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This study presents a stacked autoencoder (SAE)-based assessment method which is one of the unsupervised
learning schemes for the investigation of bone fracture. Relatively accurate health monitoring of bone fracture
requires considering physical interactions among tissue, muscle, wave propagation and boundary conditions
inside the human body. Furthermore, the investigation of fracture, crack and healing process without state-of-
the-art medical devices such as CT, X-ray and MRI systems is challenging. To address these issues, this study
presents the SAE method that incorporates bilateral symmetry of the human legs and low-frequency transverse
vibration. To verify the presented method, several examples are employed with plastic pipes, cadaver legs and
human legs. Virtual spectrograms, created by applying a short-time Fourier transform to the differences in
vibration responses, are employed for image-based training in SAE. The virtual spectrograms are then classified
and the fine-tuning is also carried out to increase the accuracy. Moreover, a confusion matrix is employed to

evaluate classification accuracy and training validity.

1. Introduction

This research proposes a stacked autoencoder (SAE)-based assess-
ment method using bilateral symmetry and transverse vibration re-
sponses to investigate a bone fracture of human legs. The human
legs are not easy to diagnose without state-of-the-art medical devices,
especially since it contains tissues, muscles and various boundary con-
ditions. Moreover, it is more difficult to diagnose a fracture in an
emergency or undeveloped environment. Considering these issues, in
the presented study, SAE diagnosis method is developed with the
concept of bilateral symmetry of the human legs and low-cost vibration
testing equipment.

With the help of the development of medical science and technol-
ogy, several imaging methods such as X-ray, computed tomography
(CT) and magnetic resonance imaging (MRI) can be mainly used for
orthopedic diagnosis (Nicholson et al., 2021; Thiirig et al., 2022; Umans
and Kaye, 1996; Chitkara et al., 2013). However, due to their high
cost and radiation exposure, it is still difficult and potentially harm-
ful for the daily monitoring of patient conditions (Sorriento et al.,
2021; Mahesh, 2001; Ribeiro et al., 2020). The lack of biomechanical
information in imaging methods can also lead to subjective diagno-
sis depending on the clinician’s experiences (Bizzoca et al., 2020;
Dos Santos et al., 2023; Cao et al., 2023; Barra and Boire, 2001).

To complement existing imaging methods, alternative methods with
analysis of mechanical vibration and electrical impedance have been
studied (Conceicao et al., 2022; Chiu et al., 2017; Alizad et al., 2006;
Yoshida et al., 2009).

Since the recovery of fractured bone is a process of restoring its
biological and mechanical properties, assessment of mechanical and
dynamic characteristics of bone including its stiffness and strength
increasing during this process can be a quantitative indicator for bone
healing monitoring. To investigate the mechanical and dynamic charac-
teristics, a vibration-based method is regarded as a promising technique
as it is non-invasive and easy to collect vibration data reflecting the
status of fractured bone (Bediz et al., 2010; Akkus et al., 1998; Mattei
et al., 2021). In an undeveloped environment and emergency without
medical devices, these vibration-based methods can be effectively uti-
lized to diagnose bone fracture using the bilateral symmetrical charac-
teristics of human and animal (Sim et al., 2021; Yoon et al., 2021; Shen
et al., 2021; Caron et al., 2023). In addition, vibration-based abnor-
mality detection techniques using deep learning or machine learning
have been employed (Kim et al., 2022; Pan et al., 2023; Hosseinpour-
Zarnaq et al., 2022). The machine learning-based random forest (RF)
was also researched to investigate the various fault cases (Noshad et al.,
2019). For the detection of bone fracture, the artificial neural network
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Fig. 1. Procedure of bone fracture diagnosis system using stacked autoencoder.
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Fig. 2. Schematic of vibration experiment with bilateral symmetry of human body
(With some differences, similar behaviors can be observed owing to the bilateral
symmetry).

(ANN) method with line features of X-ray images was employed (Yang
et al., 2019). Moreover, fractures of various bones in the human body
are detected using a support vector machine and error backpropa-
gation neural network (Bagaria et al., 2021). Imitation learning was
researched to detect the vertebral compression fracture (Iyer et al.,
2023). Among these methods, there are cases diagnosed with the
autoencoder method which is unsupervised learning or the stacked
autoencoder method which is unsupervised learning or semi-supervised
learning (Zabalza et al., 2016; Adem et al., 2019; Lu et al., 2017; Yang
et al., 2022).

Thus, the presented study employs the SAE to investigate the bone
fracture of human legs with the concept of bilateral symmetry of human
and transverse vibration responses of impact testing in Fig. 1. To
carry out this method, plastic pipes, cadaver legs and human legs are
employed. Moreover, the concept of virtual spectrograms transformed
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Fig. 3. Basic autoencoder scheme.

by the difference between frequency response functions is also used. In
the SAE-based diagnosis system, the virtual spectrograms are classified
with a confusion matrix.

The remainder of this paper is organized as follows. Section 2 pro-
vides the concept of the low-frequency vibration analysis for structural
health monitoring and bilateral symmetry. The SAE incorporating the
concept of virtual spectrograms is explained. Section 3 presents several
examples including patient data are presented. Section 4 presents the
conclusions of this study and provides suggestions for future research.

2. Low-frequency vibration analysis of structural health condi-
tions

2.1. Vibration experiment with bilateral symmetry

From a medical and engineering point of view, it is intricate and
difficult to obtain some reference vibration signals for damaged and
undamaged bone in vivo. The dynamic characteristics of human are
subject to be changed continuously by differentiating position, muscle
force or body moisture. Therefore, utilizing the vibration data of patient
for diagnosis purposes is very difficult. To address this issue, this
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Fig. 5. Experiments of plastic pipe specimens covered with silicon. (a) The geometric configuration of plastic pipe specimens and (b) the FRFs without fracture, with fracture and

crack.

subsection describes the utilization and exploration of the bilateral sym-
metry of human to investigate the structural health condition in Fig. 2.
The bilateral symmetry of the human body is defined as the existence of
symmetric anatomical parts arranged on opposite sides of the median
axis. Some relevant research utilizing the bilateral symmetry exists (Sim
et al.,, 2021; Yoon et al., 2021; Jacob and Wyawahare, 2013). The
bilateral symmetry can provide references of healthy conditions and be
utilized by medical professionals to improve the accuracy of diagnosis.
Especially, it can be applied for the diagnosis of bone fracture, the
healing process and pathological conditions. In this study, the bilat-
eral symmetry is utilized as healthy condition can be diagnosed with
non-invasive equipment environments by comparing the differences
between the properties of health condition and those changed by
fracture and degeneration.

Utilizing bilateral symmetry, transverse vibration experiments are
conducted with plastic pipes, cadaver legs and human legs. For the
vibration experiment, vibration responses are measured using an ac-
celerometer (PCB 352C33), an impact hammer (PCB 086C03) and
NI-9234 DAQ equipment in Fig. 2. In addition, the impact force ranges
between 8 N and 14 N lower than the magnitude of force experienced
in daily life. The sensitivity values of the impact hammer and the

accelerometer are 12.02 mV/N and 1.044 mV/N/s2, respectively. In the
patient experiment, the force magnitude is enough to make vibrations
safe to the patients. These measured vibration responses are converted
into a frequency response function (FRF) and analyzed in the low-
frequency domain. This FRF analysis is effective in confirming the
eigenfrequency of each mode of the structure and the effect of damping.
Note that different materials or structures have different vibration
characteristics and therefore must be analyzed within the same system.
In order to clarify the difference of vibration responses, the virtual
spectrograms generated by the difference of FRFs are explained in the
next subsection.

2.2. Stacked AutoEncoder(SAE) with virtual spectrograms — one of the
Al-based diagnosis system (an unsupervised learning scheme)

To rigorously diagnose the status of human bone, this subsection
presents the application of a stacked autoencoder(SAE)-based diagnosis
system with virtual spectrograms that are the 2-dimensional images
data by applying the STFT for the difference between the frequency
response functions (FRFs). Commonly, the supervised learning algo-
rithm, i.e., CNN, has been researched for the detection of abnormality.
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Fig. 6. Virtual spectrograms of the stacked autoencoder-based diagnosis system to identify the conditions of plastic pipes. (a) The representative virtual spectrograms of the three
conditions without fracture, with fracture and crack and (b) the datasets of virtual spectrogram images used in the presented diagnosis system.

The supervised learning can achieve diagnosis more accurately than
unsupervised learning. In some peculiar environments without state-
of-the-art medical devices, the labeling process essential for supervised
learning may not be possible. Therefore, in that case, unsupervised
learning can be applied. In the present study, the unsupervised learning
algorithm, i.e., the stacked autoencoder in this research, is applied. As
mentioned, as the vibration signals are dependent on the condition of
human, the bilateral symmetry is applied for a reference signal. The
signals in the low-frequency range, i.e. around 100 Hz, contain valuable
information regarding the status of bone (Sim et al., 2021; Yoon et al.,
2021; He et al., 2017; Zhang et al., 2012). Although the investigation
of the signals by medical doctor is a secured standard, recently, the
classification relying on AI has been researched and becomes promi-
nent. In the present study, the Stacked AutoEncoder (SAE), an Al-based
diagnosis technique is applied to diagnose the condition of bone with
the vibration data (Hinton and Salakhutdinov, 2006; Tao et al., 2015;
Vareka and Mautner, 2017; Khamparia et al., 2020).

A conventional autoencoder (AE) is a deep learning architecture
model in which an original signal is inputted and reconstructed at the
output, passing through an intermediate layer with a reduced number
of hidden neurons (Kramer, 1991, 1992; Moller, 1993; Olshausen and
Field, 1997). The AE model attempts to learn the abstract features in
the reduced hidden neurons, enabling a reconstruction of the input
signal from these features. A basic scheme of the AE is presented in
Fig. 3. The input signals can be reduced to features in the hidden
layer and reconstructed in the output layer. The training of an AE
involves reproducing the input signals at the model’s output. The
internal units can then provide the original information. The values
in the intermediate layer can be utilized as new reduced features to
perform the reconstruction, representing the original signal. The AE is
typically computed as follows:

¥ = fwx+by) M

z=f(w,y+b,) 2

argmin [error(x, z)] 3)
u,'y,wz,by,bZ
Where the value of the hidden layer y is obtained from the value
of the input layer x by the weights w, and the bias b, in Eq. (1).
The reconstructed value z from the input value is obtained from the
output value y by the w, and the b, in Eq. (2). The function f
represents the activation function, which introduces non-linearity into
the system. Eq. (3) is employed to determine the optimized parameters
by minimizing the error between the x and the z.

This concept can be expanded with the several layers between the
input and the output layers in SAE. As complex networks and their
classification require a network structure with more hidden layers, the
SAE model can be obtained by connecting multiple autoencoders in
succession. In this study, to diagnose the conditions of human legs, two
autoencoders are used, followed by a softmax layer. The SAE is created
by stacking and connecting two autoencoders with a hidden layer. With
trial and error, it is found that the two layers are sufficient to classify
the signals and the validations of hyperparameters are carried out
beforehand in the subsequent examples. Some details of the employed
SAE are as follows: The SAE uses 12-42 virtual spectrogram images
(256 by 256 pixels) that represent the short-time Fourier transfor-
mation of the difference between reference data (vibration signals of
healthy bone) and investigating data (vibration signals of healthy or
fractured bone) for the training and test datasets, as shown in Fig. 4.
The network consists of two autoencoder layers: Autoencoder 1 has a
128-node hidden layer, L2 weight regularization of 0.001, and sparsity
proportion of 0.15, while Autoencoder 2 has a 64-node hidden layer,
L2 weight regularization of 0.1, and sparsity proportion of 0.15. The
network also includes a softmax layer and backpropagation is used
to optimize the accuracy. The sparsity regularization is set to 4, and
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Fig. 7. Results of each process using the stacked autoencoder. (a) The mean squared errors(MSEs) of autoencoder 1 and autoencoder 2 with 40 epochs, (b) the confusion matrices
of stacked autoencoder results testing the virtual spectrograms without the fine-tuning and (c) the confusion matrices of stacked autoencoder results testing the virtual spectrograms

with the fine-tuning (NF: No fracture, F: Fracture and C: Crack).

40 epochs are used for training. The loss function in the softmax
layer is cross-entropy. All algorithms are implemented in MATLAB
R2021a (MATLAB, 2021).

3. Experimental results

To show the validity of the present stacked autoencoder(SAE)-
based diagnosis method for human bone fracture detection, the four
examples are considered. Typically, the detection of abnormalities has
been predominantly explored using supervised learning algorithms.
However, in this study, we have employed an unsupervised learn-
ing algorithm known as the SAE. As stated in the previous section,
the virtual spectrograms are computed with the frequency response
functions (FRFs) of healthy, fracture, crack and healing bones and
models. By computing the confusion matrix showing the classification
performance, the accuracy of the SAE algorithm is verified. First of
all, the experiment with a plastic bar and silicon is considered for the
verification. The two in-vivo tests (Cadaver’s legs and real patient’s
legs) are also carried out.

3.1. Example 1: Plastic pipe specimens

Before applying the present SAE-based diagnosis system to the
patient’s bone, its application is investigated and verified with some
artificial specimens. The three plastic pipes covered with silicon whose
dimensions are presented in Fig. 5 are prepared. One of the plastic bars
is healthy, while the other two specimens are fractured and cracked.
One of the difficulties in the experiment is the uncertainty of the
boundary condition as shown in Fig. 5(a). In other words, while it is
easy to set boundary conditions in these simple pipe structures, i.e. sim-
ple straight structures, however, in the case of complex structures,
especially for human legs, it is practically difficult to set the boundary

condition accurately. In this study, the boundary condition of ground
contact is adopted and the representative vibration curves of the three
specimens are shown in Fig. 5(b). Fig. 5(b) shows the case-by-case
averaged curves of multiple FRF curves. Less than 10 data for each case
are used by excluding noisy data. It is observed that the magnitudes of
the healthy specimen are lower than those of the unhealthy specimens
due to the higher stiffness of the healthy specimen. In cases of fractured
or cracked specimens, as a comparably lower stiffness is observed, the
magnitudes of vibration response tend to be higher. The magnitudes of
vibration responses tend to be higher in the following order: fracture,
crack and no fracture. Due to the damping effect which is similarly
expected in patient, the resonances are not clear but it is analyzed that
the modes appear near 50 Hz in these plastic pipe cases.

Then the SAE-based diagnosis procedure is applied to the experi-
mental data. To achieve this, Fig. 6 presents the virtual spectrograms
that are the results from the STFT processed with the difference among
the FRFs. The average data of the FRFs without fracture or crack is
used as a reference signal. In other words, the virtual spectrogram is
generated with the difference between the average signal of the FRFs
of no fracture and the one FRF signal of fracture or crack. In Fig. 6(a),
the figure on the left is generated with the reference healthy signal
(average healthy signal) and the healthy signal. The center figure is
generated with the reference healthy signal and the crack signal, while
the figure on the right is generated with the reference healthy signal
and the fracture signal. In Fig. 6(b), these virtual spectrogram images
show some of the data utilized by the diagnosis system. In the training
process, the SAE-based diagnosis system adopts the mean square error
(MSE) loss function. The left figure of Fig. 7(a) shows the convergence
of the MSE of 0.056 in the autoencoder 1 and the right figure shows
the approaching of the MSE of 0.022 in the autoencoder 2. It is a
commonly adopted or observed fact that the increase of the number
of stacks can improve the accuracy of a stacked autoencoder. In the
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Fig. 8. Results of SAE with several epochs. (a-d) The results of SAE with the different
epochs (a: 5 epochs, b: 10 epochs, c: 20 epochs and d: 30 epochs).

present study, we conclude that the two layers are enough for this kind
of problem. Although the MSE can be lowed with more epochs, but
in our experiments, we observe that the 40 epochs for training are
enough to classify the data in the present study. Fig. 7(b) shows the
confusion matrices of the classified results with each of the 7 data of
the three health conditions. In the presented confusion matrices, the
virtual spectrograms generated by the differences between no fracture
and no fracture signals are classified with 100 percent accuracy and
the virtual spectrograms of differences between the fracture and no
fracture signals are also classified with 100 percent accuracy. However,
the crack cases are classified with 71.4 percent accuracy and the total
accuracy is 90.5 percent. One of the reasons may be that the crack
cases are confused with the healthy cases. The virtual spectrograms
of the crack cases also look like intermediate image data between the
fracture and no fracture cases. To improve the accuracy of the system,
the backpropagation scheme is carried out for the fine-tuning; the fine-
tuning is conducted by re-training the neural network with the training
data. As a result, it is possible to improve the prediction accuracy and

Journal of the Mechanical Behavior of Biomedical Materials 146 (2023) 106077

Fig. 7(c) shows the confusion matrices with 100 percent accuracy about
the three conditions.

Moreover, Fig. 8 shows the trained results of the SAE with 5, 10,
20 and 30 epochs, respectively. It turns out that the number of epochs
influences the accuracy of the autoencoder. For example, with 5 epochs,
the prediction accuracy is about 66.7 percent with 0.164 for the MSE
of autoencoder 1 and 0.196 for the MSE of autoencoder 2. With 5
epochs, the MSE value of the autoencoder 2 is higher than that of the
autoencoder 1 and the training is not properly carried out for the im-
proved accuracy. Therefore, 40 epochs are adopted for proper training
in consistency with other examples in this study. For the validation of
the present approach, the additional data of plastic pipe are classified
with the trained model in Fig. 9. The averaged FRF of the new 15
FRFs with no fracture, fracture and crack cases and the 15 virtual
spectrograms are presented in Fig. 9(a) and (b), respectively. With the
direct utilization of the trained Stacked Autoencoder (SAE), we achieve
classifications with 80 percent accuracy. Upon conducting fine-tuning,
which involves retraining the pre-existing SAE network using 15 new
virtual spectrograms, we achieve significantly improved classifications
with an accuracy of 93.3 percent, as demonstrated in Fig. 9(c). This
study presents the accurate diagnosis that can be implemented for
the three conditions of plastic pipe specimens using the SAE-based
diagnosis system.

3.2. Example 2: Cadaver legs

For the next example, a cadaver (male, 84 years old, 168 cm tall)
is prepared in an anatomy laboratory in Hanyang University, Seoul,
Korea, on July 2020.! To conduct the investigation of conditions with
and without fracture, a cadaver’s left leg tibia is cut at the midpoint
between the tibial tuberosity and the medial malleolus and the right leg
is a healthy condition. Moreover, the transverse vibration experiments
of cadaver specimen are carried out with the ground contact condition.
It should be mentioned that unlike the tissue and muscle of a living
human, some differences exist in material properties. Fig. 10(a) and
(b) show a geometric configuration of cadaver legs and the frequency
response functions (FRFs) at the low-frequency domain. The responses
similar to the vibration response characteristics of the plastic pipe are
obtained. The eigenfrequencies of the fracture case are lower than those
of no fracture case in the 10-100 Hz frequency range. The comparison
of the magnitudes of the responses indicates that the magnitude of the
fracture case is higher than that of the healthy case as the stiffness
becomes lower. Fig. 11(a) and (b) show the representative virtual
spectrograms with and without fracture cases and the datasets of the
virtual spectrograms employed in the SAE-based diagnosis system. In
this cadaver example, the difference between fractured and unfractured
virtual spectrograms is clearly distinguishable. The computed MSE val-
ues of the autoencoder 1 and the autoencoder 2 in Fig. 12(a) are 0.059
and 0.027, respectively. The employment of the two autoencoders
results in noticeably faster convergence of the MSE in this diagnosis
system. After confirming the convergence of the neural network, the
diagnosis results are shown with the confusion matrices in Fig. 12(b)
and ().

1 We should mention that this data was also presented in our previous
contribution (Yoon et al., 2021). As the data acquisition from cadaver re-
quires some additional administrative processes after the modification of the
IRB(Institutional Review Board) rule and special permits, this data is re-utilized
in the present paper to verify the concept of the SAE which is one of the
unsupervised learning.
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D.-Y. Kim et al.

Representative data

=
S

— 0.6

=
S

0.4

Virtual frequency (Hz)
wn
<

Virtual frequency (Hz)
n
<

=}
=)

0 2 4 0 2 4
Virtual time (s) Virtual time (s)
No fracture Fracture
(a)
Datasets

(b)

Fig. 11. Virtual spectrograms of the stacked autoencoder-based diagnosis system to
identify the conditions of cadaver legs. (a) The representative virtual spectrograms of
the two conditions without fracture and with fracture and (b) the datasets of virtual
spectrogram images used in the presented diagnosis system.

3.3. Example 3: SAE application for patient data

To show the application of the SAE-based diagnosis system further,
this section shows the measurement and analysis of a patient with a
fractured bone at his right leg who has an orthopedic surgery (August
9, 2021, Hanyang University Hospital, Seoul, South Korea). The patient
is a 43 years old male with 187 cm height and 100 kg weight. During
the operation, an intramedullary nail made of titanium alloy is used
to connect and fix his broken bones. As the patient can lie stably on
a bed, the boundary condition is set to the ground contact condition.
Fortunately, his left leg is intact and utilizing the bilateral symmetry,
the response of his left leg is set as a reference signal in Fig. 13(a). As
expected, the structural rigidity of the injured right leg has deteriorated
and the response is naturally higher than that of no fracture following
the law of physics, i.e., displacement responses are inversely propor-
tional to dynamic stiffness in Fig. 13(b). The eigenfrequencies of the
fracture signal are lower than those of no fracture. In short, the two
curves (fracture and no fracture) show the typical characteristics of the
fracture on the human leg.

The experiment after the implant operation is strictly not permitted
to prevent possible infection and further injury. Therefore, after two
months (2021-10-26), the experiment of the healing right leg is carried
out to measure the vibration response in Fig. 13. It is interesting
that the magnitudes of the response curve of the healing bone are
not between those of the fractured bone and the no fracture bone
in the frequency domain as shown in Fig. 13(b). The response of
the healing bone with the nail is very similar to that of no fracture.
From the consultant of the orthopedic doctors who are the authors
of this paper, it turns out that it does not mean that two months are
enough for the curing process; in hospitals in the Republic of Korea,
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normally it takes one year for a medical doctor to remove nail without
knowing one year is sufficient and enough to heal bone and to our best
knowledge, it is applied to other nations too. Rather it implies that
the implanted intramedullary nail sufficiently supports the fractured
leg from a structural point of view. The stiffness and strength of the
implanted intramedullary nail are high enough to fix and connect the
fractured bones which is the reason for the usage of the intramedullary
nail from a medical and mechanical point of view. Now the SAE process
can be applied to the three response curves and this also arises a new
challenge to the SAE process.

The virtual spectrograms of the signals of the left leg and the right
leg before and after the medical operation are shown in Fig. 14(a)
and (b). To identify the three different conditions of the patient’s legs,
the virtual spectrograms are generated by the difference between no
fracture of the left leg (2021.08.09) as the reference signal, a fracture
signal of the right leg (2021.08.09) and the healing process of the right
leg (2021.10.26) in Fig. 14 in order to observe the evolution of the
signals as times goes by. In Fig. 14(a), it is possible to identify the
healing process by comparing the virtual spectrogram of the fracture
case. The SAE diagnosis system is trained and tested with these virtual
spectrograms. The MSE values of autoencoder 1 and autoencoder 2
are converged to 0.053 and 0.036, respectively. The training process
is carried out in each of the two autoencoders with 40 epochs and it is
confirmed that the three classification cases are well diagnosed with the
confusion matrices in Fig. 15(b) and (c). As shown here and discussed
in the previous example, it is possible to classify the cases accurately
and this proves that the SAE which is one of the unsupervised learning
algorithms is effective to classify the cases.

3.4. Example 4: Estimation of the healing process with fractured two legs
(operation only to the right leg and the natural healing process of the left

leg)

As the present SAE-based diagnosis method can detect the evolution
of the mechanical condition of fracture bone, it is also possible to
track the healing process. After the medical operation, it is difficult to
take MRI or CT regularly from a medical or economic point of view.
From clinical data, it is known that it takes over one year to heal a
fractured bone and it is common for orthopedic doctors to remove the
implant after one year, as mentioned. As the present SAE diagnosis
system is based on the simple vibration test, it turns out that it can
provide some valuable clinical data to orthopedic doctors and patients.
To verify this concept, another volunteer patient with the two leg
fractures (55 years old, 177 cm height, 75 kg) is chosen and his data
are analyzed with the SAE system; The example 3 being our first trial,
it is only possible to measure the data before and after the orthopedic
operation by following the relevant law and the strict IRB(Institutional
Review Board) agreement. It is also an interesting case for our system
as the two legs (Right leg: fracture of his right tibia and shaft fracture
of right fibula, left leg: shaft fracture of the left fibula) are broken
and the bilateral symmetry cannot be applied. Fig. 16(a) shows the
images in case of the fracture. The medical doctor decides to implant
the intramedullary nail to the right leg as the fracture of the right leg is
severe and the left leg can be healed naturally. Fig. 16(b) and (c) show
the responses of the right leg and the left leg. The followings are our
observations.

« Firstly, the magnitudes of the fracture on the right leg are greater
than those of the left leg, indicating that the damage to the right
leg is more severe than that of the left leg on 2022.09.21.

» By implanting an intramedullary nail in the right leg, the stiffness
of the leg can be improved. The response of the right leg on
2022.10.20 is similar to that of the patient in Example 3 after
the operation.

+ The curves for the healing right leg on 2022.10.20 and the healing
right leg on 2023.03.23, show that the natural healing process
increases the stiffness and strength of the right leg.
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» The curves for the fracture (left leg) on 2022.09.21 and the During the healing process, it is observed that the curve is shifted
healing left leg on 2023.03.23, demonstrate that the left leg is towards the right side due to the increase in stiffness over time; bone
fractured. becomes stronger. However, despite the healing, the signal becomes

different from the healthy signal due to the influence of the stiffness and

mass of the implanted intramedullary nail. It is difficult to determine
whether the leg is healed completely or not before the experiment dur-
ing the removal operation of the intramedullary nail. In this diagnosis
stiffness increases over time system, we need reference data such as reference no fracture in the

+ The curves for 2022.10.20 healing (right leg), 2023.03.23 healing
(right leg), 2022.10.20 healing (left leg), and 2023.03.23 healing
(left leg) indicate that the curves shift towards the right side as

10
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left legs and (c) the FRFs with fracture and healing process of the right leg including FRF of the left leg on 2023.03.23 for the concept of bilateral symmetry.

previous examples. Herein, according to the medical doctor’s opinion,
the patient’s left leg on 2023.03.23 is almost cured, so we selected this
data as a reference; After that, when the right leg is completely healed,
it will be inserted for data comparison.

Fig. 17 shows virtual spectrograms of no fracture, healing after 6
months, healing after 1 month and fracture cases generated with the left
leg condition on 2023.03.23 as a reference data. In Fig. 17, although
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virtual spectrograms of all cases are distinguishable, it is difficult to
identify the healing process over time. In other words, the healing
process seems to be between no fracture and fracture, but it is not
easy to understand the order of fracture, healing after 1 month, healing
after 6 months and no fracture. To solve this problem, the SAE-based
diagnosis system can accurately classify each case. Fig. 18(a) show the
MSE of 0.047 in the autoencoder 1 and of 0.039 in the autoencoder
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system.

2. In Fig. 18(b) and (c), four different conditions of patient with both
legs fractured are diagnosed with 100 percent accuracy. Although the
present approach has the difficulty in determining the size of fracture
quantitatively, it is possible to investigate the fracture by discerning the
difference between the vibration-based response containing the struc-
tural stiffness degradation characteristic of the fractured leg and that of
the healthy leg using the bilateral symmetry. In addition, the difference
is transformed into the virtual spectrogram and can be investigated in
the unsupervised learning-based stacked autoencoder. In this paper, we
are able to verify the applicability of the SAE-based diagnosis method
that is considered from pipes to humans using bilateral symmetry and
low-frequency vibration.

4. Conclusions

This study has demonstrated the application of the stacked au-
toencoder (SAE)-based diagnosis method for the investigation of bone
fracture. Achieving accurate health monitoring requires considering
various physical interactions among tissue, muscle, wave propagation
and boundary conditions within the human body. In addition, the
absence of advanced medical devices like CT, X-ray and MRI systems
poses a challenge to the investigation of fracture, crack and healing
process. To address these challenges, our research proposes the SAE
approach that incorporates the bilateral symmetry of human legs and
leverages low-frequency transverse vibration. The utilization of virtual
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spectrograms, generated by differences of frequency response functions,
further enhances the diagnosis capabilities of the proposed system.
The presented method is validated with experiments involving the
plastic bar, the cadaver and the legs of two patients. In the pipe
experiments and the cadaver experiment, saws are employed to induce
fractures. Consequently, an intact examination of the eye or hand can
be conducted. This study focuses on the decline in stiffness, and the
current method can be utilized to categorize fracture cases without the
need for medical devices. The confusion matrices of diagnosis results
exhibited a high accuracy for the plastic pipe, the cadaver and two
humans. Fine-tuning is also applied to improve the accuracy of the
above results. Finally, we achieved the accuracy of over 93.3 percent,
reaffirming the potential of this SAE-based diagnosis method with
respect to bilateral symmetry and low-frequency vibration responses.
One of the inherent limitations of this study is that the effect of fracture
or partial fracture on stiffness is not quantified and the FRF curves
with and without fracture are compared and assessed relatively. This
is partially inevitable by the shortage of the available data in human.
With the availability of the accumulated data regarding the relationship
between various sized and shaped fractures and their FRF curves, the
present SAE approach can be extended to study and quantify the effect
of the size or shape of the fracture. For forthcoming research, the
present method can be extended to automatically perform the vibration
experiment for the investigation of various fractures with the different
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boundary conditions and accurately estimate the effect of implant
during the healing process.
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