [2]. In order to

derive the contact spring constant, we can consider the contact phenomenon between an elastic cylinder and an elastic half
space in Fig. 13.
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Then we can derive the simplified contact spring constant as follows:
FContact ¼ kcd; kc ¼ 2aE�: ð68Þ
What we should emphasize here is that the above is an approximated formulation to estimate the magnitude of the con-
tact spring.

4.3.2. The estimation of simplified initial velocity and momentum
To test the validity of the contact model with the above contact spring, we solve the transient analysis between the two

rectangular boxes in the following subsection. The right box is actuated by the external mechanical load in Fig. 14
for 3� 10�4 seconds and the contact happens between the two boxes. After the contact, the right box moves toward the left
side.

To obtain the analytical solutions of the above system, we consider the conservation theories for momentum and energy.
m1V1 þm2V2 ¼ m1V 01 þm2V 02;
1
2

m1V2
1 þ

1
2

m2V2
2 ¼

1
2

m1V 021 þ
1
2

m2V 022 ; ð69Þ
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Fig. 17. The analysis results of the rib shell model with the present TQSRV method (the number of DOFs: 90294, 15018 shell elements).
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where the velocities before the contact are denoted by V1 and V2, and the velocities after the contact phenomenon are
denoted by V 01 and V 02, respectively. In case of the equivalent mass values, the velocity solution of the above equation can
be obtained as follows:
V1 ¼ 0;V 01 ¼ Vinitial and V2 ¼ Vinitial;V
0
2 ¼ 0: ð70Þ
The initial velocity just before the contact of the first mass is denoted by Vinitial . To calculate this initial velocity, the applied
external force in Fig. 14(b) can be considered in the following Newton’s equation.
m2Vinitial ¼ �
Z

contact
FContactdt; m2Vinitial ¼

Z
F dt ¼ a � FDt;

Z
contact

FContactdt ¼ �aFDt; ð71Þ



Fig. 18. A transient analysis of an un-tuned automotive FE model (Chevrolet C2500 Pickup). (a) A procedure for the extraction of the stiffness and mass
matrices, (b) an employed FE model and (c) the force and boundary conditions.

G.H. Yoon et al. / Applied Mathematical Modelling 39 (2015) 2740–2762 2759
where the contact force between the two boxes is FContact . The time integration during the contact is defined byR
contact FContactdt. Note by the usage of the integration of the above theoretical contact force, the contact force relative error

(CFRE) between the theoretical contact force and the computed contact force can be defined as follows:
CFRE ¼

R
contact FContactdt �

R
contact FFEM

Contactdt
��� ���R

contact FContactdt
�� �� � 100 ¼

�aFDt þ
P

FFEM
ContactDt

��� ���
�aFDtj j � 100; ð72Þ
where the computed contact force in finite element analysis is defined by FFEM
Contact .

4.3.3. The simulation with the present TQSRV method
The transient collision simulation of the two rectangular boxes is performed by the present TQSRV method in Fig. 15. The

magnitudes of the contact force calculated between the two boxes are recorded with the full analysis and the TQSRV method
analysis. As illustrated in Fig. 15, the good agreement is obtained between the two analysis methods. The FE model being too
simplified, a higher speedup cannot be achievable. Furthermore the computed contact force errors are compared; the area by
the envelop of the contact force with respect to time combined with the contact spring constant should be matched with the
momentum. The contact force relative errors of the full analysis (CFREfullÞ and the TQSRV method (CFRETQSRV Þ are
CFREfull ¼ 0:1539% and CFRETQSRV ¼ 0:3795%, respectively. Fig. 15(a) shows the displacement histories for some particular
times.

4.4. Example 4: Rib FE model

For the next example, the transient FE analysis of the rib of an air plane in Fig. 16 is considered. This rib is modeled with
15018 shell elements and after applying the clamp boundary conditions, the number of the DOFs reduced to 90294. The stiff-
ness matrix and the mass matrix implemented in ANSYS are exported with the functionality of ANSYS to the MATLAB envi-
ronment. The y direction displacements at (0.0117 m, 0.0101 m, 0.008 m) are calculated and compared for the impact force
at 3Dt. Fig. 17 shows the responses at each time and the 1000 bases (1.11% to the total DOFs) and the 500 bases (0.55% to the
total DOFs) of the present TQSRV method are good enough to analyze the responses of this complex system with higher
speedups.
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So far, we conduct the numerical examples with the LU decomposition method with a single thread solver for the time
marching process. In this example, the direct inversions with the 12 threads, a parallel direct solver and the LU factorization
with a single thread of the effective stiffness matrix of the full Newmark scheme are tested together. As the backward sub-
stitution and the forward substitution are performed in a single thread, we found that the parallel direct inversions with the
12 threads can be effective over the LU decomposition with a single thread. The details are summarized in Fig. 16(c).

4.5. Example 5: automotive FE model

As a last numerical example, Fig. 18 shows an automotive FE model whose material properties and responses are not ver-
ified but just prepared for an illustration purpose (See Fig. 18(a) for the overall procedure). The number of the total degrees of
freedom after applying the boundary condition in Fig. 18(c) is 783,960. An impact force is applied to a node at the bumper
and the norms of the displacements of the full analysis and the TQSRV method for 0.1 s with 2 ls intervals (50,000 points in
time domain) are compared in Fig. 19. For the numerical simulation without the TQSRV method, only the parallel solver is
only tried because the single thread solver will takes approximately more than 1230 Hours or 50 days by postulating from
the analysis results of the example 4. As shown by applying the present TQSRV method only with 233 bases (approximately
0.0297 % to the original DOFs (783960)), it is possible to solve the system with more than 40 speedup. As stated before, it is
crucial to choose proper center frequencies for the Ritz vectors. To choose some center frequencies for this automotive
model, we calculate 50 natural frequencies and eigenmodes which are also used in the calculation of the bases of the TQSRV
method and we observe that the first natural frequency is about 100 Hz and the 50th natural frequency is about 1195 Hz.
Thus we simply calculate the Ritz vector bases from 0 rad/s (static displacement) to 15000 rad/s (approximately 2387 Hz)
with 250 rad/s intervals. Only one base is calculated per a center frequency. To show the robustness of the TQSRV method
and partially due to the computational time limitation, this crude approach for the center frequencies and the number of
bases at each center frequency is tried here. With a refined time step or a wide time span, a much more higher speedup also
can be possible. Fig. 19 shows the transient responses and the accurate approximation can be achieved (the norm of the total
displacements).
5. Conclusions

The efficient calculation of vibration responses by means of a transient FE procedure is very important in mechanical
engineering. By applying a MOR scheme, the active degrees of freedom of complex FE model can be reduced. Although some
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existing MOR methods have been developed and applied for frequency response analysis, they are neither very accurate nor
effective in transient FE analysis. In order to develop an accurate and effective MOR method for transient FE procedure, this
research presents a new MOR method called the transient quasi-static Ritz vector (TQSRV) method whose bases constructed
by combining the bases of the MQSRV method and the MS method with and without the mass orthonormalization process.

By solving some benchmark problems and investigating the accuracy and efficiency of the existing RV, QSRV, and MQSRV
methods, it can be concluded that the combination of Krylov subspace bases calculated at multiple center frequencies and
some eigenvectors of a mechanical system can be very effective for transient FE analysis. It is our conclusion that the tran-
sient deformations of a mechanical system due to external dynamic forces with certain frequencies are well described by
Krylov subspace bases at the frequencies of external forces. With a shock wave or combined shock, a mechanical system will
vibrate in a wide range of frequencies and Krylov subspace bases at wide range frequencies effectively expand its responses.
Furthermore, as the vibrating shapes and its dynamic energy spectrum of several lower eigenvectors are dominating from an
energy point of view, it was our proposition that the consideration of several lower eigenvectors as well as Krylov subspace
bases will be efficient in transient FE analysis. And we observed that the mass orthonormalization process is not essential
with the Krylov subspace bases and the eigenvectors of the TQSRV method.

In conclusion, the present TQSRV scheme achieves a significant gain in computational efficiency. With several transient
analysis examples, it is found that higher speed-ups can be achieved with the established TQSRV method. One of the remain-
ing issues of the present TQSRV method is establishing robust and systematic approaches for center frequencies and deter-
mining the optimal number of Krylov subspace bases associated with center frequencies. We suggest using evenly
distributed center frequencies and increasing the number of Krylov subspace bases incrementally while monitoring the
accuracy of solutions. For future research topic, the application of the TQSRV method for nonlinear dynamic mechanics
should be studied. In the TQSRV method, it is assumed that the dynamic stiffness matrix is not altered during a transient
simulation and a fixed time step. By considering the structural nonlinearity and the varying time step condition, this basic
assumption is violated and it is vague how to apply the concept of the model order reduction for an efficient transient
analysis.
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