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Highlights

• We solve the stress based topology optimization considering fluid–structure interaction.
• The singularity issue of the fluid–structure interaction is resolved by the qp-relaxation.
• The maximum von-Mises stress of structures due to fluidic force is constrained.
• The design domain is important because the fluid force is dependent on the design domain.

Abstract

This research developed a new stress-based topology optimization method (STOM) for a steady-state fluid–structure interaction
(FSI) problem that minimizes the volume subject to the local stress constraints. Despite numerous studies on STOM, challenging
optimization issues related to stress-based topology optimization (TO) procedures for fluid–structure multiphysics systems still
exist. Critical issues involved in creating a successful TO for an FSI structure include: the interpolation approach between the fluid
equation and the structure equation with respect to locally defined design variables, the mutual multiphysics coupling boundary
conditions at dramatically evolving interfacing boundaries, and a clear interpretation of the governing equations and the interaction
boundary conditions for spatially varying intermediate design variables. In addition to these three issues, which are related to
multiphysics equations, there are three important considerations related to the STOM: the stress singularity issue, the issues of
multiple constraints and the highly nonlinear behavior of the stress constraints. To resolve all of the aforementioned issues, we
applied a monolithic analysis, integrating the qp-relaxation method and the global p-norm approach. Using the present method, we
created optimal layouts that minimize the volume constraining local stress values for a steady-state fluid and structural interaction
system.
c⃝ 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Multiphysics simulations of transient or steady-state fluid–structure interactions (FSIs) are an important topic with
a very wide range of scientific and engineering applications. The difficulties inherent in important FSIs have led to
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many numerical analysis procedures that can be categorized as either staggered or monolithic analysis procedures,
depending on the differences in the coupling manner between fluid and structure (see [1–4] and the references
therein for reviews of various representative numerical analysis procedures for FSI systems). Based on a review of the
numerical analysis procedures, we found that many size and shape structural optimization methods for FSI systems do
not seriously consider the topological connectivity alternation between the fluidic domain and the structural domain.
Indeed, it is difficult to develop a topology optimization (TO) that allows for topological alternations between the
fluid domain and structural domain. In [5], a new monolithic approach using the deformation tensor was introduced
for the TO of FSI. Subsequent research extended this to include an electro-fluid-thermo-compliant multiphysics
actuator design [6]. In [7], Andreasen and Sigmund proposed a saturated poroelastic actuator and FSI problem in
poroelasticity for shock absorbers. In [2], dynamically tunable fluidic devices were optimized using the hydrodynamic
lattice Boltzmann method by neglecting the structural deformations due to fluidic forces. In [8,9], a TO method for
the internal structure of an aircraft wing was presented with and without FSI. In [10], a structural optimization design
for composite laminated plates subject to FSI was developed. In [11], the aeroelastic optimization of a membrane
micro air vehicle wing was designed through TO. For pressure-loaded problems, many studies have been conducted
with using an explicit boundary between the fluid and structure [12–16]. In [17,18], mixed formulation was employed
for pressure-loaded problems. In [19], the stress constraint was considered with design-dependent loading. In [20,21],
turbulent flow, for which the turbulence model is the RANS Spalart–Allmaras turbulence model, was the primary
consideration in connection with the heat transfer problem in TO. This was a novel approach for turbulence TO with
OpenFOAM and the FVM-based adjoint sensitivity analysis. In those studies, the authors proposed to add the element
density based-damping factor to the nonlinear turbulence model equation to calculate the turbulent viscosity as well
as the momentum equations. In [3], David et al. presented an optimization method for designing the optimal layout
of flow channels in micro-mixers using the lattice Boltzmann method. In [22,23], topological optimization for micro
mixers was developed. In [24], a new TO method for unsteady incompressible Navier–Stokes flows is developed.
In addition, many studies regarding fluid-related problems in TO have been conducted [4,8,25–30]. However, to
the best of our knowledge, no study has focused on local stress values in an FSI multiphysics system, and many
theoretical and numerical issues still need to be resolved [31–43]. Based on the recently developed monolithic analysis
approach [5,6] and the STOM theories for linear structures [44–49], we present a new stress-based TO framework for
FSI systems.

1.1. Issues related to topology optimization (TO) for fluid–structure interactions (FSIs)

Several important issues need to be addressed for a successful STOM for an FSI system. In a structural TO method,
the general procedure begins by optimizing the spatially varying density variables assigned to each finite element
as shown in Fig. 1. In the solid isotropic material with penalization (SIMP) method, very weak Young’s moduli
are assigned to finite elements for void domains, and nominal Young’s moduli are assigned to finite elements for
structural domains to simulate morphological alternations in pure structural optimization problems for stiff structure or
compliant mechanism, as shown in Fig. 2(a). This artificial material usage method is also used for other TO problems
with other areas of physics such as thermal, electric, magnetic and fluid physics. Unlike pure structural optimization
problems, the TO simulation procedure for FSI systems is complicated and ambiguous because the material properties
of the Navier–Stokes equation and the linear elasticity equation, as well as the two governing equations themselves
must be interpolated with respect to the assigned density design variables, as shown in Fig. 2(b). Another related
complication is that, there is ambiguity in interpolating the governing equations and the coupling boundary conditions
for FSI for intermediate design variables; however, this issue is not related to the intermediate design variable, i.e., gray
element or postprocessing, after optimization convergence. Because of these mathematically ambiguous conditions,
the state-of-the-art staggered or monolithic computational analysis methods developed to date for FSI systems have
many difficulties and limitations that restrict the locally defined stress constraints. Although several new analysis and
optimization methods have been proposed for STOMs for linear and geometrically nonlinear structures, the STOM
issues for this particular multiphysics system remain problematic and require further mathematical and scientific
modifications and contributions.

Overcoming the aforementioned interpolation issues for the two governing equations and the intermediate design
variables, we based on our previous research, which analyzed the finite element-based monolithic analysis procedure
on FSI systems [5,6]. The most important differences between our monolithic analysis and the existing staggered and
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Fig. 1. Topology optimization practice for structural problems.

a

b

Fig. 2. Difficult issues related to TO of FSIs. (a) Evolution of existing holes for the linear elasticity problem (easy to solve in TO) and (b) evolution
of existing holes for FSI problems (issues: interpolating the fluid and the solid equations, imposing the coupling boundary conditions and the
unclear domains with intermediate design variables).
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Fig. 3. The monolithic analysis and design method for a steady-state FSI problem without explicit interaction boundaries [5,6]: material values
for structural and fluid domains (where Cs and C f are the Young moduli of the structure and fluid, respectively, and αs and α f are the inverse
coefficients of the permeability of the solid and fluid, respectively).

monolithic approaches are that the linear elasticity and the Navier–Stokes equation are defined at the unified analysis
and design domains and that the interaction boundary conditions are treated as domain forces for the continuity of
traction and the clamp condition for the continuity of velocity as shown in Fig. 3. Because the analysis approach
proved useful in compliance minimization and multiphysics actuator design problems, e.g., [5,6,50], it is logical to
employ this analysis method for the present STOM problem.

1.2. Three inherited issues for STOM: stress singularity, too many constraints and high linear constraints

In addition to the three aforementioned issues, there are additional theoretical issues related to the STOM that
need to be addressed to develop a successful STOM for an FSI multiphysics system, namely, the singularity issue, the
element wisely defined stress constraint issue and the highly nonlinear constraint issue. The singularity issue in the
STOM indicates that the stress constraints defined at the centers of the finite elements of the void domain should be
removed at every iteration of the optimization [44,48,51,52]. Many relaxation methods have been proposed to resolve
this issue [44–49]; this research implements the qp-relaxation method owning to its simplicity and effectiveness. In
the qp-relaxation method, the penalty parameters of the density design variables for the constitutive matrices for the
forward FE analysis and the stress analysis are set differently. Because the fluidic force is only acting on the interacting
surfaces and varies depending on the design variables, the basic assumption of the constant force in the STOM is
violated. This violation, however, does not adversely affect the applicability of the qp-relaxation method to the pure
structural optimization problem, i.e., minimizing the volume subject to the stress constraint for a pure elastic structure,
for this FSI multiphysics simulation. Furthermore, as the stress constraints are defined at every finite element, an
optimization problem with many local stress constraints should be solved by an efficient optimizer [49,53,54]. Many
remedies have been proposed, such as the aggregation function [55,56], the p-norm [1], and the segregated global
stress norms [36,52,56]. Finally, the highly nonlinear behavior of the stress constraints needs to be addressed [52,57].
To resolve these issues, we implemented previous knowledge, accumulated from the aforementioned related research
and various numerical approaches.

This paper is organized as follows. In Section 2, we describe the basic equations for the FSI. In Section 3, we
describe our development of the present STOM formulation. In Section 4, we present several numerical examples to
show the advantages and disadvantages of the present STOM procedure. In Section 5 we present our conclusions and
suggest directions for future research topics.

2. Unified monolithic FE formulation for steady-state FSI

In this section, we review the employed monolithic approach which was basically developed for the TO of the
FSI. We first describe all of the formulations, and subsequently explain how we parameterized the involved material
parameters for the TO. While minimizing the volume and constraining the local stress values, the fluid and structural
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domains inevitably change their shapes continuously, and change their existences discontinuously. This is difficult to
model using the existing staggered or monolithic analysis methods in connection with the density-based TO; with the
level set-based TO method or the phase field-based TO method which represents topological designs with explicit
surfaces, the design changes between solid and fluid may be traceable from an engineering point of view [5,6]. To
alleviate these complications, the finite deformation tensor (or the deformation gradient) was introduced to formulate
the coupled multiphysics equations that reflect the continuous morphological changes of the fluid and structural
domains; the finite deformation tensor, F, is one of the basic formulas in continuum mechanics and is defined as
the partial differentiation of the current coordinate, x, with respect to the undeformed coordinate, X. This deformation
tensor can be used to correlate the differential operators and the integral operators of the two undeformed/deformed
configurations as well as quantities such as mass density, strain, and volume of the two configurations such as shown
in (1)–(4).

x = X + u, F =
∂x
∂X

(1)

Differential operators : ∇X = FT
∇x, ∇x = F-T

∇X (2)

Integral operators :


tΩ

( )dΩ =


0Ω

( ) ∥F∥ dΩ (3)

0Ω = m
0
sΩ ∪ m

0
fΩ , tΩ = m

t
sΩ ∪ m

t
fΩ . (4)

In the preceding equations, the undeformed fluid domain m
0
fΩ and the undeformed solid m

0
sΩ domain are defined

inside 0Ω and the deformed fluid domain m
t
fΩ and the deformed solid domain m

t
sΩ are defined inside tΩ . By applying

the above finite deformation tensor, the fluid equation for fluid velocities and pressures at the deformed domain tΩ in
the monolithic approach can be redefined in the undeformed domain 0Ω as follows:

−


0Ω

δvT

ρ(v · F−T

∇Xv)


∥F∥ dΩ =


0Ω

F−T
∇XδvTT f ∥F∥ dΩ +


0Ω

αδvTv ∥F∥ dΩ −


0Γ p∗

pp∗ndΓ

(5)

−


0Ω

δpT
{(∇x · v)} ∥F∥ dΩ = 0 (6)

T f = −pI + µ(∇x v + ∇x vT) (7)

No-slip boundary condition:v = 0 on t
f Γ v0(u) (8)

Inflow/outflow boundary condition:v = v∗ on t
f Γ v∗

(u) (9)

Interfacing boundary condition : v =
du
dt

(≡ 0 for steady state flow) on t
f Γ i

(u) (10)

Pressure boundary condition : T f · n = pp∗n on t
f Γ p∗

(u). (11)

Because the derivations and manipulations of the Navier–Stokes equations are lengthy, the final form defined at the
undeformed domain 0Ω is provided by following the notations in [5,6]. The fluid velocity field and pressure are
denoted by v and p, respectively and the fluid density and the dynamic viscosity for the Newtonian flow are denoted
by ρ and µ, respectively. The Dirichlet boundary conditions are defined along t

f Γ v0 , t
f Γ v∗

, and t
f Γ i

(u) for the no-slip
boundary conditions, inflow/outflow boundary conditions, and interfacing boundary conditions, respectively. With the
normal vector n, the Neumann boundary condition for the applied pressure, pp∗ , is defined at t

f Γ p∗
(u). The inverse

coefficient of the permeability of fluid is α and is used for the simulation of fluid motions of solid domains, i.e., solid
domains of zero velocities, in the TO. With a sufficiently large value of α inside the structural domain and at the
coupling boundary, the fluidic velocities approach zero as follows [58]:

α = αmax ≫ 0 for solid or interface boundary
α = 0 for fluid.

(12)
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Fig. 4. The developed optimization procedure.

a b

Fig. 5. STOM problem definitions with the pressure input at the center slot at the right side (design domain: gray domain, ρ = 1000 kg/m3,
µ = 1.002 Pa s, Cs = 10 000 N/m2, ν = 0.31, C f = Cs × 10−6 N/m2, αmax = 109).

With the finite deformation tensor in (13), the linear elasticity equation of the deformed domain is transformed into
one of the undeformed domain. Because the external elastic energy due to the fluid stress at the coupling boundary is
dependent on structural displacements, the deformation tensor is also applied after using the divergence theory for the
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Table 1
Interpolated material properties of the present monolithic approach for the FSI problem.

Linear elasticity equation Fluid equation
Young’s modulus (C) Filter for fluid stress (Ψ ) Inverse permeability (α)

Solid Cs 1 α ≫ 0
Fluid C f ≪ Cs 0 0

where Cs and C f are the Young moduli of the solid and fluid, respectively. Young’s modulus
of the fluid (C f ) is set to a much smaller value than the value of Cs .
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Fig. 6. Maximum von-Mises stress times density with different penalization.

right side of Eq. (13):
0Ω

δST
· TsdΩ =


0Ω

Ψ · F−TδS(u, δu)T
· p ∥F∥ dΩ +


0Ω

Ψ · F−Tδu · ∇X p ∥F∥ dΩ (13)

Ψ =


1 for solid domain
0 for fluid domain

(14)

S =
1
2
(∇T

Xu + ∇Xu), Ts = CS (15)

S(u, δu) =
1
2
(∇T

x u + ∇xu), ∇x = F-T
∇X (16)

where the linear strain S and the associate stress Ts are defined above. The linear constitutive matrix is denoted by C.
By solving the coupled equations (5) and (6) for the fluid and (13) for the solid, the steady-state FSI system can be
analyzed successfully.
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(a) Pin = 50 N, Reynolds = 0.7071 for void and 0.3688 for solid.

(b) Pin = 100 N, Reynolds = 1.8808 for void and 0.7756 for solid.

Fig. 7. Maximum and minimum von-Mises stress values and different pressure inputs.

2.1. Interpolation of both physics by interpolating the material properties

The most important feature of the aforementioned monolithic approach is that the mutual coupling analysis of fluid
and structure can be accomplished by interpolating Young’s modulus of elasticity, the filter Ψ for fluid pressure, and
the inverse permeability coefficients listed in Table 1.

3. Stress-based TO formulation

The classical STOM problem can be setup as follows:

Minimize
γ

V (γ ) =

N E
e=1

γeve

subject to ⟨σmax⟩ ≤ σ ∗

(17)

⟨σmax⟩
iter

≡ citer
⟨σP N ⟩

iter (18)

⟨σP N ⟩
iter

≡


e

 σe

σ ∗

p
γe

1/p

(e ∈ [1, 2, . . . , N E − 1, N E]) (19)

citer
= αc

σ iter−1
max /σ ∗

⟨σP N ⟩
iter−1 + (1 − αc) citer−1, (0 ≤ α ≤ 1) (20)

σe =
1

√
2


σx − σy

2
+

σy − σz

2
+ (σx − σz)

2
+ 6


σ 2

xy + σ 2
yz + σ 2

xz

1/2
. (21)
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(c) Pin = 200 N, Reynolds = 4.9322 for void and 1.70284 for solid.

(d)

Fig. 7. (continued)

Without a loss of generality, some conventional notations of the finite element method and the TO are used in the
aforementioned formulations [31–42,59–64]. The volume of the eth finite element is ve and the design variables
assigned to the NE elements of the design domain are denoted by γ . The objective function, i.e., volume, is V . To
cope with the many constraints issue, the locally defined stress constraints are aggregated by the stress constraints with
the stress p-norm ⟨σP N ⟩

iter. Unlike the STOM for linear structures, only one aggregated constraint is used because
the STOM for FSI systems with more than one regional constraint makes the TO procedure unstable. In (18), as the
p-norm stress is not the real maximum value of the von-Mises stress values, the correction factor citer is introduced
with the damping factor αc. Our numerical tests show that a real value close to one constrains the inequality stress
condition tightly for the first few optimization iterations and then a real value close to zero loosely constrains them
for subsequent iterations. In addition, although the maximum stress values are same, depending on the number of
elements in Eq. (19), the p-norm values can be different. For example, the p-norm value of [0 0.1 0.2 . . . 0.8 0.9 1]
becomes 1.2616 with a value of 4 for p, whereas a p-norm value of [0 0.01 0.02 . . . 0.98 0.99 1] becomes 2.1279 with
a value of 4 for p. This complication concerning the p-norm when attempting to solve the STOM problem can be
partially alleviated by a correction factor, namely that the maximum allowable von-Mises stress value σ ∗, is provided
by engineers to constrain the eth stress value σe. Here this value αc, is set to a real value between 1 and 0.5. Rather
than using the p-norm, it may be possible to use the Kreisselmeier–Steinhauser function for the enhanced aggregation
method [65].

3.1. qp-relaxation method and the interpolation functions of the SIMP method

In structural TO, the continuous design variable should be adopted to relax the difficult optimization problem,
arising from the discrete 0-1 design variable, into an easy optimization problem with a continuous design variable.
That is done by varying a small number to one using simple interpolation functions. In the STOM, these interpolation
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a

b

c

d

Fig. 8. Optimized layouts constraining the von-Mises stress values in the design domain Ωstress with the separator.

functions should be carefully devised to prevent the stress singularity that makes the TO procedure unstable. To
overcome this singularity issue, several innovative approaches have been proposed (see [27,31,42,44–48,52,54]). This
research adopted the qp-relaxation approach, which formulates the constitutive matrices for the static and sensitivity
analyses for the stress constraints differently, using the simple power laws as follows:

Forward analysis : Ce = γ n
e (Cs − C f ) + C f (22)

Sensitivity analysis : SCe = γ ns
e (Cs − C f ) + C f (23)

where the penalization factors for the forward analysis and the sensitivity analysis are n and ns , respectively. The
assigned design variable is γe for the eth element. To denote the constitutive matrices of the eth finite element for
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e

f

g

h

Fig. 8. (continued)

the forward analysis and the sensitivity analysis, Ce and SCe respectively, are used. The constitutive matrices for the
solid domain and fluid (void) domain are denoted by CS and C f , respectively. In addition, the other functions and
properties are interpolated similarly.

Ψ = γ
nfilter
e (24)

α(γe) = αmaxγ
nper
e . (25)

Note that the maximum inverse permeability is denoted by αmax and the penalty factors of the fluid pressure filter
and the inverse permeability are denoted by nfilter and nper, respectively. Furthermore the polynomial interpolation
functions of Eqs. (24) and (25) can be chosen as different functional forms if the physical interpretations of zero and
one design variables match with those of the fluid and the solid, respectively.
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Fig. 9. Optimization results with the penalization for the solid and the void convergence.

4. Optimization examples

This section outlines our solutions to some STOM problems that consider the effects of the FSI to show the
validity and limitations of the STOM with the monolithic analysis approach allowing for free material distribution
in conjunction with the TO. The adjoint variable method was used for the calculation of the sensitivity values of
the global p-norm stress. The element volumes are the sensitivity values of the objective function (volume). For
an optimizer, we combined the method of moving asymptotes with the developed analysis codes [66]. The overall
procedure is shown in Fig. 4. The material properties and the boundary conditions of the numerical examples are
arbitrarily chosen to show the validity of the present approach and the effect of the FSI on optimal layouts.

4.1. Example 1: channel problem

For the first design example, we considered a STOM problem in which a thick elastic bar separated the left fluidic
domain (0.001 m × 0.005 m) from the right design domain (0.03 m × 0.01 m) in Fig. 5(a). The design domain is
discretized by Q2-P1 fluidic elements satisfying the inf–sup condition and the second order structural plane-strain
elements. The objective of TO is to determine an optimal layout that minimizes the volume subject to the local
stress constraints at the domain Ωstress, i.e., a STOM for a low Reynolds number flow. Because of the vertical elastic
separator and the laminar flow toward the right direction, this optimization problem for Fig. 5(a) becomes relatively
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Max stress for void structure

Max stress for soid structure

Fig. 10. The relationship between the stress limit and the mass usage and maximum stress values with different pressure inputs.

Fig. 11. An optimized layout for a pressure input of 175 Pa, determined by setting the maximum allowable stress to 2988 Pa.

easy to solve. In other words, the fluidic force exerted on the elastic separator do not change significantly with
respect to the intermediate designs and an elastic supporting structure should be designed so that it constrains the
p-norm mechanical von-Mises stress to a prescribed allowable stress value. To the best of our knowledge, this type of
multiphysics STOM design problem has not yet been considered. To test the effects of the penalizations of (22) and
(23) in the stress singularity issue, the design variables of the design domain rendered by the gray color are set to a
single design variable, and the representative design variable is uniformly varied by void to solid incrementally. The
maximum von-Mises stress times the density is plotted in Fig. 6. As observed in the stress-based TO for a pure elastic
structure, the penalization factors affect the singularity of this multiphysics system. To resolve the singularity issue,
the penalization of Young’s modulus in the forward analysis, n, should be set to a higher value than the penalization
in the sensitivity analysis, ns . From our numerical tests, the combinations of the penalization values resulting in their
difference to be a high number, i.e., n − ns > 2.5, are recommended.
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(a) Optimal layout
(79.95%, σ∗

= 500 Pa).
(b) Optimal layout
(49.12%, σ∗

= 600 Pa).

Fig. 12. Sensitivity filtering effect (optimal layouts with the sensitivity filtering).

In the present STOM formulation of (11), it is important to choose an appropriate allowable stress limit. For
example, with an unrealistically low stress limit, even a solid structure may not satisfy the stress constraint and with
an unrealistically high stress limit, a void structure may be obtained. From out observation concerning the allowable
stress limit, the maximum stress values of the solid and the void designs are calculated by varying the input pressure
in Fig. 7 for the boundary condition of Fig. 5(a) before solving the STOM for the FSI structure. As expected, the
stress values of a solid structure are lower than those of a void structure. Inside the bounded stress region of Fig. 7,
some local optimum designs can exist. Based on this, we were able to determine optimum designs for 100 N/m2 of
input pressure in Fig. 8 with various maximum stress limits, ranging from 500 to 3000 Pa, with the simple two bar
type design of Fig. 8 supporting the elastic separator, for which the von-Mises stress distributions are similar to that
of a sharp triangle structure. By reducing the magnitude of the allowable stress limit, thicker supporting structures
with more mass can be obtained. Owing to the limitations of the p-norm approach and the coefficient update-rule in
(20), as well as the highly nonlinear constraint, especially with higher penalization factors in (22)–(25), the present
designs are local optima and the relationship between the mass usages and the maximum stress limits is plotted in
Fig. 10(a). As seen in Fig. 10(b), the maximum von-Mises stress values of the designs for the different pressure
inputs are calculated, showing that the stress responses of the designs monotonically increase with respect to the
magnitudes of the pressure input. To test the locality of the optimum design, by setting the allowable maximum stress
value [i.e., approximately 2988 Pa of the design in Fig. 8(b) for a pressure input 175 Pa], the optimum design in
Fig. 11 can be obtained. This design satisfies the constraint and the mass usage is approximately 13.96% and uses
less material than Fig. 8(b). However, the layout and the stress responses are similar to the design in Fig. 8(b) and
its responses. In Fig. 8(g), there are some intermediate design variables at the right side of the vertical beam. As the
design variables interpolate the physics, it is unclear how to interpret these areas. Because the fluid does not penetrate
the vertical beam, in this particular case, the area with the intermediate design variables works as the solid domain
with the intermediate design variables. To remove this uncertainty, we can add the explicit penalization to the object
or the constraint, or it is possible to use the level-set or the phase field-based topology optimization. In this research, to
remove the intermediate design variables, one of the easiest way is to introduce the penalization term to the objective
function or add the constraint to minimize the number of intermediate design variables.

Minimize
γ

V (γ ) +

N E
e=1

βγe × (1 − γe) =

N E
e=1

γeve +

N E
e=1

βγe × (1 − γe)

subject to ⟨σmax⟩ ≤ σ ∗

(26)

where the penalization factor is β. This penalization factor is chosen by trial and error considering the mass volume.
With a too large value, some optimal layouts violating the constraint are obtained. The above formulation is applied
to some designs of Fig. 8 with intermediate design variables in Fig. 9. As illustrated, the intermediate design variable
issue can be partially overcome.

To obtain the aforementioned designs in Fig. 8, we applied the mesh-independent filter to the gradient of the p-
norm stress constraint. To test the function of the sensitivity filter in this multiphysics system, we also tested some
designs without the sensitivity filters in Fig. 12. In this experiment, some local dots, checkerboards and unusual, small
structures appeared, owing to the nonlinearity of the stress constraints and the p-norm stress measure. It is interesting
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(a) Stress based design layout (mass: 22.11%, σ∗
= 1000 Pa).

(b) Compliance minimization layout (mass: 22.11%, max stress: 1034 Pa). (c)

(d)

Fig. 13. Comparison with the compliance minimization problem.

that, unlike what is found in other structural TO, the sensitivity filter of the p-norm actually helps the optimizer to
constrain it under a prescribed stress limit because it filters some of the changes of the sensitivity values that are caused
by changes in the magnitudes of the stress values. Furthermore, to check whether the results of the present optimization
algorithm are optimized from a stress point of view, the compliance minimization problem is solved with the mass
usage of Fig. 8(c), i.e., 22.11%, in Fig. 13(b). Fig. 13(c) and (d) compare the compliances and the maximum stresses of
the design of Figs. 8(c) and 13(b). From these comparisons, it is recognized that the present method provides optimal
layouts that are superior to those of the compliance minimization problems from a stress point of view.
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a

b

c

Fig. 14. Optimized layouts with the open channel.

4.2. Example 2: open channel problem

For the second numerical test, we considered a more difficult optimization problem, by setting the middle section
of the elastic separator to be a fluid, as shown in Fig. 5(b). Because the thick bar-type elastic structure does not stop
the fluidic motion toward the right, the optimization algorithm should determine the optimal interaction boundaries
between the fluid domain and the solid domain as they appear in the design domain Ωstress. In the first numerical
test, a solid structure with the right design domain was capable of supporting the vertical elastic structure without
significantly alternating the fluidic force acting on the surface of the bar-type structure. Consequently, the von-Mises
stress inside the objective domain can be easily constrained, which is one of the characteristics of the first numerical
example. Conversely, in the second numerical test in Fig. 14, the fluidic force exerted on the interaction boundaries of
the design structure took the form of the external force. This fluidic force increases or decreases the magnitudes of the
von-Mises stress randomly depending on the intermediate design, which makes the global p-norm stress constraint
non-monotonically increase or decrease. Therefore, the optimal mutually coupling boundaries, as well as the elastic
structure should be designed using the present optimization algorithm with which the various optimal layouts in
Fig. 14 can be obtained. In these designs, the elastic structural members only appear behind the upper and the lower
elastic bars so as not to interrupt the fluidic motion toward the right open channel. Unlike the designs in Fig. 8, the
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(a) Design for Fig. 14(a).

(b) Design for Fig. 14(b).

(c) Design for Fig. 14(c).

Fig. 15. Vanishing stress constraints for the designs in Fig. 14.

linear combination between mass usages and stress limit is not observed because of the local optima problem. Because
the fluidic force is reduced to two thirds of the fluid force, we found that the designs in Fig. 14 utilize less material
compared with the designs in Fig. 8 that use the elastic separator. In Fig. 15, the vanishing stress constraints are
represented.

Because of the stress singularity issue, the combination of the penalty factors for the Young modulus for the forward
analysis and for the stress analysis is important. For the numerical examples shown above, 3 and 0.5 were used for the
penalty factors. The other penalty factors are set to an integer ranging from 3 to 5. To show the effects of these penalty
values on the optimal designs, Fig. 16 shows some layouts with the different combinations of the penalty factors.
Similar designs can be obtained with some different mass usages depending on the values of the penalty factors.

4.3. Example 3: beam on channel

For the third optimization example, we considered the STOM problem on the supporting structure inside the chan-
nel of Fig. 17. The elastic bar having dimension of 0.00006 m × 0.0001 m was located in the middle of the channel.
Without this elastic bar, no-structure becomes an optimal solution; however, this is not ideal and it shares similarities
with the no-structure issue in that the void structure becomes a local optimum of the STOM in a pure structure prob-
lem with fixed forces. By minimizing the compliance subject to the mass constraint, we obtained the design in Fig. 18.
By minimizing the volume subject to local stress constraints, the slender bar type obliquely supporting the structures
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Fig. 16. Effects of the penalty factors with an open channel.

can be obtained in Fig. 19. As in the first and the second numerical examples, the design with the smaller stress limit
value uses more mass than the other design with the larger stress limit value, which validates the present development
for the STOM considering FSI.

4.4. Example 4: internal structure design of an airfoil

For the next optimization example, we design the internal structure of an airfoil due to the aerodynamic force in
Fig. 20. For a test, we choose the airfoil called DELFT DU84-132V3 airfoil and make a design domain inside the
airfoil. And we artificially make a fluid input as shown in Fig. 20(b) and this fluid input exerts fluidic force to the
airfoil. By applying the present approach, the STOM problem with the different stress limits are solved in Figs. 20
and 21. As expected, the internal structures reinforcing the airfoil structure can be obtained (see Fig. 21 and Fig. 22).

4.5. Example 5: drag-based optimization

The purpose of the present study is to present the stress-based topology optimization considering the fluid–
structure interaction. Besides this, the present algorithm can be applied to design aerodynamic structure. To show the
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Fig. 17. STOM problem definition inside a channel (ρ = 1000 kg/m3, µ = 1.002 kg/ms, Cs = 3 GPa, ν = 0.3, C f = Cs × 10−9 N/m2,

αmax = 109, maximum fluid velocity = 0.3 m/s).

Fig. 18. Compliance minimization problem (Max stress = 1.5514 × 107 Pa, Mass 10%).

applicability of the present approach, we consider the drag-based optimization. First we derive the moment equilib-
rium equation in x direction for the control volume except the airfoil.

From continuity, the mass ratios of the inlet and the outlet have the following conditions.

ṁ1 = ṁ2, ρ


1

u1dy = ρ


2

u2dy (27)

where the velocities of the inlet and the outlet are denoted by u1 and u2, respectively. The input and the output mass
ratios are denoted by ṁ1 and ṁ2, respectively. The free body diagram in Fig. 23 can be obtained. In the figure, the
x-force from the airfoil on the air, the y-force from airfoil on the air, and y-force due to the buoyance are denoted by
FD , FV , and WA, respectively. Note that we choose the control volume surrounding the airfoil in a wind tunnel test.
From the x-momentum equilibrium equation, the drag of the airfoil can be obtained.

− FD = ρ


2

u2
2(y)dy −


1

u2
1(y)dy


b +


2

pdy −


1

pdy


b (28)
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a

b

Fig. 19. Optimal layouts for channel fluid.

where the thickness of the airfoil and the wind tunnel, b, is set to 1. In this research, the following optimization
problem is considered.

Minimize
γ

FD

subject to V ≤ V 0
(29)

where the allowed mass ratio is set to V 0. Although the problem is not related to the stress-based optimization, it can
show one of the possible applications of the present approach. In order to test the effects of the outer design domain
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b

a

Fig. 20. Stress minimization problem due to the aerodynamic force. (a) The DU84-132V3 Airfoil (V = 0.5 m/s, ρ = 1 kg/m3, µ = 1 Pa s,
Cs = 109 N/m2, ν = 0.3, C f = Cs × 10−6 N/m2, αmax = 109), and (b) the boundary condition.

(a) Mass ratio = 2.7800%. (b) Velocity.

Fig. 21. Optimization results with different stress limits. (a) Optimal layout (σ∗
= 10 N/m2) and (b) velocities.

as well as the inner design domain, the design domains are set as in Fig. 24. To minimize the drag force which is
approximately proportional to the cross sectional area, the design variables of the outer design domain become zeros
and the internal structures appear to minimize the deflection in Figs. 25 and 26. From an objective point of view,
their values are not different to each other. That is because the drag force is approximately proportional to the drag
coefficient, the cross section, the fluid density and the square of the fluid velocities.

FD ∝ CDrag coefficient ACross sectionρ f luid V 2. (30)
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(a) Mass ratio = 3.6206%. (b) Velocity.

Fig. 22. Optimization results with different pressure inputs. (a) Optimal layout (σ∗
= 13 N/m2) and (b) velocities.

a

b

Fig. 23. Drag-based optimization. (a) A propeller (DELFT DU84-132V3 AIRFOIL) inside a channel test section, and (b) free-body diagram of the
propeller with the control volume around the airfoil excluding the airfoil.

5. Conclusion

In this study, a new stress-based TO that minimizes the structural volume subject to local stress constraints for
an FSI structure was developed. To analyze an FSI system, staggered or monolithic analysis methods have been
successfully applied in previous studies; however, these analysis procedures, which require explicit definitions of
structure and fluid, become prohibitively complicated in connection with the density-based TO. Because the fluidic
forces exerted on a structure change depending on intermediate designs and the governing equations should be
interpolated with respect to the design variables, the STOM that considers FSIs remains a critical issue in TO.
To solve this intricate TO problem successfully, the monolithic analysis approach, used in conjunction with the
Navier–Stokes equation and the linear elasticity equation coupled with the deformation tensor, was employed. To
address the singularity issue of STOM, the qp-relaxation method setting the different penalizations of the SIMP for
the forward analysis and the sensitivity analysis is employed. With the monolithic analysis and the qp-relaxation
method, the STOM problem minimizing the volume subject to local stress constraints can be solved. Because the
interaction boundaries between solid and fluid are subject to change, unlike the STOM with pure structural analysis,
the optimization algorithm should determine the interaction boundaries as well as the optimal material distribution,
and many local optima exist. It is also observed that the regional constraint method which sorts elements with respect
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Fig. 24. Design domain of drag-based optimization. (ρ = 1 kg/m3, µ=1 Pa s, Cs = 109 N/m2, ν = 0.3, C f = Cs × 10−6 N/m2, αmax = 109).

(a) Layout. (b) Velocities.

Fig. 25. Optimization results with different stress limits. (a) Optimal layout (mass ratio = 10%, Drag force = 45.7509 N) and (b) velocities.

Fig. 26. Optimization results with different stress limits. (a) Optimal layout (mass ratio = 50%, Drag force = 45.7503 N) and (b) velocities.

to the magnitudes of the von-Mises stresses and divides them into groups for calculating the p-norm stress for local
stress constraints is not effective in the present optimization formulation because the active–inactive alternations of
the regional constraints make FSI analysis and optimization unstable. Alternatively, it may be possible to use the
Kreisselmeier–Steinhauser function, which it should be tested in future research. Because of this instability, the one
global p-norm stress was implemented. The regional constraint method for an FSI structure should be developed
with a view toward future developments because in the present development, locally smoothed designs minimizing
the stress concentrations cannot be obtained, which is one of the limitations. Furthermore, it is a very challenging
topic to incorporate with the turbulence flow modeled with the Spalart–Allmaras model or the k–ε model. Some other
aerodynamic designs should be studied further to show the effect of the stress constraint. In conclusion, this study
developed a new STOM problem considering FSI with the monolithic analysis method.
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