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A topology optimization (TO) procedure is developed to design optimal layouts for piezoelectric energy
harvesting devices (EHDs) by considering the effect of static and harmonic dynamic mechanical loads. To
determine the optimal material distributions of a piezoelectric material considering the harmonic
dynamic coupling effects between the electric energy and a structure for efficient EHDs, harmonic
dynamic responses and the complex sensitivity analyses for various objectives related to the energy effi-
ciency are calculated and derived. For the relaxation method of the density design variable for TO, mate-
rial properties such as the anisotropic linear elasticity coefficients, piezoelectric coefficients, and
permittivity coefficients are independently interpolated through the solid isotropic material with penal-
ization (SIMP) approach with three penalization values. Through several numerical tests for various con-
figurations of piezoelectric materials, it is found that depending on the choice of penalization value,
complex behaviors of energies are possible and these in turn lead to a serious local optima issue in TO.
Through several three-dimensional design problems, the validity and usefulness of the developed optimi-
zation procedure for efficient EHDs are demonstrated.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This study develops a finite element procedure for topology
optimization (TO) scheme for the optimal design of piezoelectric
energy harvesting devices (EHDs) by considering the static and
harmonic dynamic responses of piezoelectric EHDs; among many
energy harvesting sources such as ambient-radiation, biomechani-
cal energy, photovoltatic, pyroelectric energy, and magnetostatic,
we only consider the piezoelectric energy harvesting devices. Over
the last few decades, the design of eco-friendly and optimal energy
or power harvesting devices that generate electric energy from
otherwise untapped and inexhaustible sources such as sunlight,
wind, vibrating machines, and acoustic pressure has gained consid-
erable importance [1,2,4-11]. As commonly simple geometries
such as circle, triangular and rectangular shape structures have
been used, much improvement can be done by topological optimi-
zation [4-11]. This paper presents a TO scheme for the design of
efficient piezoelectric EHDs [12]. TO could be advantageous in an
electro-mechanical coupling system because it can provide opti-
mal topologies for piezoelectric EHDs by minimizing or maximiz-
ing a given objective function subject to some engineering
constraints [4-11,13-16].
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Piezoelectric materials have attracted considerable academic
and industrial interest because their piezoelectricity and reverse
piezoelectricity can be easily exploited to manufacture mechanical
actuators and sensors. Piezoelectric materials exhibit such proper-
ties because of the change in the polarization direction within the
material volume, as illustrated by the Heckmann diagram in Fig. 1
[1,2]. Furthermore, various methods have been developed for man-
ufacturing electromechanical coupling systems that can be applied
to efficient EHDs or active compliant actuators. Zheng et al. [3]
optimized the layouts of EHDs by considering the static load. Rupp
et al. [5] studied a dynamic piezoelectric EHD for plate structures.
Dono et al. [9,10] studies the piezoelectric bimorph shell actuators
for static and dynamic load. Silva and Kikuchi [6], Silva et al. [7,8],
Canfield and Frecker [15], Carbonari et al. [18], Silva et al. [19], Car-
bonari et al. [17], and Kim et al. [20] studied optimal topologies for
compliant mechanisms and sensors realized using piezoelectric
materials. Kang and Tong [14] studied the optimal design of an
electrode using TO. Recently, Luo et al. [21] and Chen et al. [22]
studied levelset-based TO for piezoelectric materials. To the best
of our knowledge, among all the recent studies mentioned above,
only Rupp et al. considered the dynamic load effect (see [5] and ref-
erences therein). Here, it is noteworthy that the electric energy
generated by a static mechanical load with a closed circuit is re-
leased rapidly. For a continuous EHD, an oscillating mechanical
force should be applied. Therefore, as an extension of the
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Fig. 1. (a) Piezoelectric phenomenon, (b) Heckmann diagram [2], and (c) typical piezoelectric energy harvesting devices (EHDs). (The double arrows are used to represent the

poling direction throughout this paper.)

abovementioned studies, this study focuses on the application of
TO to optimal EHDs by developing an in-house FE code that consid-
ers static and dynamic loads. It is possible to adopt the commercial
CAE software such as Nastran or ANSYS for analysis. Nevertheless,
because the internal information of FEM such as element stiffness
matrix, strain—-displacement matrix is necessary for the efficient
sensitivity analysis, it was better to develop an in-house FE code
in this research.

This study considers the effect of static and the effect of har-
monic dynamic loads (hereafter, the dynamic piezoelectric effect)
on TO for the optimal design of an EHD based on the solid isotropic

material with penalization (SIMP) approach; to our best knowl-
edge, commonly the static or the harmonic dynamic loads are ap-
plied to an EHD and some EHD devices for wind movement, human
movement or shock that are not harmonic dynamic loads can be
engineered in consideration of frequency response model. For an
example of harmonic dynamic loads, we can list the fluid force
from wave, the vibration energy from an engine or similar struc-
tures. To the best of our knowledge, few studies on TO have consid-
ered dynamic piezoelectric effects [5-8]. Most studies have
considered the static TO problem by interpolating the stiffness
matrix (and not Young’s modulus), piezoelectricity matrix, and
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permittivity matrix of each PZT element with respect to an element
density design variable. As mentioned in the previous paragraph,
for a continuous electric EHD, an oscillating mechanical force
should be applied to compensate the released electric energy. In-
deed, this paper focuses on the development of a topology optimi-
zation method for maximizing the energy harvesting efficiency by
harmonic dynamic loads. Toward this end, various aspects of a pie-
zoelectric material and the optimization formulations of energies
with complex responses are studied.

The remainder of this paper is organized as follows. Section 2
introduces the theory and FE formulation of piezoelectric materials.
Sections 3 and 4 present several optimization formulations to im-
prove the efficiencies of EHDs, optimization results, and some phys-
ical interpretations of the obtained designs, along with the effect of
the penalization values on the optimized results. Finally, Section 5
summarizes the findings and discusses possible future works.

2. Finite element formulation for piezoelectric material
2.1. Static FE formulation

The performance and efficiency of an EHD for general mechan-
ical and electric boundary configurations can be easily and accu-
rately analyzed by an FE procedure. To simplify the computation,
the piezoelectric material is assumed to have linear material prop-
erties. Then, the electromechanical coupling phenomena between
mechanical and electrical domains are formulated as follows [1,2]:

T = cES — eE (1)

D =e'S + &5E 2)

where the mechanical stress and strain are denoted by T and S,
respectively. The so-called electric displacement and electric field
are denoted by D and E, respectively. For FE simulations of the pie-
zoelectric material, the linear stiffness matrix ¢ (also called the
stiffness tensor), piezoelectric matrix e, and permittivity matrix &°
are used. Unless stated otherwise, we only use a PZT-4 material
polarized along the Y-direction in Cartesian coordinates for all the
analyses and numerical examples reported herein (see Section 4
for more details).

Without loss of generality, the FE procedure with the standard
linear 8-node brick element is developed with the displacements
(u) and potential (@) as the primary (unknown) FE variables. The
resulting FE equations of the eth PZT element can be written as fol-
lows [23-27]:

5 e
€ € e

Kou —Kopp | LO° Q

where the mechanical loads and electric charges of the eth element
are denoted by F°® and Q° respectively. The mechanical displace-
ments and potentials of the eth element having the element domain
Q. are denoted by u® and @°, respectively. The structural stiffness
matrix, piezoelectric matrix, and electric matrix of the eth element
are denoted by Ky, Ki,(K7,), and K¢, respectively, and these FE
matrices are formulated as

K, = A B,c*B.dv, K, = /Q BleB,dv

4)
e T T e T .S

Kou _/Q B,e'B.dv, K, _/Q B,&’B,dv

where the strain-displacement transformation matrix for u® and

the electric field-potential transformation matrix for @° are de-

noted by B, and By, respectively. For an EHD system, the sets of lin-

ear equations can be assembled as follows [23-27]:

e -]
Kou —Kpp]lo Q,

NE NE
Ko = Koy Kup =) K,

e=1 e=1

NE NE
Kpu = > Koo Kpp =D K,
e=1 e=1

where the total number of PZT elements is NE. The global stiffness
matrices are Kyu, Kup(Kypu), and K,,, and the global vectors for
the structural displacements and potential are u and ¢, respec-
tively. To solve the above set of linear equations, appropriate
boundary conditions for the structural and electric displacements
are assumed to be enforced. For the non-homogeneous boundary
condition for electrodes, i.e., non-zero electric potential on some
sections of the boundary domains, the penalization formulation is
employed and it results in a non-symmetric stiffness matrix. This
non-symmetric stiffness matrix feature is considered when deriving
the sensitivity values of an objective function with respect to design
variables in the subsequent section (see Appendix A). Furthermore,
the equipotentiality in electric electrodes is also enforced by assign-
ing single degrees of freedom for the voltage within the electric
electrodes [28]. Mathematically, the following modified stiffness
matrices can be used:

¢ =My )

(6)

f(w = MEQKWMEQv f(utp = KupMeq, f(wu = MZQKQJU (8)

where the electric potential for the equipotentiality is ¢ and the
matrix Mg imposes this equipotentiality condition on ¢ (see
[23,28] for the detail implementation). The modified matrices have
tilt notations. The developed FE code is verified using commercially
available ANSYS software.

2.2. Harmonic dynamic FE formulation and circuit model

To describe the motion of the piezoelectric material by means of
a set of independent generalized coordinates, the Lagrange equa-
tion of motion can be applied by considering the mutual coupling
effects of the electric and mechanical systems. To formulate the
harmonic dynamic equation in the framework of FEM, the time-
harmonic response due to the time-harmonic excitation is calcu-
lated [26,27]. The coupled governing equations describing between
the time varying structural displacements (u,) and the time vary-
ing potential @, are given as follows:

o ollpl <l wlle) le] @

By assuming the time-harmonic response due to the time-har-
monic excitations[F,Q;] = [FQ]e'", the coupled governing equa-
tions in frequency domain are obtained as follows:

M 0 K K u F
2 . uu up _

Corlo ool il la) 0
NE M 0 Kuw K
M= e e _ HTH _ uu up
;muw m;, [zep wHydv, € “{o 0}+H{qu Kw}

(11)

the excitation angular speed is denoted by ® and the coefficients of
Rayleigh damping are o and . The mass matrix and the shape func-
tion of the eth element are m¢, and H,, respectively. The density of
the piezoelectric material is denoted by p.
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(a)

Fig. 2. FE models (a) without a resistor and (b) with a resistor [30].

Furthermore, the developed FE code can be used to simulate the
dynamic behavior of a piezoelectric system connected to an elec-
tric circuit [29,30]. For example, to simulate an EHD system con-
nected to a closed electric circuit (Fig. 2b), say, a typical electric
device such as a pump or motor, Eq. (9) can be modified to Eq.
(12). To focus on the design of the EHD, only a resistor having a po-
sitive real valued magnitude is simulated. However, a complex va-
lue enables the analysis of the dynamic response with a complex
electric circuit.

With NR resistors, the above Eq. (9) is reformulated as follows:

(e[ ol vee [ S l-a3zlol-Lo]
(12)

where the total number of resistors used is NR. For the sake of sim-

plicity, we denote the assembly of the resistors as the summation.

From the above equation, the following observations can be made.

1. A resistor with a positive valued magnitude acts as a nonlinear
damping.

2. Even without Rayleigh damping (structural damping), complex
equations can be solved with a resistor and the complex sensi-
tivity analysis can be derived for associated complex objective
functions such as the electric energy, strain energy, or conver-
sion factor (ratio of electric energy to total potential energy).

3. Material interpolation and topology optimization
3.1. Interpolation functions for topological optimization

One of the difficulties involved in TO is that an optimization
problem with a discrete design variable (zero or one) should be
solved to determine solid domains (solid) or non-solid domains
(void) [12,16]. To cope with this difficulty, we usually introduce
a continuous design variable to relax the optimization problem
with a discrete design variable into an optimization problem with
a continuous design variable varying from zero to one using simple
polynomial functions. For example, it is known that we can use a
polynomial function with a power of 3 or 4, which is known as
the solid isotropic material with penalization (SIMP) method, to
interpolate Young’s modulus with respect to the density design
variable for the compliance minimization problem [12,16]. To ap-
ply the SIMP-based interpolation function to a piezoelectric mate-
rial, the following interpolation formulation can be adopted
without loss of generality.

(’Ve)p1 Kfm (Ve)pz I(fl(p

1P P | OIS )

(b)

where the penalization values for the structural stiffness, piezoelec-
tric, and permittivity matrices are pi, p2, and ps, respectively. Note
that some combinations of different penalization values can be used
with the density design variable of the eth element (y.).

For the interpolation of the mass matrix, the following linear
interpolation function is employed [12,13].

VeMiy (14)

Numerical tests presented below suggest that the penalization
values employed in (13) and (14) strongly affect the design of
the optimal layout for the piezoelectric material. Although there
are other material interpolations such as RAMP, we confine our-
selves to the linear approach of (14) in order to show the effects
of the penalty parameters of (13) [12]. The following remarks can
be made.

Remark 1. Depending on the penalization values of py, p2, and ps,
very different layouts are obtained. This appears to be attributable
to the local optima issue as well as the different physical behavior
issue depending on the employed penalization values.

Remark 2. A higher penalization value occasionally does not guar-
antee an optimal layout with distinct solid-void design variables.
Different combinations among p1, p», and ps should be studied.

First, previous studies have not clearly described the effects of
these penalization values on a dynamic system. In this study, sev-
eral numerical tests were performed, the results of some of which
are presented in the subsequent sections, and very different de-
signs were obtained. Using some combinations of these penaliza-
tion parameters, some optimal layouts with many grey elements
and disconnected domain designs can be obtained even with a
higher penalization value such as 3 or 4. Furthermore, some com-
binations of penalization values that provide physically acceptable
layouts for some loading and boundary conditions do provide
unrealistic layouts with different loading and boundary conditions.
After investigating the optimal layouts with many combinations, it
is found that these interesting phenomena are attributable to the
different physical behaviors among the electric matrix, coupling
matrix, and structural matrix. Second, we know that at least in
the compliance minimization problem, higher penalizations to
Young’s modulus tend to lead to optimal layouts that clearly con-
verge to either solid or void. However, in this EHD system, several
combinations with higher penalization values occasionally do not
guarantee optimal layouts that clearly converge either to solid or
void. Additionally, the employed interpolation functions do not
interpolate physics; the design domains simulated by a lower
bound are non-structural domains and not domains for other phys-
ics [31].
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3.2. Objective function and sensitivity analysis

3.2.1. Energy conversion factor and electromechanical coupling
coefficient (EMCC)

Some previous studies on EHD have been based on the electro-
mechanical coupling coefficient (EMCC) or the conversion factor
(see [4,32,33] for more details). Although the details of their for-
mulations are different, it appears that the overall meanings are
the same at least for a static EHD system. Thus, only the energy
conversion factor is discussed herein.

[[(@) -]

ab ca

= [

ab

_ g (w)
- s() + He(w)

(15)

To evaluate the EMCC for a piezoelectric EHD and the effective-
ness of the energy conversion from mechanical energy to electric
energy and vice versa, an experiment based on a closed-loop qua-
si-static energy cycle, as shown in Fig. 3a, can be employed. For the
first stage, an external mechanical load is applied to a piezoelectric
material for the reverse piezoelectric effect in the open-circuit con-
dition (without external circuit) from (a) to (b) in Fig. 3a. From the
principle of energy conservation, the externally applied mechanical
energy is clearly converted to the internal mechanical and electric
energies stored in the piezoelectric material. By adding a resistor,
whose magnitude can be complex for an equivalent resistor con-
sisting of a resistor, inductor, and capacitor, the stored electric en-
ergy at state (b) is released. From state (c), the piezoelectric body
returns to the original configuration because of the stored elastic
energy from (c) to (a) without the external mechanical load. By
repeating these steps, otherwise untapped electric energy can be
harvested from the external load. Hence, the dissipated electric en-
ergy in the resistor clearly originates from the electric energy in
state (b). Furthermore, it should be emphasized that the quasi-sta-
tic energy cycle is assumed here. However, as stated in the previ-
ous section, to harvest electric energy continuously, a dynamic
load should be applied, as shown in Fig. 3b. Therefore, the internal
mechanical and electric energies used to calculate the energy con-
version factor should be dependent on an excitation angular veloc-
ity because of the consideration of the dynamic effect. To the best
of our knowledge, some studies have used this EMCC as an index or
objective in the structural optimization of piezoelectric EHDs [6].
However, because the present study considers a dynamic load
rather than a specific resonating mode, other formulations
presented in the subsequent sections are used by calculating these
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Fig. 4. Topology design optimization procedure.

dynamic energies directly (see Appendix A to see the effects of
structural resonances and electrical resonances and B to see the ef-
fects of the formation of piezoelectric material on EHDs).

With the developed finite element code and the sensitivity
analysis (Appendix C), the optimization procedure shown in
Fig. 4 is implemented with the method of moving asymptotes
(MMA) [34] for an optimization algorithm.

3.3. Analysis example with different penalization values

3.3.1. Influences of combinations of penalization values

To illustrate the effects of the penalization values in (13), the
one element problem with a point load is considered in Fig. 5a.
For the FE boundary condition, the 4 nodes of the side of the ele-
ment are clamped and a point load is applied at one of the nodes
located at the top side. To simulate the top and bottom electrodes,
the four degrees of freedom of the voltage of the top and bottom
layers are merged.

First, Fig. 5b shows the curves of the conversion factors with
several different combinations of the penalization values by vary-
ing the density design variable from O to 1. It is interesting to note

—VVVWV—

Fig. 3. (a) Closed-loop quasi-static energy cycle for a piezoelectric body to calculate EMCC and the conversion factor [33] and (b) concept of dynamic electromechanical

system.
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Fig. 5. Anillustrative example (mesh 1 x 1 x 1) (SE: static energy, EE: electric energy). (a) A model (a PZT-4 material polarized along the Y-direction in Cartesian coordinates),
(b) conversion factor curves with different penalization values, and (c) curves of energies.

that the curves of the conversion factor for the same penalization
values, i.e., [111] or [333] for py, p2, and ps become constant with
respect to the design variable, implying that the density design
variable does not affect the conversion factor; hereafter, the values
in the square bracket represent the respective employed penaliza-
tion values. Furthermore, with [311] and [11 3], identical curves
are obtained, as shown in Fig. 5b. To investigate these cases further,
Fig. 5¢ shows the electric and elastic energy curves with different
penalization values with the curve of [111] shown as a reference.
As shown, very different behaviors of the energies are observed. In-
deed, it can be postulated that different penalization values lead to
different physics interpolations and different topological layouts.

4. Synthesis of energy harvesting device

To validate the usefulness and performance of the developed
optimization theory, the layouts of three-dimensional EHDs are
optimized. We start with an optimization problem by considering
an energy conversion factor subject to a mass constraint for static
loads. Numerical tests with different penalization values suggest
that the optimization formulation using the energy conversion fac-
tor has some drawbacks on account of local optima and discon-
nected designs. To resolve these side-effects, we propose an
alternative formulation subject to a static compliance constraint.
Furthermore, we extend our consideration to dynamic loads. In
all the presented numerical examples, three-dimensional regular
meshes and the PZT-4 material formulated by (16)-(18) are used.
The geometry and boundary conditions are chosen so as to show
the potential application of the abovementioned theory to TO for
EHDs. In addition, the sensitivity filter with 1.5 times of the

element size radius is applied to the sensitivity values of an objec-
tive and constraints. For the stopping criterion, the maximum iter-
ation is set to 300 and the relative differences of the design
variables and the objective function values are considered. Also
the mesh independent sensitivity filter is employed [12]. As stated
in Section 2, the PZT-4 material is only considered for all the exam-
ples. The implemented matrices of the material properties of the
PZT-4 material can be rewritten as follows:

0 -5.2 0
0 15.1 0
0 -5.2 0 ) ] ) .
127 o o |€/m (polarized along the Y-direction)
0 0 12.7
0 0 0
(16)
(730 O 0
&=|0 635 0 |xé&y (6 : the permittivity of air)
L 0 0 730
(17)
r13.9 743 7.78 0 0 0
743 115 743 0 0 0
778 743 139 0 0 0
E— 10 2
“=10o o o0 25 o o |ONm (9
o o0 o0 0 256 0
0 0 0 0 0 306
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Note that matrices (16)-(18) are written for FE formulations for
Cartesian coordinates.

4.1. Example 1: Maximizing energy conversion factor for a static point
load

First, the optimal piezoelectric material distribution of a unim-
orph EHD for an end point load is considered in Fig. 6. In this exam-
ple, the entire PZT substrate is set to a design domain and the
upper and electrical ground bottom electrodes are modeled using
Eqgs. (7) and (8). In other words, to maximize the efficiency of this
unimorph EHD, we can distribute the piezoelectric materials with-
in the design domain. The design domain (2 cm x 4 cm x 0.2 cm) is
discretized by 1600 brick elements (8 nodes) and the design vari-
ables of the top and bottom layers are linked along the Y-direction
to prevent a complex manifold structure after optimization; the
basic parameters and the geometries in [4] are employed. The
objective of this first numerical example is to maximize the con-
version factor subject to the mass constraint where the usage of
the piezoelectric material is limited to up to 60% proposed in [4].

Max #

NED ‘19
s.t. Zyevegv* (19)

e=1

Piezoelectric material
(Design domain)

Fig. 6. Problem definition for topology optimization with a point load (V*: 60%).

A,

where NED is the number of FE elements in the design domain. The
volume constraint is denoted by V* and is set to 60% of the entire
design domain.

Using some combinations of penalization values (without a
continuous approach for penalizations), the optimal layouts
shown in Fig. 7 can be obtained with an evenly distributed initial
density satisfying the mass constraint. As an illustrative example,
the top views of the material distributions are plotted. Because
many possible combinations for the penalization values exist, sev-
eral different combinations of the penalization values [p1, pa2, ps]
are tested in Fig. 7. As shown in the figure, the various layouts
whose topologies differ considerably from each other can be ob-
tained depending on the employed penalization values. We can-
not treat these different layouts as the simple local optima issue
of TO, as discussed in Section 3.3. Furthermore, to show the effects
of the implicit penalties of the SIMP method, we intentionally use
a lower penalization, 1, for the penalization value of the compli-
ance matrix in some examples. From these obtained layouts, some
important observations can be made. First, in addition to the
intermediate design variable issue rendering the associated ele-
ments as gray, the disconnected regions, which are impossible
to manufacture and are physically unacceptable, are obtained by
maximizing the energy conversion factors with [111] and
[311]; the design with [333] is not a clearly disconnected design.
The investigation of figure (b) reveals that because the energy
conversion factor is defined as the ratio of the electric energy to
the summation of the electric and strain energies, we can often
obtain such disconnected designs having larger conversion fac-
tors. For examples, with the penalization combinations of [111],
[311], and [333], the static compliances are very high because
of the disconnected domains; however, the electric energies are
also high. Second, although this has not been presented, changing
the characteristics of the problem, such as the boundary condi-
tion, electrode condition, or penalization value combination (i.e.,
[131] or [113]), does not eliminate disconnected designs having
higher structural compliances. Furthermore, it is also recognized
that it becomes problematic to quantitatively measure and calcu-
late the energies by maximizing the energy conversion factor.

[T11] [311] [131] [113] [333]
(a)

[P1p2p3] [111] [311] [131] [113] [333]
(Physically not (Physically not (Physically not

acceptable) acceptable) acceptable)
Static strain energy (J) 109.5866 37.6405 9.5067 12.3808 1955.0496
Static electric energy (J) 12.4341 158.9877 0.6240 1.3268 463.8975

Conversion factor (%) 10.1901 80.8570 6.1594 9.6793 19.1776

(b)

Fig. 7. Optimization results with different penalization values.
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From the observations of these numerical tests and the highly
nonlinear curves of the objective function, it is likely that only a
fortune can resolve these local optima issue with disconnected
domains using the optimization formulation (19).

Furthermore, we compare the layouts that minimize the static
compliance with one of the above designs. As shown in Fig. 8, with
some combinations of penalization values, a layout similar to that
which minimizes the static compliance with small differences can
be obtained.

4.2. Example 2: Maximizing electric energy subject to static strain
energy for a static point load

As shown in the first numerical example, we experience some
side-effects of the optimization formulation when maximizing
the energy conversion factor. To prevent these side-effects and to
maximize the electric energy itself, we propose the following for-
mulation for TO of EHDs with static loads; the finite element
meshes and the employed material properties of the following
numerical examples (Examples 2-4) unless otherwise stated are
same as those of the first numerical example.

Max &= H (static electric energy)
E

NED
St Peve <V(V': 60%)
e=1

11=<II ( : The upper bound of the static strain energy)

S N S
(20)

where the strain energy of the considered system and the upper
bound of the static strain energy are denoted by []s and [T, respec-
tively. In this present formulation, we directly maximize the electric
energy and impose an additional constraint for the static strain en-
ergy because we want to maximize the stored electric energy. By
controlling the upper bound of the strain energy, we expect that
it is possible to control the compliance of the structure and with
an appropriate value of []; from an engineering viewpoint, it is ex-
pected that disconnected design regions can be eliminated. To ver-
ify this hypothesis, the penalization values of [131] and [311] are
tested using the optimization formulation (20) in Figs. 9 and 10.
With this optimization formulation, it is possible to obtain con-
nected domains with larger electric energies and larger conversion

Conversion factor: 5.4366%

(a)

Conversion factor: 6.1595%

(b)

Fig. 8. Comparison between (a) layout minimizing the mechanical compliance (strain energy: 9.2223 ], electric energy: 0.5302 J) and (b) layout maximizing the conversion

factor (strain energy: 9.5067 ], electric energy: 0.6204 ], penalization values: [131]).

IT;=107 I, =117 [ =127 [T, =137
Strain energy (J) 9.9590 Strain energy (J) 11.0092 Strain energy (J) 12.0077 Strain energy (J) 13.0060
Electric energy (J) 0.6653 Electric energy (J) 0.7638 Electric energy (J) 0.8084 Electric energy (J) 0.8539
Conversion factor (%) 6.2624 Conversion factor (%) 6.4882 Conversion factor (%) 6.3083 Conversion factor (%) 6.1612

Fig. 9. Optimization results with strain energy constraint using penalization values of [131].
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M, =121
Strain energy (J) 9.0609 Strain energy (J) 10.0017 Strain energy (J) 10.9932 Strain energy (J) 12.0214
Electric energy (J) 0.5589 Electric energy (J) 0.5935 Electric energy (J) 1.0080 Electric energy (J) 1.6577
Conversion factor (%) |5.8102 Conversion factor (%) 5.6019 Conversion factor (%) 8.3994 Conversion factor (%) 12.1186
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Fig. 10. Optimization results with strain energy constraint using penalization values of [311].

factors in Figs. 9 and 10. Note that with the lower upper bound
compliance, i.e., 10] with [131], it is possible to recover the design
shown in Figs. 7 and 9. It is recognized that the conversion factor of
the first design with [J¢ = 10] in Fig. 9 is larger as compared to that
of the design in Fig. 7. Furthermore, in our opinion, it is advanta-
geous that the compliance can be controlled and the electric energy
can be maximized independently.

Piezoelectric material
(Design domain)

Dynamic load(@)

Log (Electric energy) [J]

_60 1000 2000 3000 4000 5000 6000 7000
Frequency [Hz]

(a)

4.3. Example 3: Maximizing electric energy subject to static strain
energy for a dynamic point load

Thus far, we have considered the TO of EHDs for static loads that
is the main subject of the research paper [4,20]. As shown in the
previous numerical examples, we obtain the similar results and
the same conclusions. In addition, we showed the effects of the
employed penalization factors on the designs. Now, we extend
our consideration to dynamic loads. As stated before, it is impor-
tant to consider the effect of dynamic loads in designing EHDs to
continuously harvest electric energy. Therefore, in this example,
we consider an optimization problem with the same FE model as
the first example with a dynamic point load, as shown in Fig. 11,
with the penalization combination of [131].

Before an optimization considering the dynamic point load, the
frequency response curves of the electric energy from 0 Hz to
8000 Hz, as shown in Fig. 12a, and the conversion factor in (b)
are calculated and plotted. Two resonance peaks are observed be-
cause of the resonances of the system level. To test the effects of
excitation frequencies on the optimized layouts, the three excita-
tion frequencies before and after the first resonance frequency

Conversion factor [%]

'3071000 2000 3000 4000 5000 6000 7000

Frequency [Hz]

(b)

Fig. 12. Initial FRFs of the electric energy and conversion factor considering a dynamic point load (penalization values: [131]).
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are tested. First, by maximizing the dynamic conversion factors for
the three excitation frequencies, the layouts are obtained in Fig. 13.
As expected, topologically different and disconnected layouts can
be obtained. As experienced in the TO of dynamic structures, a lay-
out similar to that with a static load can be obtained for an excita-
tion frequency of 500 Hz. It provides a designguide line that if the
frequency ranges of external loads are less than the first eigenfre-
quencies of EHDs, it is possible to use the static analysis and opti-
mization methods [4]. However, with excitation frequencies of
1000 and 2000 Hz, disconnected domains, i.e.,, no material near
the excitation point, are obtained even with [13 1] because the de-
signs have higher dynamic energy conversion factors with higher

= | .
= 1

e} ! e
£ |

& |

= | 7
2 [

z ; 1
(3] I

>

g T
O i 1

! 0 1000 2000 3000 4000 5000 6000 7000

Frequency [Hz]
(a) 500 Hz

Conversion factor [%]
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strain energy values and higher electric energy values. It is also ob-
served that each design is optimized for its excitation frequency.

Max # (Dynamic energy conversion factor)
NED

21
St Pete <V (Vi 60%) D)
e=1

As observed in the previous numerical examples, the following
optimization formulation that maximizes the dynamic electric en-
ergy with the static strain energy constraint is also tested. We want

to emphasize that the static strain energy constraint is additionally
considered rather than the dynamic strain energy constraint.

0 IObO 2060 3060 406
Frequency [Hz]
(b) 1000 Hz

5000 6000 7000

Conversion factor [%]

|
lepx d
|

itial design

0 1000 2000 3000 4000 5000 6000 7000
Frequency [Hz]

(c) 2000 Hz

Fig. 13. Optimization results maximizing the energy conversion factor considering a dynamic load (penalization values: [131]).

Log (Electric energy) [J]
Log (Electric energy) [J]

P nitial design

6000

[ 3 P A

. -6
4000 8000 0

Frequency [Hz]
(a) 1000 Hz ([T :9.75J)

0 2000 2000

4000 6600
Frequency [Hz]
(b) 2000 Hz (IT; : 9.757)

Fig. 14. Optimization results with a static strain energy constraint.
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Various upper bounds of the static strain energy are experimen-
tally tested and the layouts with 9.75 | as the upper bound of the
static strain energy are presented. Because of the static strain en-
ergy constraint, as shown in Fig. 14, the connected domains max-
imizing the dynamic electric energy can be obtained for
excitation frequencies of 1000 and 2000 Hz. Although this has

Piezoelectric material
(Design domain)

VWV
)

Aluminum
(Non-design domain)

Dynamic pressure load()
Pressure = 100N/cm?

Fig. 15. Problem definition for topology optimization with a dynamic pressure load.

not been presented here, it was possible to consider higher excita-
tion frequencies and it was possible to consider a static strain en-
ergy constraint rather than a dynamic strain energy constraint.

Max &= H (Dynamic electric energy
E

NED

s.t. Zyeve %
e=1

<[I (1;[ : The upper bound of the static strain energy)

(22)

4.4. Example 4: Maximizing power subject to dynamic strain energy
for a dynamic pressure load

For the last numerical example, we consider the structure in
Fig. 15 having a similar domain to that in Example 3 using the opti-
mization formulation (23). To consider the dynamic pressure load
for an excitation frequency of 500 Hz, the aluminum plate is recon-
sidered. It is seen in Fig. 16 that the power graph of this structure
with a uniform initial density (i = 0.6) is almost similar to that in

2 1400
1200
= _ 1000
z 2 s
o
E l ED 600
05 <>D 400
200 ‘ ‘
0 0 2 ; : g 10
Resistance [Q] x 10’ Resistance [Q] x 10°

Fig. 16. Curves of the power and voltage considering the dynamic pressure load of 500 Hz (penalization values: [131]).

IEEH

5kQ 10kQ 50k 100kQ 200kQ
(a)
Frequency = 500 Hz
Resistance (£2) S5kQ 10kQ 50k€2 100k 200k
Dynamic strain energy (J) 0.0610 0.0610 0.0601 0.0601 0.0696
Dynamic electric energy (J) 0.0018 0.0018 0.0021 0.0027 0.0036
Power (W) 0.5980 1.1908 5.2383 7.9055 10.999

(b)

Fig. 17. Optimization results with different resistance values at 500 Hz (s = 0.06], penalization values: [131]).
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Example 5. From several numerical tests, the upper bound of the
static strain energy is set to 0.06 ]. The optimal layouts are pre-
sented in Fig. 17 and they differ because of the loading condition
and aluminum plate. Therefore, this example verifies the impor-
tance of the consideration of the dynamic power and the static
constraint in optimization.

Max® = Power

NED
StD PVe <V (V': 60%)
e=1

II<1I1 ( : The upper bound of the static strain energy)
N S S

(23)

5. Conclusions

A systematic design approach to improve the efficiencies of en-
ergy harvesting devices (EHDs) through topology optimization
(TO) for static and dynamic loads is studied and presented. This ap-
proach is based on three-dimensional FE models for dynamic pie-
zoelectric EHDs. For this purpose, an in-house FE code using
standard 8-node elements having the structural displacements
and potential as degrees of freedom is developed. The developed
FE code can also consider external circuits to simulate externally
isolated systems (passive electrical networks) such as a motor or
heater. By solving several optimization and analysis examples, this
research reconfirms that the piezoelectric based EHD cannot gen-
erate a DC voltage. In order to obtain continuous electric energy
from EHDs, continuous excitation forces should be applied. By
investigating the optimization results, it is observed that the vibra-
tion-powered EHDs provide the maximum voltage and power out-
puts when operated at resonances but it is not always guaranteed
due to ill-controllable random force frequency. In other words, the
frequency bands of excitation force should be considered when the
layouts of EHD and an electric circuit are designed. For EHDs for
excitation forces over a broad bandwidth, the optimized structures
at the excitation frequencies should be integrated. Depending on
the objective functions such as static and dynamic electric energies
and energy conversion factors, different optimized layouts can be
obtained. The study of the configuration of the piezoelectric and
non-piezoelectric materials reconfirms that the domain and
boundary configurations play an important role in the distribu-
tions of the extension and compression stresses within a piezoelec-
tric material. Thus, it is important to choose a proper configuration
of the piezoelectric material and substrate (non-piezoelectric
material) to prevent a short-circuit within the electrodes and pie-
zoelectric material before TO.

The versatility of the developed method is also demonstrated by
several illustrative analyses and optimization examples. The ob-
tained results reveal that depending on the penalization values of
SIMP used to interpolate the material properties, the behaviors of
the electric and elastic energies differ. Therefore, we suffer from
the local optima in TO and disconnected designs. To resolve these
issues, different optimization formulations with static or dynamic
compliance are studied and tested. For continuous EHDs, the effect
of dynamic loads on optimal layouts is also studied. As experienced
in the structural optimization, the inclusion of dynamic load leads
to different layouts. Depending on the kind of load and a configu-
ration of piezoelectric material and substrate with a circuit, differ-
ent layouts should be used. For dynamic load whose excitation
frequency is below the first peak of the object function such as
power, electric energy, and conversion factor, it is likely that static
results can be used. But dynamic loads with higher excitation fre-
quencies, the present approach should be considered. Furthermore,

with electric resistor or structural damping, the same layouts can
be obtained but the magnitudes of objective functions can be dif-
ferent. Obviously, the developed FE code and optimization formu-
lations can be applied to any other EHD for a different mechanical
loading condition, a different configuration of piezoelectric and
non-piezoelectric materials, and other piezoelectric materials such
as PVDF.

In future studies, we believe that it will be of interest to con-
sider multiphysics systems involving a fluid, electric energy, and
a structure together. For example, we can design a flow channel
made of a piezoelectric material to maximize the efficiency of
EHDs, including the design of the number of layers through TO. Be-
cause the sort-circuit within the PZT structure affects performance,
the type of layered PZT EHD should be optimized by topology opti-
mization (see Appendix B). In addition, it is possible to consider a
wide range of frequency ranges of interest for powering autono-
mous sensors and actuators from background random vibrations.
For this future research subject, it may be possible to adopt the
model order reduction scheme for efficient response calculations.
It is also possible to extend this study to consider the manufactu-
rability because of the material characteristics of piezoelectric
materials and to consider the pulsation load exciting broadband
frequencies.
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Appendix A. Relationship between structural resonances and
electrical resonances

From several numerical tests, it is found that there are strong
relationships between the resonances of the structural system
and those of the electric system. Not presented here in detail, it
can be observed that some of the structural resonance peaks

Pressure=1N/cm?

19 22 25
Electrode 10
1 1
y x R ;20%
! L
2 Fasl 2|1
' L 21| _bai | |27
\ ,»o@ 1 2 " 15, 18
2em  Electrode 31 [ 9

Log (Power) [W]

(c)

Fig. 18. A PZT plate with a resistor. (a) An FE model (1st : 19774 Hz, 2nd : 20951 Hz,
3rd :26273 Hz, 4th: 47956 HE' 5th: 54860 Hz, 6th:58812 Hz), (b) node number, and
(c) power curve (Power = 9%, R=1kQ).
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exactly match the eigenfrequencies. Furthermore, at electrodes,
because of a short-circuit at the electrode domains only some res-
onance peaks of the voltage are observed. Therefore, although we
maximize the electric energy at a certain frequency or in certain
frequency ranges, the output voltage may not be maximized be-
cause of the effect of electrodes, indicating that there is a need to
optimize the shape of the electrodes simultaneously. However, this
is beyond the scope of this study. The observations can be ex-
tended to the model having the same condition but with a resistor.
As noted in the previous section, the inclusion of the resistor im-
poses a nonlinear damping effect on the overall systems. One of
the important aspects is that it becomes possible to directly mea-
sure the harvested power from the model shown in Fig. 18a. Fig. 19
shows the frequency response of energies, voltages, and
displacements.

A comparison of the conversion factors of the two structures
(Figs. 18 and 19), as shown in Fig. 20a, reconfirms that the curves
of the conversion factors are highly nonlinear and will suffer from
the local optima in TO. Fig. 20b shows voltage curves with various
resistor values to show the nonlinear damping effect of the
resistor.

57
Appendix B. Layered PZT-based energy harvesting devices

To the best of our knowledge, several layered structures, re-
ferred to as unimorph (having a single piezoelectric layer for actu-
ation), bimorph (having two piezoelectric layers for actuation), and
multimorph (having more than two piezoelectric layers for actua-
tion) with and without substrates (non-piezoelectric) exist, as
shown in Fig. 21. The first structure consists of a single PZT struc-
ture whereas the second and third structures consist of both piezo-
electric materials and the substrate (non-piezoelectric material). In
the first unimorph structure without an elastic body, all mechani-
cal and electric loads are stored in the piezoelectric body; in con-
tract, mechanical energies are also distributed in the substrates
in the cases of the bimorph and multimorph structures. From the
viewpoint of energy, it appears that the first structure not sharing
electric energy with the substrates is efficient relative to the other
two structures. However, because of the short-circuit within the
PZT structure, the first structure is found to be less efficient than
the other two structures. In other words, in the unimorph case,
the positive and negative electric fields generated by the bending
stresses along a normal face are short-circuited that results in no
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Fig. 19. Frequency responses of energies, voltages, and displacements.
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electric energy. Therefore, it is common to use these layered struc-
tures having compression or tension only stress to piezoelectric
materials. From the viewpoint of optimization, we can design this
optimal configuration with the piezoelectric material and the sub-
strate. However, this is beyond the scope of this study.
Depending on their configuration and boundary condition,
EHDs can have very complex characteristics. To illustrate this phe-
nomenon, we calculate the energy conversion factors for the case

with different quasi-static mechanical loads; the results are shown
in Fig. 22. The first structure consists of the upper PZT structure
and the bottom aluminum panel with the load at the end tip
whereas the pressure load is applied to the second structure. As
shown in the figures, the elastic and electric energies decrease with
an increase in the thickness values of the aluminum substrates be-
cause the structures obviously become stiffer. However, as shown
in Fig. 22, the behaviors of the conversion factor and the voltage at
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Fig. 21. Unimorph, bimorph, and multimorph PZT energy harvesting devices (x: an arbitrary number).
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Fig. 22. Bimorph test model with different thickness values for a point load (aluminum substrate: p = 2700 kg/m>, E = 73.0 GPa, v = 0.33)). (a) Problem definition, (b) curves of
the elastic energy, electric energy, voltage of top electrode, and conversion factor of Left of (a), and (c) curves of the elastic energy, electric energy, voltage of top electrode, and

conversion factor of Right of (a).
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the top plate of the two structures differ considerably from each
other. In particular, the energy conversion factors exhibit highly
nonlinear curves with respect to the thickness values of the alumi-
num plate. These numerical tests suggest that we will suffer from
many local optima in TO.

Appendix C. Sensitivity analysis
C.1. Static responses and sensitivity analysis

To use a gradient-based optimizer, it is essential to derive the
sensitivity analysis for a given objective function. To define objec-
tive functions that maximize the efficiency for piezoelectric EHDs
and to derive the complex sensitivities of functions, some energy
functions using static responses are first defined. First, the quasi-
static responses are calculated by solving the following equation.

K K, F
Static analysis : { we e } {u} - { } (24)
Kou Koo |l Q

Then, a general function form can be defined as follows:
L . u
General form of objective function: ¢ = [u(p]ALp} (25)

where A is an arbitrary matrix defining an energy form. By differen-
tiating this energy form & with respect to a design variable (7.), the
following sensitivity analysis can be obtained:

I

ou
e

0P
@

=2[uplA [ +[u <p]

e (), ye

To efficiently calculate |2 5¢d) yel, the adjoint sensitivity analy-
sis is employed. By dlfferentlatmg the governing equation, the fol-
lowing equation is obtained.

C -1 | Kuu Ky
i _7{1(“ Kup }1 B e m 27)
;{T‘i Kou —Kopo Kou _ Koo | | @

Ve FVe

And the variables g“ d¢dy,| of (26) are replaced by with (27).

Then, we introduce the followmg adjoint equation.

o el
Kou Koo L4e o

where [444,] are adjoint variables. By substituting these variables in
Eq. (26), the following sensitivity analysis is obtained:

20 Oy Kugp oA
o 7 e
7, mm]hﬁ"" mzf-?’“’“(p]ﬂ ave[(p} .

Using the above derivation, the sensitivity analyses of the elas-
tic energy, electric energy, and conversion factor can be derived as
follows:

1
= u"Kyu

Elastic energy (strain energy) : Il 3
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Using the objective values and the sensitivity analyses, TO can be
performed.

C.2. Dynamic responses and sensitivity analysis

Most existing studies on TO, except [17], are based on the above
static responses and sensitivity analysis. However, in reality, we
should consider the dynamic responses for EHDs. From the view-
point of optimization, it is not clear how the dynamic elastic en-
ergy, dynamic electric energy, and dynamic conversion factor
should be defined. This paper defines the dynamic elastic and elec-
tric energies from discussions of previous studies regarding the TO
of dynamic compliance. The dynamic responses are calculated
from the following equation.

ot o] viocs [for Koo L8N ] 5[] 5]
(36)

Note that because the solutions of the above equation are com-
plex, the complex sensitivity analysis should be derived. To make it
clear, the dynamic stiffness matrix, S, is introduced. For a general
formulation, the following objective is considered.

General form of objective function : ® = [ﬁ(])}ALﬂ (37)

where A is a general matrix and the variables with upper bars indi-
cate the complex conjugates of the corresponding variables. By dif-
ferentiating the governing equation and the objective, the following
equations are obtained.

()u

o0 [on aq;] [u] - 8A{u} A
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For the efficient sensitivity analysis, the differentiations of
structural and electric displacements of (38) are replaced by the
Eq. (39). Through some algebraic manipulation, the complex ad-
joint variables are defined as follows:
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(40)
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Through some algebraic manipulation, the following sensitivity
analysis can be derived.

g_i = [aQ] 22 [;} + 2Real<[lu/l,,,]g—jz LI;D (41)

In this paper, we define the dynamic elastic energy, dynamic
electric energy, and dynamic energy conversion factor as follows:

Elastic energy (strain energy) : Ils = 1ﬁTKu.,u

2
=T
:1{1_]} {Klm 0}{u} )
21l 0 O]lLe
Electric energy : Il = 1 TK 1 al'to o u
8Y: He=50 Rep® =5 o) o K)o
(43)
14T
i 30 Koo
Energy conversion factor : # = —-—2 A
10Kyt + 1 @Ky 0
ITg
T+ 10, 44
HS + HE ( )

The sensitivity analyses of the above energies and the factor can be
easily obtained by applying the derived adjoint sensitivity analysis
method.

The above analysis procedures and sensitivity analyses are
implemented in the framework of MATLAB and are verified by
the finite difference method. In addition, the optimization proce-
dure shown in Fig. 4 is implemented with the method of moving
asymptotes (MMA) [34] for an optimization algorithm.
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