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Research on the control of wave propagation has received continuous attention due to its potentially
rewarding applications in the past decades, and numerous methods have been developed for controlling
wave propagation in certain materials or structures. Despite previous work has made many innovations
in controlling wave propagation, they are limited to the research from a band gap perspective. Herein,
this paper presents a gradient-based multi-functional topology optimization for controlling wave prop-
agation in a one-dimensional (1D) structure, which can realize the control of wave propagation from
two aspects: band gap and wave propagation speed. To illustrate the method, three case studies are
investigated to obtain the following: (1) increasing the band gap width, (2) controlling the wave propa-
gation at target speed, and (3) limiting the propagation of low-frequency waves. By evaluating the results
of three case studies, the effectiveness of the proposed topology optimization method is demonstrated.
More importantly, the control of wave propagation in the low-frequency range in Case Il lends new
insight into the vibration isolation structure in engineering applications.
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1. Introduction

Vibration is a common phenomenon in nature, and its manifes-
tation is the propagation of waves in the structure. However, some
vibrations in the structure are undesirable because it may produce
unwanted results, such as vibration damage and sound noise.
Therefore, the development of effective vibration isolation meth-
ods has become an urgent problem in various engineering applica-
tions and has been studied for decades.

Over the past decades, the control of wave propagation in peri-
odic engineering structures has always been the research hotspot
[1-4]. In this regard, some typical examples of controlling wave
propagation can be found, to name a few, modulated rods [5,6],
supported beams [7,8], lattice structures [9,10], plates [11,12],
etc. In addition, phononic crystals (PCs) have made it more helpful
to control the propagation of waves in periodic structures. What's
special is that the wave filtering property (also called band gap)
exists in PCs, which makes it possible to prohibit the mechanical
waves (i.e., elastic and acoustic waves) from propagating in a cer-
tain frequency range. Such a unique property has been studied in
many engineering applications in recent years, such as wave split-
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ting [13], wave guidance and filtering [ 14-16], and sound or vibra-
tion isolation [17-19], etc.

However, after an in-depth analysis of the current methods for
controlling wave propagation in existing literature, we find that
previous work limited to the research from the perspective of the
band gap, and these methods are to find the band gap and then
increase its width. Furthermore, to the best of our knowledge,
these research methods for band gap are focusing on two types
of methods: passive methods and topology optimization, yet these
two categories of methods have shortcomings to some extent,
which are discussed in Section 2.

In this context, this paper presents a gradient-based multi-
functional topology optimization for controlling wave propagation
in periodic structures through topology optimization. As a simple
illustration example, 1D structure was studied in this paper. The
specialty of this proposed method is that it can realize the control
of wave propagation from two aspects: band gap and wave propa-
gation speed. In particular, the proposed method for controlling
wave propagation speed in a periodic structure through topology
optimization has not been published yet. The importance and orig-
inality of this research are it explores a new way to control the
propagation of waves in periodic structures that can be used in
the high, medium and low-frequency ranges. Meanwhile, this
method can realize the important contribution of the wave propa-
gation controlling in the desired target speed. It should be empha-


http://crossmark.crossref.org/dialog/?doi=10.1016/j.compstruc.2020.106368&domain=pdf
https://doi.org/10.1016/j.compstruc.2020.106368
mailto:ghy@hanyang.ac.kr
mailto:bingyi@csu.edu.cn
https://doi.org/10.1016/j.compstruc.2020.106368
http://www.sciencedirect.com/science/journal/00457949
http://www.elsevier.com/locate/compstruc

2 W. Liu et al./Computers and Structures 241 (2020) 106368

sized that, as a special case where the target speed is zero, this
method also provides an effective research point for limiting the
propagation of the waves.

The remainder of this paper is organized as follows. Section 2
discusses the review of related literature. The theory of wave prop-
agation in periodic structures and the settings for propagation in a
1D structure are described in Section 3. The multi-functional topol-
ogy optimization for controlling wave propagation in the 1D struc-
ture is given in Section 4. Three case studies and experiments are
presented in Section 5. Finally, the conclusion and future work
are presented in Section 6.

2. Literature review
2.1. Passive methods

To control the wave propagation in a periodic structure, exten-
sive efforts have been exerted and considerable methods have
been developed. Among them, the passive methods (also called
reactive methods) are the earliest methods, which use the discon-
tinuity design of geometric or material (i.e., impedance mismatch
zones) in a periodic structure to impede and attenuate the propa-
gation of waves from one end of the structure to the other, as
shown in Fig. 1(a) and (b) [20]. The proposed impedance mismatch
zone in the passive method has a very profound impact, mani-
fested in two aspects: (1) a periodic structure in an impedance mis-
match region that allows waves to pass or stop in a selected
frequency band (also known as the pass or stop band gaps), and
(2) the width of these band gaps in periodic structure can be con-
trolled. Many scholars have done a lot of research work, which can
be found in [21] and references therein. Based on these research
conclusions mentioned above, a similar method for controlling
wave propagation using stop band was developed in later research,
local resonance and the schematic diagram as shown in Fig. 1(c).
Overall, these methods use negative effective indices (e.g., mass
density, bulk, and shear modulus) to create band gaps, thereby
controlling the wave propagation in a periodic structure, which
can also be referred to as passive methods.

Based on the methods described above, several methods and
experiments are performed for controlling wave propagation in
periodic structures. For instance, Mead and his coworkers studied
the width and location of band gaps to control the wave propaga-
tion, excellent works can be found in [3,22] and references therein.
Joo et al. [23] proposed a method to control wave propagation
along a designated direction by adjusting the negative density
and stiffness. Sang and Wang [24] explored the integration of peri-
odic honeycomb lattices and inclusions to get periodic material for
controlling low-frequency wave propagation. Yao et al. [25,26]

used a mass-spring system to explain the local resonance trans-
mission characteristics of the basic unit in the low-frequency range
through experiments. While these efforts have shown that passive
methods can create band gaps to control wave propagation, it takes
a lot of time to trial-and-error to obtain the impedance mismatch
zones in the desired frequency range, such as adjusting the geom-
etry, orientation, position, density, and spring-mass parameters.

2.2. Topology optimization

The first-reported work on topology optimization by Bendsoe
and Kikuchi is to solve structural optimization of mechanical
design problems [27]. In recent years, this method has been widely
used to solve the optimization of material distribution, which can
be found in [28-30]. Specifically, the research on band gap proper-
ties of PCs is active. To illustrate, the earliest work performed by
Sigmund and Jensen [31], they introduced a solid isotropic material
with penalization (SIMP) method to achieve the optimization of
material distribution to maximize the band gap width. Kao et al.
[32] introduced a level set method to maximize band gaps in
two-dimensional PCs, and the effects of proposed methods of band
gap optimization under different design regions are studied, such
as rotation, mirror-reflection, and inversion symmetry. Dong
et al. [33] combined the finite element method and a genetic algo-
rithm to optimize the band gap width of two-dimensional PCs. Li
et al. [34] explored a topology optimization algorithm based on
bidirectional evolutionary structural optimization method and
finite element analysis for the design of band gap in 2D PCs. Yang
et al. [35] proposed a topology optimization method that expands
the range of negative effective mass density to obtain a material
design with 2D band gap maximization. Despite these methods
can increase the band gap width, they are all initialized by using
a regular-shaped inclusion method, as shown in Fig. 1(d). This ini-
tial setting of inclusion shape may not result in optimal design for
the maximum band gap width.

In parallel with the regular-shaped inclusion method described
above, some researchers use topology optimization for a single-
material to obtain the maximum band gap width for controlling
wave propagation. For example, Dong et al. [36] used an adaptive
algorithm and genetic algorithm to obtain the maximum band
gap of 2D asymmetric PCs. Li et al. [37] explored the widest band
gap of cellular PCs using the bidirectional evolutionary structure
optimization algorithm and the homogenization method, and
obtain the optimized topologies and corresponding maximum
band gap under different constraints. Halkj@®ret al. [38] investi-
gated the maximum band gap of Mindlin plate structure for bend-
ing waves by using the topology optimization method. While these
methods can get the maximum band gap, over-reliance on the
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Fig. 1. Periodic structure (a) discontinuity design of geometric; (b) discontinuity design of material; (c) one period of infinite periodic mass-spring structure; (d) unit cell

comprising regular inclusions.
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existing band gap in a periodic structure limits the practical appli-
cation to some extent.

3. Wave propagation in periodic structures

The governing equation to the elastic waves can be expressed as

follows.
ou

p%:(}v+2u)VV~u-,quV><u (1)
where 1 and p are Lamé’s coefficients, p is the material density of
solid, t is time and u is a vector of the displacement fields.

Assuming that the wave propagation to be confined to the x-y
plane only and the unit cell is periodically arranged, as shown in
Fig. 2(a), the periodic boundary conditions [39] are applied to the
interfaces adjacent to the other unit cells according to the Bloch-
Floquet theory [40], as follows:

u{A;, By, t} = u{A,, B, t}elkebksh 2

where k, and k, are components of a reciprocal wave vector in the
x- and y-directions, respectively. By substituting Eq. (2) into Eq. (1),
the eigenvalue problem can be formulated as follows:

([K(ky, ky)] — *[M]){u} =0 (3)

where K and M are the stiffness matrix and mass matrix.

Based on the above analysis, the problem of wave propagation
in solids can be transformed into a problem of solving eigenvalues,
and the dispersion curve of a unit cell can be numerically obtained
by calculating eigen-frequencies for a given reciprocal wave vector,
which is swept along the borderline of irreducible Brillouin zone
(IBZ) (as shown in Fig. 1(d)). For example, the parameter combina-
tion of k, =0 and k, = [-7, 7] can be used to analyze the eigen-
frequencies in XM direction of the IBZ, and k. = k, € [-, m]is for
the I'M direction. As band diagrams around k; = 0(i = 1, 2)are sym-
metric, in this study, the setting corresponding to the longitudinal
wave (along I'X direction) in this research is the parameter combi-
nation of k, = 0 and k, = [0, 7t/b].

4. The multi-functional topology optimization

In this research, a multi-functional topology optimization for
controlling wave propagation in periodic structures is proposed,
which can realize the control of wave propagation from two
aspects: band gap width and wave propagation speed. This method
follows the SIMP based topology optimization method proposed in

Lm

[41] for material distribution. The mathematical formulation of
this topology optimization problem can be defined as.
maxor min: f(X 7))

subjectto: V(y)/Vo=f

K (k) — w*M" (k) {uy} =0

Ymin <?<1l,e=12--- N

(4)

where X denotes the topological distribution within the unit cell of
the periodic structure. f(Z,y) is the objective function of the topo-
logical distribution that aims to be maximized and minimized,
which is presented in the next subsection. y represents the vector
of design variables, y,,;, is the small design variable assigned to void
regions to prevent the matrix from becoming singular. N is the
number of elements used to discrete the design domain. V(y) and
Vo are the material volume and design domain volume, and f is
the prescribed volume fraction. The definition of other parameters
is consistent as given in Section 3.

4.1. Optimization formulation

As mentioned above, the proposed topology optimization in this
research is multi-functional, which is reflected in the two objective
functions (i.e., the band gap width and wave propagation speed),
and will be described in detail in the following sections.

4.1.1. Band gap width

When the band gap width is used as the objective function of
the optimization problem, the purpose is to control the wave prop-
agation by maximizing the band gap in desired frequency ranges.
In this paper, the absolute band gap as the objective function to
evaluate the band gap width during the optimization process.
The mathematical expression of the absolute band gap width is
as follows

max : f(2,7) = 1 (K) - o;(K) (5)

where wj is the j-th eigen-frequency. Herein, considering that the
absolute band gap in this paper is similar to the existing method
to maximize the band gap, it will not be repeated here. The readers
can refer to [42] and the references therein.

4.1.2. Wave propagation speed

In the control wave propagation problem, it is a new research
point to take the wave propagation speed as the objective function
of topology optimization. The topological geometric result of the
optimization problem can realize the wave propagation at a target
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Fig. 2. The waves propagate in a periodic structure.
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speed. In the following sections, a detailed description is given for
this objective function.

The dispersion curve is an important characteristic when waves
of different wavelengths propagate in a dispersive medium. The
dispersion relation for the frequency @ and wave vector k can be
written as

o = (k) (6)

Additionally, for the j-th point on the dispersion curve, the wave
propagation speed c is [28],
w(k;)
— 2N 7
== )
Inspire by Eq. (7), the expression of the slope equation
expressed by the two points at the end of the dispersion curve is
proposed,
Aw(k)
As = ———= 8
Eq. (8) is the function proposed in this work to control the wave
propagation speed, as shown in Fig. 3(a), and then combine it with
the target value, the mathematical expression of the objective
function in topology optimization problem of controlling the wave
propagation speed is obtained, as follows

min: f(X,7) = [¢s(K) — Ctarget (K)| )

where ¢ is a functional function associated with Eq. (8), and Ctarge:
denotes the target value designed byresearcher. According to the
setting of the target value, the topology optimization problem of
controlling the wave propagation speed can be divided into two cat-
egories: (1) the target speed is a non-zero constant, which means
the wave will propagate in at a constant speed, and (2) the target
value is zero, and the optimized result of the slope of the dispersion
curve is zero, as shown in Fig. 3(b), this situation is a special case,
which indicates that the corresponding wave is no longer propagat-
ing in the periodic structure.

Here, what needs a special explanation is that only the slope of
the end dispersion curve is used as the slope objective to control
the wave propagation speed, as shown in Fig. 3. Therefore, the
slope of the dispersion curve mentioned in the following research
is the slope of the end dispersion curve. To make it clear, we use
the inflection point (A) to mark the beginning of the slope of the
dispersion curve that tends to be stable, yet the inflection point
has no practical significance in solving the topology optimization
problem.

4.2. Sensitivity analysis

One of the important components of a topology optimization
problem is the sensitivity analysis, which plays an important role

k, k

Fig. 3. Slope equation of the dispersion curve.

(a)

in updating of design variables. As described in Section 3, the
topology optimization problem related to controlling wave propa-
gation in periodic structures is a problem of solving eigenvalues.
Consequently, the derivative of eigen-frequencies associated with
problem in Eq. (3) is the sensitivity analysis of topology optimiza-
tion problem, we have,

doyk) 1 Kl oM k)],
M. 20 7. ey, |

{w}' (10)
where {u;} is the displacement vector (eigenvector) corresponding
to the j-th eigen-frequency. 0K*/9y, and OM"/dy, are the deriva-
tives of the global stiffness and mass matrices. Note that one
eigen-frequency corresponds to one eigenvector, and the sensitivity
analysis for the objective functions in Eq. (5) and Eq. (9) can be cal-
culated by Eq. (10) for the sensitivity analysis for each element
‘density’.

5. Results and discussion

In this section, three case studies are presented and their results
are discussed in detail. The material parameters used in the calcu-
lations are as follows: p = 7850 kg/m?, E = 200 GPa, n, = 0.3. The
unit cell of the periodic structureb x h=0.15 m x 0.03 m, as
shown in Fig. 4(b). The meshing size on the unit cell240 x 48, the
volume fraction is 0.7, the penalty factor is 3 and the filtering
radius is set as 0.03 times the element width. This topology opti-
mization problem is performed using Matlab and solved using
the gradient method (MMA) presented in [41], which is a
gradient-based optimizer without a multi-start strategy, thus real-
izing a single optimization run can only generate a local minimum.
The maximum number of iterations is 100, and the convergence
accuracy is 0.001.

In addition, to avoid obtaining the result that all waves cannot
propagate based on the initial unit cell of the periodic structure,
as shown in Fig. 4(b), we used Fig. 4(c) and (d) to conduct the
research, where the geometry of Fig. 4(d) is used as a comparison
with the analysis results of Fig. 4(c) to further verify the effective-
ness of the method. Furthermore, the blue indicates the design
domain, yellow indicates the non-design domain. For clarity, the
geometry shown in Fig. 4(c) and the research based on it are
referred to as G1, and the geometry shown in Fig. 4(d) and the
research based on it are referred to as G2.

5.1. Case I: Increasing the band gap width

The first case study was to verify that this method can be used
to increase the width of the band gap like the existing method. In
this research, the position and width of the existing band gap cor-
responding to the material parameters and design domain in Fig. 4
(b), as shown in the shading areas in Fig. 4(a). It can be seen from
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Fig. 4. The band structure and different unit cells.

Fig. 4(a) that this band gap is located between the 4th and 5th dis-
persion curves (count from bottom to top). For simplicity, this band
gap is referred to as ‘band 4’, and the initial width is marked as Q.

Fig. 5 shows the topological layout of unit cell in topology opti-
mization for increasing the width of band 4. The corresponding
band structure results are shown in Fig. 6. From Fig. 6, one can
be found that the topological results of both unit cells increase
the width of band 4 to varying degrees; the position and width
of the optimized band 4 are shown in the shading areas, where
the value shown in the shading areas is the width of the optimized
band gap. From the perspective of optimal results, a wider band
gap is obtained, the optimized width of band 4 increased 1.94
times and 2.34 times, respectively. The results prove the effective-
ness of the proposed method for increasing the band gap width.
Besides, another interesting outcome occurred, that is, the opti-
mized band 4 is closer to the “flat band gap”, which is more consis-
tent with the band gap requirements in engineering applications.

5.2. Case II: Controlling the wave propagation at target speed

The purpose of this case study is to control the wave propaga-
tion at target speed, and the waves corresponding to the 6th and
7th dispersion curves are taken as examples to study the control
method of the propagation of high-frequency waves. The opti-
mized topological geometry is shown in Fig. 7, Among them, the
numbers (a) and (b) result from the topology optimization problem
with the 6th dispersion curve as the objective function, and the
numbers (c¢) and (d) show the topological optimization problems
related to the 7th dispersion curve. The slope equation of the cor-
responding dispersion curve is shown in Fig. 8.

It can be obtained from the slope curve of the dispersion curve
in Fig. 8 that the proposed method can effectively control the slope
of the dispersion curve, which means that the proposed method

(@)

can realize the control of wave propagation. In addition, we can
see that the slope curve in the Fig. 8 not only changes the ampli-
tude of the slope, but also the trend of the slope, that is, the mean-
ing expressed by the positive and negative values in Fig. 8, the
positive value decreases, and the negative value increases. This
point proves that the proposed method can achieve control of
wave propagation at the desired target speed.

5.3. Case III: Limiting the propagation of low-frequency waves

This case explores the application of limiting the propagation of
low-frequency waves, which is a problem that needs to be solved
in engineering low-frequency vibration isolation. In this case
study, two types of waves in the low-frequency range are selected,
which are reflected in the dispersion curve, that is, the 2nd and 3rd
dispersion curves. It should be emphasized here that this case
study is an extension of case 2, and the target speed is zero,
namely, what we want to achieve is that the waves cannot propa-
gate in the structure.

Fig. 9 shows the topological layout of the unit cell in topology
optimization for controlling wave propagation in low-frequency
range, and their band structure results as shown in Fig. 10. Among
them, the numbers (a) and (b) result from the topology optimiza-
tion problem with the 2nd dispersion curve as the objective func-
tion, and the numbers (c¢) and (d) show the topological
optimization problems related to the 3rd dispersion curve.

Comparing Fig. 4(a) and Fig. 10, it is easy to find that the slopes
of the 2nd and 3rd dispersion curves have changed significantly
(minimum to near zero), which means that the corresponding
wave propagation speed in the periodic structure is almost zero,
namely the proposed method can effectively limit the propagation
of low-frequency waves. More meaningfully, we can find that in
Fig. 10, with the slope of the dispersion curve decreases, new

(b)

Fig. 5. The optimized topological geometry.
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Fig. 8. The slope related to 6th and 7th dispersion curves.

low-frequency band gaps are created to varying degrees. This is
evident in optimization problems where the 3rd dispersion curve
is the objective function.

To further prove that the wave propagation speed can be con-
trolled by changing the slope of the dispersion curve, a vibration
frequency response of a periodic structure was carried out using

experiment and finite element simulation. Comparing the variation
of the dispersion curve in Fig. 10, the selected unit cell geometry is
shown in Fig. 9(a). The reason is that this unit cell not affected by
the newly generated band gap, which better verifies the wave
propagation speed can be controlled. The experimental set-up is
shown in Fig. 11. It should be noted that although the periodicity
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Fig. 10. The band structure related to the optimized topological geometry.

assumed in the numerical test is infinite, a limited number of unit
cells are usually used to perform the approximate experiment sup-
ported by the theory. In this work, we manufactured 5 periodic
unit structures to obtain the periodic structure, as shown in
Fig. 11(b), which shows that simulation and the experiment

already fit well. Of course, if it is possible, scholars could increase
the periodic scale as much as possible to make the experiment
result more accuracy.

For comparison, the same experiment was performed using
finite element simulation (via Comsol Multiphysics), which is
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defined in the frequency domain of the solid mechanics interface.
To do this simulation, two ends of the periodic structure are free,
a total external force is applied at the left end, and the middle posi-
tion in the x-direction of the right end is the measuring point of the
frequency response. The frequency response function (FRF) is cho-
sen as.

T= 2010g]0<%> (11)

where A, is the acceleration value at the measuring point, and A; is a
reference value, usually A, = 10e~>m/s?.

By doing experiments and finite element simulation, the FRFs of
the periodic structure generated by topology optimization are
obtained, as shown in Fig. 12. It can be found in Fig. 12 that the
FRFs obtained through experiments and finite element simulation
is lower than 0 dB in the range of 850-2500 Hz, which means that
the mechanical wave generated by vibration is limited in this
range. Meanwhile, we can see that the range of FRFs results
obtained by the above two methods (i.e., the simulation curve
and experimental curve) is a better agreement with the range
(850-2500 Hz) between the 1st and 3rd dispersion curves in
Fig. 9(a).

However, from the perspective of comparison between experi-
mental results and simulation results, one can find that there are

100 T T T T

Experimental curve
80 Simulation curve

Transmission (dB)

! I L

500 1000 1500 2000 2500 3000

Frequency (Hz)

Fig. 12. FRFs of experiment and finite element simulation.

N

Point Load

Measuring point

(b)

Fig. 11. Experiment set-up: (a) experimental test, (b) periodic structure with 5 periods.

some differences between the simulation curves and the experi-
mental curves. The reason for this difference can be explained as
some small changes in the periodic structure of the experiment.
For manufacturing convenience, for example, the overall thickness
of the periodic structure differs from the optimization result by
0.3 mm, the corner positions have been chamfered, and the pro-
cessing error will cause the frequency range on the graph to change
to a certain extent. However, the most important point that we
cannot ignore is that both the above results prove that the propa-
gation of the waves corresponding to the 2nd dispersion curve can
be controlled by changing the slope of the 2nd dispersion curve,
which further proves the effectiveness of the proposed method.

In addition, attention is placed on the dispersion curve obtained
by the periodic structure of the wave propagating at the target
speed. It is well known that the distance between two dispersion
curve forms a band gap, and the existence of a band gap can control
the propagation of waves, which is consistent with the research
point in Case I. However, this band gap concept does not apply
to Case Il and Case III, which is special in this research. Take the
2nd dispersion curve in Fig. 9(a) as an example, although the dis-
persion curve exists in the range of 850-2500 Hz, it can be seen
from the experimental and simulation results that the wave cannot
propagate in this frequency range. The reason is that the wave
propagation speed corresponding to the 2nd dispersion curve is
controlled, which shown in the figure as the slope of the dispersion
curve is zero.

6. Conclusion and future work

This research proposed a multi-functional topology optimiza-
tion for controlling wave propagation in a 1D structure, which
can realize the control of wave propagation from two aspects: band
gap and wave propagation speed. In this research, three case stud-
ies are considered: Case I: increasing the band gap width, Case II:
controlling the wave propagation at target speed, and Case III: lim-
iting the propagation of low-frequency waves. Accordingly, two
objective functions are used to obtain topological results, one is
the absolute band gap to be maximized, and the other is the slope
of the dispersion curve to be controlled. The case study results
prove the effectiveness of the proposed optimization method, even
though the resulting clarity needs to be improved. More impor-
tantly, this method explores a new way to control the propagation
of waves in periodic structures, for example, wave propagation at
target speed and wave propagation are limited. Of particular con-
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cern is this method provides new insights into the low-frequency
vibration isolation in engineering applications.

Future research to build upon this work will explore topology
optimization for controlling the wave propagation in the desired
direction, and multi-objective topology optimization that consid-
ers multi-application performance is also the focus of the next step
to develop methods more suitable for practical engineering appli-
cations. In addition, the problem of eigen-frequencies are equal
that may occur when solving the adjacent eigenmode are also wor-
thy of further study.
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