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Abstract
In this study, a genetic algorithm is introduced to determine optimal locations of pendulum dynamic vibration absorbers

(PDVAs) in vibrating structures. A PDVA is composed of a pendulum system and spring-mass system, and aims to attenuate

structural vibrations at two resonance frequencies, that is, the square root of stiffness over mass and square root of a length

over gravity of the hosting structure. An optimization method involving nonlinear transient finite element analysis was

applied to increase the engineering efficiency of PDVAs. With the incorporation of a genetic algorithm, the optimal

locations of PDVAs in various structures can be determined and vibrations at the desired resonant frequencies can be

attenuated. In addition, the Voronoi diagram concept is applied to realize a uniform distribution of PDVAs in vibrating

structures. Several optimization examples were solved using the proposed genetic algorithm and demonstrated decreases

in frequency responses by up to 98.6549%, showing the effectiveness of PDVAs in suppressing structural vibrations.
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1. Introduction

The present study aims to achieve structural stability through
vibration suppression. Therefore, a pendulum dynamic
vibration absorber (PDVA) was used to attenuate the
vibrations in various structures. Pendulum dynamic vibration
absorbers are installed on finite element nodes and junctions
of lattice structures. A genetic algorithm (GA) was used to
determine the optimal locations of PDVAs in the hosting
structures to establish optimal structural designs with
vibrations suppressed at the desired resonant frequencies.
The Voronoi diagram was applied to realize a uniform
distribution of PDVAs. Several numerical examples were
solved to validate the proposed method.

Structural instability arising from various vibrational
motions is an important subject in the engineering field.
Many studies have been conducted on the effect of vi-
brations on the instability of carbon nanotubes (Yoon et al.,
2005), vibration fatigue in aerospace structures (Aykan and
Celik 2009), transient vibration of unit-plant structures
(Zhang et al., 2019), structural vibration of wind turbine
structures (Dong et al., 2018), and vibration characteristics
of high-speed railway structures (Jiang et al., 2019) to
analyze the structural instabilities arising from external
forces. Moreover, some studies have explored various
factors affecting the vibration characteristics. To this end,

force harmonics and their effects on vibration (Zou et al.,
2017), relationships between cutting parameters and vi-
bration (Chuangwen et al., 2018), effect of multidimen-
sional forces on vibration suppression (Zhao et al., 2021),
and effect of periodic fluid forces on the vibration of tube
bundles (Lai et al., 2021) have been analyzed to explore the
effect of various forces on vibration characteristics. In
addition, many studies have been directed on the presence
of acoustic black holes for vibration control (Zhao and
Prasad 2019), optimum design of DC motors for vibration
reduction (Jafarboland and Farahabadi 2018), effect of the
volume fraction of carbon nanotubes on damping properties
(Patnaik et al., 2021), vibration characteristics of plates with
viscoelastic periodic cores (Sheng et al., 2018), lattice
structures (Syam et al., 2018), and sandwich structures with
rotating carbon nanotubes (Hussain et al., 2019) to explore
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the effect of structural designs on vibration behaviors. Free
vibration analysis of porous functionally graded nanoplates
(Phung-Van et al., 2019), test evaluation of the vibration
reduction effect of stone mastic asphalt mixture (Luo et al.,
2021), analysis of the effect of porosity on the vibration
characteristics of composite structures (Pourjabari et al.,
2019), and finite element analysis (FEA) of natural fiber-
reinforced composites (Saini et al., 2021) have been per-
formed to investigate the influence of material composition
on vibration behaviors. Furthermore, many studies have
been conducted to develop a nonlocal couple stress theory
(Ebrahimi et al., 2020), investigate the structural behavior of
plates on an elastic foundation (Kaddari et al., 2020), an-
alyze nanobeams including thermal effects (Hamza-Cherif
et al., 2018), analyze shear-deformable tapered beams
(Ghayesh 2018), develop a size-dependent sinusoidal beam
model (Lu et al., 2017), analyze plates using nonlocal
trigonometric shear deformation theory (Besseghier et al.,
2017), and present a Fourier series solution for vibration
analysis (Qin et al., 2020). Despite the uncertainties that
lead to structural instabilities, the vibration phenomenon
has been intentionally used in engineering fields for various
purposes. Vibration energy harvesting methods
(Abdelkareem et al., 2018; Wu et al., 2018; Zhao and Yang
2018) and vibration-based crack identification methods
(Prawin and Rama Mohan Rao 2020; Jena 2018) have been
developed and utilized in recent years. An increasing de-
mand for vibration applications in various fields has in-
creased the need to control the vibration phenomena.
Moreover, various methods have been introduced to control
and attenuate vibrations. Methods using metamaterials
(Meng et al., 2020; Elmadih et al., 2019) and thickening
fluids (Gürgen and Sofuolu 2020) have been developed to
achieve vibration attenuation. Vibration suppression
methods have been successfully applied to multi-story
building structures (Chapain and Aly 2019) and wing
systems (He et al., 2020). Therefore, suppressing and
controlling vibrations within structures have been reported
frequently. However, these studies have revealed limitations
to some extent, where vibration is suppressed only at certain
frequency ranges or directions. It is an important issue in the
engineering field to suppress vibrations at resonant fre-
quencies regardless of vibration direction, as vibrational
motions at those frequencies are critical in causing structural
instability. Thus, we aimed to develop a system using
dynamic vibration absorbers to focus on the reduction of
vibration responses at several targeted frequency ranges,
regardless of the vibration direction. Dynamic vibration
absorber functions by separating and shifting the eigen-
frequencies of the hosting structure, and reduces the re-
sponses at target frequencies (Kalehsar and Khodaie 2018).
Though increase in responses at neutral frequency ranges
not responsible for structural instability can be induced, the
application of dynamic vibration absorbers results in the
achievement of overall structural stability (Krenk 2005).

The proposed method utilizes the PDVA which has been
numerically and experimentally verified in suppressing
vibrations at multiple frequency ranges (Ha and Yoon
2021). The system can be applied to beam, lattice, and
plane structures for suppression of vibration at multiple
frequency ranges and directions simultaneously, as we
validated its application in real-world engineering consid-
ering a variety of structure types.

The proposed PDVA system attenuates vibrations in
structures by tuning the eigen-frequencies of the pendulum
and spring-mass systems, whereas the performance of vi-
bration suppression can be changed by varying the locations
of PDVAs in a structure. Thus, we determined the optimum
locations of PDVAs installed in structures with vibrating
motions. In the proposed optimization method, the integer
design variables, indicating the node numbers of the finite
element models of the structures, were set as the design
variables. For the optimization method, evolutionary algo-
rithms and nature inspired methods were considered due to
their robustness and flexibility to capture global solutions of
complex optimization problems (Galvan et al., 2003).
Among the various optimization methods capable of finding
the global optimum, such as particle swarm optimization
(Couceiro and Ghamisi 2016; Chopard and Tomassini 2018)
and differential evolution (Qin et al., 2008; Das et al., 2013),
GAwas chosen, the reason being that GA is more suitable for
discrete optimization problems (Kachitvichyanukul 2012).
The GAwas used to obtain the optimum installation locations
by employing the real coded GA implemented in the
MATLAB software package. Additionally, nonlinear tran-
sient FEA was performed to evaluate the vibration sup-
pression performance of PDVAs. The concept of the Voronoi
diagram was employed to uniformly distribute PDVAs in
a structure to prevent PDVAs from being focused on a certain
domain of a structure. The Voronoi diagram divides the
hosting structures into several sub-domains, and PDVAs are
uniformly distributed by limiting the number of PDVAs in
each sub-domain. The mapping approach was employed to
accurately locate PDVAs at each sub-domain of structures.
With the proposed optimization method, optimal structural
designs can be acquired using PDVAs. Several case studies
were analyzed using the proposed framework to validate its
efficiency and accuracy.

The remainder of this paper is organized as follows.
Section 2 describes the theory of the PDVA mechanism
using FEA. In Section 3, optimization formulations for the
GA and Voronoi diagram concept are presented. Section 4
provides several structural optimization examples consid-
ering the installation of PDVAs. Finally, Section 5 draws the
conclusions and discusses the future study directions.

1.1 Pendulum dynamic vibration absorber

Here, the PDVA mechanism theory is developed using
FEA. To simulate the vibrations of structures with and
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without PDVA allowing nonlinear vibration motion, tran-
sient analyses were conducted in the ANSYS framework,
and frequency response functions of transient responses
were analyzed.

1.2 Equations of motion

Figure 1 demonstrates a schematic of PDVA, which utilizes
the resonances of the pendulum and spring-mass systems,
with a concentrated mass mp, spring with a length l0 and
spring constant kp, and a damper with damping constant cp.
A common vibration absorber utilizes only one of the radial
and vertical motions. However, PDVAs utilize both motions
simultaneously for vibration attenuation. Moreover, PDVAs
are excited both vertically and horizontally, even when the
hosting structure moves only horizontally. By tuning the
eigen-frequencies of the pendulum to external vibration
frequencies, the hosting structure vibration can be effec-
tively attenuated. Additionally, the governing equations of
the system can be simplified by the linear rotation as-
sumption; however, the proposed PDVA system performs
a transient nonlinear analysis on the frequency response
function. The governing equations of the PDVA system
were defined using the Lagrange approach. The kinetic
energy T of the PDVA system can be defined as follows

T ¼ 1

2
m _x21 þ

1

2
mpa

a ¼ _x21 þ b2 _θ
2 þ _u2 þ 2 _x1 _θb cos θ þ 2 _u _x1 sin θ

b ¼ l0 þ u

(1)

where m and _x1 denote the mass and velocity of the hosting
structure, respectively. mp and l0 denote the mass of the
pendulum and length of the spring in the PDVA system,

respectively. u, _u, θ, and _θ represent the displacement,
velocity, angular displacement, and angular velocity of
PDVA, respectively. As both the rotational and translational
motions of the pendulum mass should be considered, the
velocity term associated with the rotation, _θ, is used. The
potential energy Vof the PDVA system can be defined using
the rotation of pendulum as follows

V ¼ 1

2
kx21 þ

1

2
kpu

2 þ mpgbð1� cos θÞ (2)

where k and x1 represent the spring constant and dis-
placement of the hosting structure, respectively. kp and g
represent the spring constant of the PDVA system and
gravitational acceleration, respectively. The energy dissi-
pation F owing to damping is defined as follows

F ¼ c _x21
2

þ cp _u
2

2
(3)

where c and cp denote the damping constants of the hosting
structure and PDVA system, respectively. The Lagrangian
approach can be applied to the governing equation

A1 ¼

2
664

mþ mp mpbcosθ mpsinθ
mpbcosθ mpb

2 0
mpsinθ 0 mp

3
775

2
6664 €x1 θ

::

€u

3
7775 (4)

A2 ¼

2
664
c 0 0
0 0 0
0 0 cp

3
775

2
664

_x1
_θ
_u

3
775 (5)

A3 ¼

2
664
k 0 0
0 0 0
0 0 kp

3
775

2
664
x1
θ
u

3
775 (6)

A4 ¼

2
66664
�mpb

_θ2sinθ þ 2mp _u _θcos θ
2mpb _u _θ þ mpgbsinθ

�mpb
_θ2 þ mpgð1� cos θÞ

3
77775 (7)

A1 þ A2 þ A3 þ A4 ¼ 0 (8)

In equation (4), €x1, θ
::

, and €u denote the acceleration of
the hosting structure, angular acceleration of PDVA, and
acceleration of PDVA, respectively. The vertical and
horizontal motions of PDVA were defined using the La-
grangian approach, as shown in Figure 1(b). The figure
also shows the mechanism of the PDVA, where the res-
onant frequencies of the spring-mass system and theFigure 1. (a) Illustration of PDVA and (b) mechanism of PDVA.
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pendulum system are affected by different parameters. The
spring-mass system takes part in the PDVA’s vertical
motion, and the system’s resonant frequency value
changes when the pendulum mass and the spring constant
of the PDVA are modified. The pendulum system takes
part in the PDVA’s horizontal motion, and the system’s
resonant frequency value changes when the pendulum
length of the PDVA is modified. As the parameters af-
fecting the resonant frequencies of the pendulum and
spring-mass systems of PDVAs are different, the two
resonant frequencies can be independently tuned, to be
utilized regardless of the direction of vibration in a vi-
brating structure.

1.3 Nonlinear transient finite element simulation of
PDVA system

Computing the frequency response function of a PDVA
system is challenging owing to the transient nonlinearity of
the governing equations. We employed a transient nonlinear
finite element simulation (time discretization using the
Newmark scheme in ANSYS) to obtain nonlinear
responses. The dependency of the internal force, Fi, with
respect to the transient displacement vector, U, becomes the
origin of the nonlinearity.

MU
:: ðtÞ þ CU

: ðtÞ þ FiðU,tÞ ¼ FaðtÞ (9)

Here,M andC represent the mass and damping matrices,
respectively; Fi(t) and Fa(t) denote the internal and external
forces, respectively. As the internal force is formulated
using the theory of a nonlinear PDVA system, it depends on
the displacement vector U. The velocity and acceleration
vectors are denoted by U

:
and U

::
, respectively. Nonlinear

equations are typically solved after linearization. The above
nonlinear equations should be solved iteratively to analyze
the motion of PDVA while admitting finite rotation.

An example considering a hosting beam structure was
solved to demonstrate the applicability of the proposed
method. Figure 2 shows the problem definition and obtained
results. A straight hosting structure consisting of five frame
elements was considered. The frame structure was set to
have a Young’s modulus of 193 GPa, Poisson’s ratio of
0.31, and density of 7750 kg/m3. The width and height of
the frame’s cross-section was 0.10 and 0.05 m, respectively.
Amass of 20 kg and impact forces of 1000 N in the y- and z-
direction were applied at the end of the structure. PDVA,
with a mass of 10 kg, length of 0.0151 m, and spring
constant of 9.305 × 104 N/m, was also installed at the end of
the structure. The pendulum resonance frequency was
4.101 Hz, considering the installed PDVA. The vibration
attenuation performance of the PDVA can be seen from the
two graphs in Figure 2. From the frequency response
function (FRF) graph, it can be observed that the dis-
placement amplitude at 4.101 Hz has decreased, indicating

Figure 2. Example of PDVA attached to a 5-m hosting frame structure. (Simulation condition: g = 9.81 m/s2, simulation time: 2 s in the y-

direction and 16 s in the z-direction).
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that the PDVA decreases the displacement of the vibrating
structure at the target frequency value. Note that the y-axis
of the FRF graph is presented in the form of ln for clearer
visualization of changes in FRF values. In addition, the
time-displacement graph also shows the decrease in dis-
placement in the time domain, revealing that the existence
of PDVA affects the target node response. As the simple
finite element simulation shows the validity of the PDVA in
efficiently suppressing vibrations, the study aims to
determine the optimal locations of PDVAs in structures to
enhance their efficiencies.

2. Optimization formulation

This section presents the optimization formulations for the
GA and Voronoi diagram concept. The real coded GA
(RCGA) was implemented in MATLAB to solve the
optimization problem by formulating the optimized
configuration of PDVAs. The integer design variables,
indicating the node numbers of finite element models, were
set as the design variables, and the locations of PDVAs were
set as the nodes of the lattice and plane structures. The
Voronoi diagram is implemented to uniformly distribute the
PDVAs by dividing the structure into sub-domains.

2.1 Real coded genetic algorithm

A GA constitutes a family of heuristic and stochastic
optimization methods. Based on the principle of survival of
the fittest, a GA simulates the biological evolution process
using a computer software to help determine a better in-
dividual or solution. In the GA theory, the diversity and
convergence (domination of particular solutions) of the
population matter. From an evolutionary perspective, the
selection and crossover operations make the offspring
inherit the parent characteristics imprinted on chromo-
somes. In contrast, the mutation operator introduces new
characteristics to chromosomes. After sufficient
generations, new better individuals can be introduced by the
selection process, considering fitness values formulated by
the optimization problem of interest. The implementation of

these processes has been applied to various scientific and
engineering problems. Compared with a gradient-based
optimizer, the primary advantages of a GA is that they
generate multiple solutions and individuals spread through
the solution space, and thus, it has a higher chance of
determining the global optimum. As a population is typi-
cally employed in GAs, it is also one of the advantages that
a set of solutions close to the global optimum can be ob-
tained through the population. In addition, GAs only use the
objective function or fitness value. Compared to the
gradient-based optimizer assuming the continuity of the first
or second derivatives and function values, GAs can be
applied to optimization problems whose derivatives are not
available or continuities are not guaranteed.

The flowchart in Figure 3 shows a basic GA. First,
random initial populations are generated; their genotypes
and phenotypes each represent the locations of nodes and
solutions of the problem, respectively. An RCGA,
implemented in MATLAB, was used for encoding integer
design variables. The fitness values are an integration of the
frequency responses of structures with PDVAs, which were
evaluated in the process. The frequency response functions
were obtained by solving the nonlinear transient FEA to
consider the coupling of pendulum and spring-mass
motions. After obtaining the frequency response func-
tions, parents were selected by considering the fitness
values of individuals. Subsequently, the crossover and
mutation operators were applied. The offspring replacement
was conducted for the new generation and population, with
an elitism in which the best individuals of the current
population were maintained in the next generation. The
probabilities of the crossover and mutation were set as the
default values in the GA. The diversity of population in the
GA is lost with larger possibilities.

The genotype of design variables represents the location
of PDVAs. The encoding of GAs was performed using the
RCGA. The crossover and mutation operators are the mixed
integer-Laplace crossover power mutation algorithm.
Larger population sizes increase the chances of finding the
global optimum. However, as the nonlinear transient FEA
simulation requires a considerable computation time, an

Figure 3. Optimization procedure based on the GA for an optimal PDVA structure.
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auxiliary database of individuals and their fitness values are
built to reduce the computation time. Moreover, when the
phenotype of a new offspring is found in a database, in-
dividuals and their fitness values are saved and used without
the finite element procedure.

2.2 Optimization formulation and encoding

To identify the optimal locations of PDVAs, the structural
optimization problem is formulated with the frequency
response functions of the displacements, that is, dx, dy, and
dz, as follows

Min
x
f ðxÞ ¼

XNF
f¼1

Z Vi
end

Vi
start

xðωÞdωþ yðωÞdωþ zðωÞdω

x ¼ ½x1,x2,…,xi�, 1 ≤ xi ≤N
(10)

The objective function f is set as the integration value of
the frequency responses from Vi

start to Vi
end . The frequency

domain of interest is denoted by NF. Displacement of the
nodes of interest are denoted by x(ω), y(ω), and z(ω). The
optimization formulation can be reformulated without loss
of generality. Based on the optimization formulation, x
denotes the i number of integer design variables, and N
denotes the number of finite element nodes.

2.3 Domain decomposition by the Voronoi diagram

The concept of Voronoi diagram was used to realize
a uniform distribution of PDVAs within a hosting structure.
The Voronoi diagram is a partition of a plane into regions
close to each of a provided set of objects. The Voronoi
diagramwas applied considering lattice and plane structures
to divide a structure into several sub-domains. Then, the
geometry information (coordinates of x and y) of the di-
vided sub-domains are obtained and used to identify the
structural nodes included in the sub-domains. The mapping
approach of the integer design variables was adopted to
locate PDVAs at each sub-domain of a structure by ad-
justing the nodal numbers. Figure 4 presents the application

of the Voronoi diagram and mapping approach on a simple
lattice structure.

A simple lattice structure with 16 nodes is divided into
four sub-domains, each with four nodes. The mapping ap-
proach changes the integer values of the number of nodes.
For instance, the node with an initial node number of 8
changes to node 4 within the second sub-domain. This ap-
proach is efficient in detecting the locations of PDVAs at each
sub-domain when more complicated structures with many
sub-domains are explored. Therefore, the uniform distribu-
tion of PDVAs can be realized by using the division of
structures obtained from the Voronoi diagram scheme and
mapping approach and by limiting the number of PDVAs that
can be installed in each sub-domain. Several case studies
using these methods are presented in the next section.

3. Numerical problems

To demonstrate the validity of the proposed PDVA opti-
mization, several optimization problems were explored to
determine the optimized locations of PDVAs within vi-
brating structures. Nonlinear transient FEA simulations
were performed in the framework of ANSYS. Transient
displacement responses at the target nodes were then post-
processed for their frequency response functions, which
were required for the optimization formulation.

3.1 Optimal location of a PDVA structure at an
inclined structure

For the first illustrative numerical example, the optimization
is considered with one PDVA and one design variable, as
shown in Figure 5(a). A straight structure with a length of
4 m comprises 100 frame elements with an inclination angle
of 45°. The structure was set to have a Young’s modulus of
193 GPa, Poisson’s ratio of 0.31, and density of 7750 kg/m3.
The cross-sectional area of the frame was 0.1 m by 0.05 m.
A mass of 10 kg was attached, and an impact force of
1000 Nwas applied in the x-direction at the end of the frame
structure. In this optimization problem, a single PDVAwith
a mass of 10 kg, length of 0.0608 m, and spring constant of

Figure 4. Application of the Voronoi diagram and mapping approach on lattice structures.
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7.260 × 104 N/m was attached to one of the nodes of the
hosting structure. The hosting frame structure is affected by
both the pendulum and spring-mass motions. The pendulum
and spring-mass resonance frequencies were 2.042 and
13.56 Hz, respectively. Thus, the optimization problem
could be formulated to maximize the vibration reduction of
the target node (node 50) at the two resonance frequencies
by optimizing the location of PDVA. The particular opti-
mization problem with one design variable for one PDVA
structure can be set as follows

Min
x
f ðxÞ ¼

Z 2:2

1:8

yðωÞdωþ
Z 13:8

13:2

yðωÞdω
yðωÞ : Displacement of node 50 in the y� direction

x ¼ ½x1�, 1 ≤ xi ≤ 100
(11)

where f denotes the objective function and x denotes the
integer design variable. y(ω) denotes the frequency response
function in the y-direction of the 50th node (target node). The
population size, maximum generation number, and employed
crossover fractionwere set as 5, 50, and 0.8, respectively. The
other variables were set as default values in MATLAB. The

design variable, which denotes the node number where the
PDVA is installed, is set to vary from 1 to 100.

The optimization history of the best and mean fitness
values are shown in Figure 5(b). Some oscillations are ob-
served for the mean fitness value curve owing to the diversity
of the proposed GA. The best fitness value of 3.5465 ×
10�3 m/Ns was obtained at the 46th iteration, and the 73rd
node was found to be the optimum nodal position for the
PDVA. As Elitism was applied to the replacement operator,
the best individual is maintained during the evolution.
Figure 6 presents a comparison of the frequency responses
with andwithout the attached PDVA at the 73rd node, and the
transient displacement at the target node with and without the
PDVA. The results show that the frequency responses are
reduced by 88.1674% and 34.6622% at 2.042 Hz and
13.56 Hz, respectively. Using the optimized PDVA structure,
the oscillations in the structure can be reduced at the target
frequencies. The responses at the two resonance frequencies
were suppressed only with the proposed PDVA structure.
Unlike other vibration absorbers, this absorber reduced the
vibration at two frequency values. Moreover, the target
frequencies can be altered by changing the values of the
mass, spring constant, and length of the PDVA.

Figure 5. Optimization of the PDVA location: (a) Finite element model of the PDVA attached to the frame structure (Simulation

condition: g = 9.81 m/s2, simulation time: 16 s) and (b) the optimization history.

Figure 6. Responses of the target node (50th node) at the optimum design.
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3.2 Optimal location of three PDVA structures at
10×20 grid lattice structure

In the next example, the optimization process aims to
determine the optimum locations of the three PDVAs.
Figure 7(a) illustrates the problem definition. A lattice frame
structure with a length of 1 m and height of 2 m consisted of
200 elements. The lattice structure was set to have a Young’s
modulus of 193 GPa, Poisson’s ratio of 0.31, and density of
7750 kg/m3. The cross-section area of the frame was 0.01 m
by 0.01 m. Amass of 5 kg was attached to the top right of the
structure. Impact forces of 10 N were applied in the y- and z-
direction at node 91. In this example, three PDVAs with
different parameters were considered. The mass of all the
three PDVAs was 2 kg; their lengths were 0.1974 m,
0.0180 m, and 0.1974 m; and their spring constants were
101.3 N/m, 1.109 × 103 N/m, and 3.899 × 104 N/m. The
frequencies of the PDVAs were set considering the first three
resonance frequencies of the grid lattice structure. The cal-
culated spring-mass and pendulum resonance frequencies of
the first PDVA had equal values of 1.133 Hz. The calculated
spring-mass and pendulum resonance frequencies of the
second PDVA had equal values of 3.748 Hz. The calculated
spring-mass and pendulum resonance frequencies of the third
PDVA were 22.22 and 1.133 Hz, respectively. The optimi-
zation formulation for this example can be set as follows

Min
x
f ðxÞ ¼

Z 1:4

0:8

zðωÞdωþ
Z 4:0

3:4

zðωÞdω

þ
Z 22:8

22:0

yðωÞdω
yðωÞ : Displacement of node 231 in the y� direction

zðωÞ : Displacement of node 231 in the z� direction

x ¼ ½x1,x2,x3�, 1 ≤ xi ≤ 231
(12)

where f denotes the objective function and x denotes the
integer design variables. y(ω) and z(ω) represent the

frequency response functions in the y- and z-direction of the
231st node (target node), respectively. The population size,
maximum generation number, and employed crossover
fraction were set as 20, 50, and 0.8, respectively. In addition,
the design variables, which denote the node numbers where
the PDVAs are installed, were set to vary from 1 to 231.

As the design variables are integers, the GA can be
applied to solve the optimization formulation in equation
(12). The total number of finite element nodes was 231, and
the GA was applied with 20 initial populations. The opti-
mization history of the best and mean fitness values are
shown in Figure 7(b). The best fitness value of 4.3109 ×
10�4 m/Ns was obtained at the 18th iteration, and the
optimum nodal positions for the three PDVAs were ob-
tained. The optimum nodal positions of the three PDVAs are
the 23rd, 207th, and 105th nodes of the structure, as il-
lustrated in Figure 8. The results show that the frequency
responses are reduced by 98.6549%, 84.4969%, and
65.4271% at 1.133 Hz, 3.748 Hz, and 22.22 Hz, re-
spectively. Note that the y-direction frequency response is
reduced at 22.22 Hz, and the z-direction frequency re-
sponses are reduced at 1.133 Hz and 3.748 Hz, as desired.
The results indicate that the optimized PDVAs successfully
suppress the structural vibrations of desired directions at
desired frequencies.

3.3 Optimal location of six PDVA structures using the
Voronoi diagram

In the next optimization problem, the optimum locations of
the six PDVAs were determined in the subdivided design
domain, as shown in Figure 9(a). The L-shaped lattice
structure consists of 75 elements with Young’s modulus,
Poisson’s ratio, and density of 193 GPa, 0.3, and 7750 kg/
m3, respectively. The cross-section area of the lattice
structure was set to 0.01 m by 0.01 m. Impact forces of
100 N were applied in the y- and z-direction at the bottom
right of the structure. As the mass, length, and spring
constant were set to 0.5 kg, 0.2857 m, and 96.12 N/m,

Figure 7. Optimization of the three PDVA locations: (a) Finite element model of the PDVAs attached to the lattice frame structure

(Simulation condition: g = 9.81 m/s2, simulation time: 5 s) and (b) optimization history.
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respectively, the resonance frequency values of the pen-
dulum and spring-mass systems were set to 0.9417 and
2.2027 Hz, respectively. Considering these resonance fre-
quencies, the optimization formulation for this example can
be set as follows

Min
x
f ðxÞ ¼

Z 1:0

0:8

zðωÞdωþ
Z 2:8

1:8

yðωÞdω
yðωÞ : Displacement of node 96 in the y� direction

zðωÞ : Displacement of node 96 in the z� direction

x ¼ ½x1,x2,x3,x4,x5,x6�, 1 ≤ xi ≤ 96
(13)

where f denotes the objective function and x denote the
integer design variables. The frequency response functions
in the y- and z-direction of the 96th node (target node) are
denoted by y(ω) and z(ω), respectively. The population size,
maximum generation number, and employed crossover
fraction were set as 10, 50, and 0.8, respectively. The design
variables, which denote the node numbers where the
PDVAs were installed, were set to vary from 1 to 96.

This example was aimed to realize a uniform distribution
of the PDVAs within the hosting L-shaped structure. For
instance, PDVA structures can be installed on buildings;
however, the installation can be often irritating to residents. A
uniform distribution of PDVAs is one of the solutions. To

distribute the PDVAs uniformly, the hosting structure can be
divided into sub-domains, and a design constraint can be
imposed to install limited number of PDVAs in a single sub-
domain. To this end, we proposed to apply the Voronoi
diagram to divide the L-shaped structure into sub-domains.
For example, an application of the Voronoi diagram scheme
to divide a design domain is shown in Figure 10. In this
example, the L-shaped design domain was divided into six
sub-domains, and themapping approach of the integer design
variables was implemented to locate the PDVAs for each sub-
domain by adjusting the nodal numbers. For instance, area 1
divided by the Voronoi diagram consists of 9 nodes, and each
nodes are given new nodal numbers from 1 to 9. To perform
the optimization in this particular example, it was assumed
that only one PDVA can be installed in each sub-domain.

The GA was again applied to solve equation (13) while
considering the sub-domains divided using the Voronoi
diagram scheme. The GA was solved using ten initial
populations. The optimization history of the best and mean
fitness values are shown in Figure 9(b). The best fitness
value of 1.4552 × 10�2 m/Ns was obtained at the sixth
iteration, and the optimal nodal positions for the six PDVAs
were obtained. Figure 10 illustrates the optimum nodal
positions. The 5th, 3rd, 7th, 1st, and 8th nodes from areas
1 to 6 were found to be the optimal nodal positions at
each divided sub-domain, indicating that nodes 3, 11, 30,
41, 42, and 92 of the host structure are the optimal positions

Figure 8. Optimum positions of the three PDVAs and responses of the target node (231st node) at the optimum design.
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for the six PDVAs. Figure 11 illustrates the frequency re-
sponse functions and transient responses of the optimized
structure. The results show that the frequency responses are
reduced by 74.3175% and 37.1236% at 0.9417 Hz and
2.2027 Hz, respectively. Note that the y-direction frequency
response is reduced at 2.2027 Hz, and the z-direction fre-
quency response is reduced at 0.9417 Hz, as desired. The
results indicate that the optimized PDVAs successfully
suppress the structural vibrations of desired directions at
desired frequencies. This example also reveals that the
Voronoi diagram scheme can be used for the application of
PDVAs. The proposed optimization approach helps the
installation of PDVAs to attenuate the vibrations.

3.4 Optimal location of eleven PDVA structures using
the Voronoi diagram

In the final example, the optimization problem was aimed to
determine the optimum locations of eleven PDVAs. The
problem definition is presented in Figure 12(a). An

L-shaped plane structure with a void consisted of 295 plane
elements. The Young’s modulus, Poisson’s ratio, and the
density were set to 193 GPa, 0.31, and 7750 kg/m3, re-
spectively. Impact forces of 200 N were applied in the x-
and y-direction at the top right of the structure. In this
example, the PDVAs had a point mass of 0.3 kg, length of
1.967 × 10�2 m, and spring constants of 4.907 × 103 N/m.
Thus, the resonance frequencies of the pendulum and
spring-mass systems were 3.5883 and 20.3560 Hz, re-
spectively. The optimization formulation for the example
can be set as follows

Min
x
f ðxÞ ¼

Z 4:0

3:0

yðωÞdωþ
Z 20:8

18:8

yðωÞdω
yðωÞ : Displacement of node 22 in the y� direction

x ¼ ½x1,x2,x3,…,x11�, 1 ≤ xi ≤ 981
(14)

where the objective function is denoted by f and the integer
design variables are denoted by x. The frequency response

Figure 10. Application of the Voronoi diagram and optimization results of the L-shape structure.

Figure 9. Optimization of the six PDVA locations: (a) Finite element model of the PDVAs attached to the lattice structure (Simulation

condition: g = 9.81 m/s2, simulation time: 10 s) and (b) the optimization history.
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function in the y-direction of the 22nd node (target node) is
denoted by y(ω). The population size, maximum generation
number, and employed crossover fraction were set as 10, 50,
and 0.8, respectively. The design variables, which denote
the node number where the PDVAs are installed, were set to
vary from 1 to 981.

Similar to the previous example, this example was aimed
to realize a uniform distribution of PDVAs. The concept of
Voronoi diagram was used to divide the hosting structure
into sub-domains. The application of the Voronoi diagram is
shown in Figure 13. It was assumed that the design domain
can be divided into 11 sub-domains, and only one PDVA

Figure 12. Optimization of eleven PDVA locations: (a) Finite element model of the PDVAs attached to the plane structure with void

(Simulation condition: g = 9.81 m/s2, simulation time: 5 s) and (b) the optimization history.

Figure 11. Responses of the target node with optimized layouts: (a) y-direction and (b) z-direction.
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could be installed in each sub-domain. The mapping
approach of integer design variables to locate the PDVAs
was implemented.

AGAwas applied to solve equation (14) while considering
the sub-domains divided using the Voronoi diagram scheme.
The total number of element nodes was 981, and the GAwas
solved using ten initial populations. The optimization history
of the best and mean fitness values are shown in Figure 12(b).
The best fitness value of 8.1421 × 10�3 m/Ns was obtained at
the 122nd iteration, and the optimal nodal positions for the 11
PDVAs were obtained. The optimum nodal positions are
shown in Figure 13. The 100th, 38th, 78th, 152nd, 27th, 29th,
47th, 18th, 43rd, 31st, and 46th nodes from areas 1 to 11 were
found to be the optimal nodal positions at each divided sub-
domain, indicating that nodes 757, 474, 691, 828, 544, 449,
793, 67, 371, 292, and 469 of the host structure are the optimal
positions for the eleven PDVAs. The frequency response
function and transient response of the optimized structure are
shown in Figure 14. The results show that the frequency
responses are reduced by 20.9895% and 0.7541% at
3.5853 Hz and 20.3560Hz, respectively. This example shows
that the Voronoi diagram scheme can be used for more

complicated problems considering PDVAs. With the pro-
posed optimization approach, the installation of PDVAs can
suppress the vibrations.

The optimization problems presented in this section
proved that GA can determine the optimum locations of
PDVAs. The resonance frequencies of the pendulum and
spring-mass systems of PDVAs were tuned independently
by varying the pendulum mass, spring constant, and pen-
dulum length for effective vibration suppression of the
hosting structures. Moreover, the concept of Voronoi dia-
grams and a mapping approach were applied to distribute
PDVAs uniformly within the lattice and plane structures.
The installation of PDVAs is effective regardless of the
geometry of the hosting structure and element type, in-
dicating that the proposed optimization method can be
applied to real-life engineering problems with a capability
to solve structural instabilities.

4. Conclusions

We presented an optimum design for structures with PDVAs
using a GA. Achieving structural stability through vibration

Figure 13. Application of the Voronoi diagram and optimization results of the L-shape structure with void.

Figure 14. Responses of the target node with optimized layouts.
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suppression is a critical issue in the engineering field. To
overcome this issue, PDVAs were utilized to attenuate
vibrations using the resonances of the pendulum and spring-
mass systems. A GA was used to determine the optimal
locations of PDVAs in the hosting structures. We considered
the installation of PDVAs on the finite element nodes and
junctions of lattice structures to validate the proposed
method. The optimization formulations helped to determine
optimal structural designs with vibrations suppressed at the
desired resonant frequencies. In the proposed optimization
method, we applied the Voronoi diagram to divide hosting
structures into sub-domains and realize a uniform distri-
bution of PDVAs. The numerical examples presented in the
paper demonstrated the effectiveness of PDVAs in sup-
pressing structural vibrations, where frequency responses
were reduced by maximum of 98.6549% at desired fre-
quency values. Despite the structural complexity, the
present PDVA successfully suppresses the structural vi-
brations of desired directions at target frequencies. In
conclusion, this study presents and validates the optimi-
zation method to determine optimal locations of PDVAs in
various structures. As future work, the present method can
be expanded by applying different optimization techniques.
It will be valuable to compare the efficiencies of different
discrete optimization algorithms for the optimization of the
PDVA locations and enhancement in vibration attenuation.
Additionally, through experimental verification and vali-
dation, the findings of the present paper can be verified for
various structures and the difficulties in the application of
PDVA in real life should be exploited.
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