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SUMMARY

The topology design optimization of ‘three-dimensional geometrically-non-linear’ continuum structures
is still difficult not only because of the size of the problem but also because of the unstable continuum
finite elements that arise during the optimization. To overcome these difficulties, the element connectivity
parameterization (ECP) method with two implementation formulations is proposed. In ECP, structural
layouts are represented by inter-element connectivity, which is controlled by the stiffness of element-
connecting zero-length links. Depending on the link location, ECP may be classified as an external ECP
(E-ECP) or an internal ECP (I-ECP). In this paper, I-ECP is newly developed to substantially enhance
computational efficiency. The main idea in I-ECP is to reduce system matrix size by eliminating some
internal degrees of freedom associated with the links at voxel level. As for ECP implementation with
commercial software, E-ECP, developed earlier for two-dimensional problems, is easier to use even for
three-dimensional problems because it requires only numerical analysis results for design sensitivity
calculation. The characteristics of the I-ECP and E-ECP methods are compared, and these methods are
validated with numerical examples. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this investigation, two objectives are pursued: (i) the expansion of the existing version of
the element connectivity parameterization (ECP method) for the topology optimization of three-
dimensional continuum bodies exhibiting geometrical non-linearity [1, 2] and (ii) the development
of a new computationally-efficient version of the ECP method. Even with the maturity of the
density-based topology optimization methods using the Solid Isotropic Material with Penaliza-
tion (SIMP) scheme, the topology optimization of geometrically non-linear structures is still a
challenging problem because of the numerical instability in low-density regions [3, 4].

Figure 1 shows some examples where unstable elements appear in two- and three-dimensional
structures. The density-based SIMP method varies element densities to define desired topological
layouts. Thus, low-density elements may become inverted and have negative volumes or areas
under large displacements. These phenomena are responsible for poor convergence or divergence
in numerical analysis. Although some density-based methods were suggested [5–9] to overcome
these difficulties, they still encountered difficulties especially for three-dimensional geometrically
non-linear structures; the topology optimization of such structures has been seldom considered
[3, 10, 11]. Both numerical stability and computational efficiency are required to optimize these
structures successfully. Therefore, a new ECP approach to fulfill these two criteria is proposed in
this study. Also, the expansion of the existing ECP method mainly developed for two-dimensional
problems to three-dimensional problems will be also discussed because it can be implemented on
commercial software.

1.1. Element connectivity parameterization method

The element connectivity parameterization (ECP) method has been recently proposed to resolve the
numerical instability in two-dimensional problems [1]. Unlike popular density-based approaches,

Figure 1. Examples of unstable elements under large displacement:
(a) the two-dimensional case; and (b) the three-dimensional case.
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1280 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 2. Modelling comparison: (a) a given topological layout; (b) modelling by the element density
method; and (c) modelling by the element connectivity parameterization method.

the ECP method represents structural layouts by the degrees of the inter-element connectivity
controlled by the stiffness of the zero-length elastic links connecting inter-element nodes, and not
by the element density-dependent stiffness. Since the discretizing finite elements hold the original
material properties throughout the optimization process, no numerical problem related to low-
density elements occurs. It is interesting to note some similarity between the present ECP approach
and the discontinuous Galerkin method (see, e.g. Reference [12]). The discontinuous Galerkin
method is not developed to treat the low-density element problem discussed above, but both the
discontinuous Galerkin method and the ECP method allow element interfacial discontinuity.¶

To compare the main difference between the ECP method and the element density method, let
us consider a layout in Figure 2(a). Figure 2(b) shows the model used by the density method to
represent the layout in Figure 2(a) while Figure 2(c) shows the model used by the ECP method.
Because plane or volume elements in the ECP method [1, 2] remain solid and a topology is defined
by a distribution of the stiffness of zero-length links, the unstable phenomena caused by weak
elements cannot occur.

In spite of the apparent advantage of the ECP method in numerical stability, the model shown in
Figure 2(c) requires more nodes and consequently, more computation time. Thus, the ECP mod-
elling increases the matrix size by four times and by eight times than in the element density based
approaches for two-dimensional cases and three-dimensional cases, respectively; the computation
time increase resulting from the increase system size especially for three-dimensional problems
may not be overlooked. However, the existing ECP method developed in References [1, 2] can be
directly implemented by using any commercial software such as ANSYS. In the ECP implemen-
tation of References [1, 2], the analytic sensitivity for the end compliance can be obtained without
having a computer source code.

A new version of the ECP method that does not increase the system matrix size is also developed
in this investigation. This new version, called the internal ECP method (in short, I-ECP method), is
very useful in dealing with three-dimensional problems requiring a large amount of computation.
The key idea of the I-ECP method is the static condensation of some degrees of freedom at pixel

¶During the revision, the penalty method for topology optimization [13] utilizing the discontinuous Galerkin
formulation is brought to our attention. In Reference [13], the relation between the penalty method and the ECP
method is also briefly remarked.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
DOI: 10.1002/nme

 10970207, 2007, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1808 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1281

(or voxel) level. To distinguish I-ECP from the existing ECP method, the existing ECP method
in Reference [1] will be called the external-ECP (E-ECP). Unlike the E-ECP method connecting
solid elements by external links, the I-ECP assumes that each element is supported by internal
links. The detailed characteristics of I-ECP and E-ECP will be explained and compared in the
Section 2.

2. EXTERNAL AND INTERNAL ECP FORMULATION

2.1. Field equation for geometrically non-linear analysis

In this section, equations needed for topology optimization formulation of three-dimensional geo-
metrically non-linear structures will be briefly given. To consider geometrically non-linear effects,
the Green–Lagrangian strain ( t+�t

0�ij) and the second Piola–Kirchoff stress ( t+�t
0Sij) will be used.

All notations given in this section are based on Bathe [14]. The position and the displacement of
a generic point in a body at time t are denoted by t xi and t ui , respectively. The incremental form
of position and displacement can be written as (1) where the updated displacement from time t to
t + �t is denoted by ui

t xi = 0xi + t ui ,
t+�t ui = t ui + ui (i = 1, 2, 3) (1)

The Green–Lagrangian strain t+�t
0�ij is defined as

t+�t
0�ij =

1

2

(
�t+�t ui

�0x j
+ �t+�t u j

�0xi
+ �t+�t uk

�0xi

�t+�t uk

�0x j

)
(2)

The following linear constitutive equation relating t+�t
0�ij and

t+�t
0Sij at time t +�t will be used:

t+�t
0Sij =Cijkl

t+�t
0�kl (3)

where the matrix form of Cijkl may be written as

C= E(1 − �)

(1 + �)(1 − 2�)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
�

1 − �

�

1 − �
0 0 0

�

1 − �
1

�

1 − �
0 0 0

�

1 − �

�

1 − �
1 0 0 0

0 0 0
1 − 2�

2(1 − �)
0 0

0 0 0 0
1 − 2�

2(1 − �)
0

0 0 0 0 0
1 − 2�

2(1 − �)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

In Equation (4), E and � are Young’s modulus and Poisson’s ratio, respectively [14].
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1282 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

It is convenient to decompose the strain increment 0�ij into the linear term, 0eij and the non-linear
term, 0�ij as

t+�t
0�ij = t

0�ij + 0�ij, 0�ij = 0eij + 0�ij (5)

0�ij = 1
2 (

t
0uk,i 0uk, j ) (6)

0eij = 1
2 (0ui, j + 0u j,i + t

0uk,i 0uk, j + 0uk,i
t
0uk, j ) (7)

In terms of 0eij and 0�ij, the linearized principle of virtual work for the initial analysis domain 0V
can be written as∫

0V
Cijrs 0ers� 0eij d

0V +
∫
0V

t
0Sij� 0�ij d

0V = t+�t R −
∫
0V

t
0Sij� 0eij d

0V (8)

where the external force is denoted by t+�tR. After applying the standard finite element procedure
to Equation (8), a matrix equation representing the equilibrium can be derived. For numerical
analysis of the resulting equation, the standard Newton–Raphson procedure is used. The incremental
equations needed to solve the geometrically non-linear problem are as follows [12]:

t+�tU(k) = t+�tU(k−1) + �U(k), t+�tU(0) = tU (9)

�(t+�tU(k−1))︸ ︷︷ ︸
Residual Force

= (tK(k−1)
T )︸ ︷︷ ︸

Tangent stiffness matrix

�U(k) = t+�tR︸ ︷︷ ︸
External Force

− t+�t
0F

(k−1)︸ ︷︷ ︸
Internal Force

(10)

where tK(k−1)
T and t+�t

0F
(k−1) are the tangent stiffness matrix of plane or solid elements at time t

of iteration (k−1) and the internal force vector at time t+�t of iteration (k−1), respectively. The
displacement vector is denoted by t+�tU(k). The symbol t+�tR denotes the applied force vector
at time t + �t . See Bathe [14] for detailed expressions of tK(k−1)

T , etc.

2.2. External ECP

First, we will present how the existing E-ECP method developed for two-dimensional problems
can be extended to three-dimensional problems. The issues in the extension are how to define links
suitable for three-dimensional problems and how to construct a finite element model connected by
the links suitable for topology optimization (by using commercial finite element software). Figure 3
shows the suggested link modelling technique for three-dimensional structures discretized by solid
elements. The number of links will depend on the number of the solid elements interfacing the same
node. Link connectivity is illustrated in Figure 3(a), where ‘Connection’ stands for the location
where nodes of adjacent solid elements are connected. (A connection would be a global node in
the standard finite element modelling.) A typical three-dimensional layout represented by strong
and weak links (having high and low stiffness values, respectively) is illustrated in Figure 3(b).
Since solid elements are connected by external links, this ECP method will be called the external
ECP, in short, E-ECP. (The meaning of ‘external’ will be clear when the internal ECP method is
presented later.)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1283

Figure 3. The modelling technique of the E-ECP method applied to three-dimensional structures: (a)
illustration of solid elements connected by ‘zero-length’ links (The link stiffness controls the degree of

the inter-element connectivity.); and (b) a modelling example by the E-ECP method.

For the topology optimization of three-dimensional bodies, the link is assumed to have varying
stiffness in all of the three spatial directions. Thus, the stiffness matrix of an eth link connecting
nodes p and q shown in Figure 4 is defined as

klinke = lek
link
nominal (11)

where klinke and le are the stiffness matrix of an eth link and its stiffness value, respectively. In the
E-ECP method, le is parameterized as a function of the design variable �e that is assigned to every
link. Because the link is a one-dimensional element, the nominal dimensionless stiffness matrix

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
DOI: 10.1002/nme
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1284 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 4. An eth link connecting node p and q defined in the three-dimensional spatial space.

klinknominal can be written as

klinknominal =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1

−1 0 0 1 0 0

0 −1 0 0 1 0

0 0 −1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The stiffness value le can be parameterized by various functions but the following function, similar
to the RAMP interpolation function (see, e.g. Reference [4]), is selected in this work:

le = �
�ne

1 + (1 − �ne ) ×m
+ � (13a)

� = lmax − lmin, � = lmin (13b)

0= �LOW � �e � �UPPER = 1 (14)

In Equation (13), lmax and lmin are the upper bound and the lower bound of the link stiffness,
respectively, and n and m are penalization factors. Based on the findings of earlier studies [1, 2, 15],
lmax is set to be O(104 × kdiagonal) where kdiagonal denotes the diagonal term of the stiffness matrices
of adjacent elements. The value of lmin is chosen to be O(10−9 × kdiagonal). When �e approaches
either �LOW or �UPPER, the nodes connected by the eth link can be regarded to be connected or
disconnected.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
DOI: 10.1002/nme

 10970207, 2007, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1808 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1285

The topology optimization dealing with three-dimensional non-linear problems tends to yield
more local optima than the optimization dealing with two-dimensional problems. For instance, out-
of-plane buckling, non-existent in two-dimensional problems, can take place during optimization,
so unsymmetric layouts even under symmetric conditions may be obtained. To obtain stable close-
to-global optimal solutions, several strategies were tested. Among them, the continuation method
[6] that increases penalization factors over a few optimization stages was effective. In the present
numerical problems, lower factors of n between 1 and 3, and m between 0 and 3 were used for
the first optimization stage. Then, the values of the factors were increased and the optimization
processes were repeated.

To explain the ECP method, we begin with the well-known linearized equilibrium equation for
three-dimensional problems (the detailed procedure may be found in Reference [1])

(tK(k−1)
T )︸ ︷︷ ︸

Tangent stiffness
of the external ECP

�U(k) = �(k−1)︸ ︷︷ ︸
Residual Force

(15)

t+�tU(k) = t+�tU(k−1) + �U(k) (16)

�(k−1)︸ ︷︷ ︸
Residual Force

= t+�tR︸ ︷︷ ︸
External Force

− t+�t
0F

structure,(k−1)︸ ︷︷ ︸
Internal force from

the discretizing elements

− t+�t
0F

link,(k−1)︸ ︷︷ ︸
Internal force from
the zero-length links

(17)

tK(k−1)
T = tKstructure,(k−1)

T + Klink(c) (18)

tKstructure,(k−1)
T =

Np∑
i=1

t kstructure,(k−1)
T,i

t+�t
0F

structure,(k−1) =
Np∑
i=1

t+�t
0 f

structure,(k−1)
i (19)

In Equations (15)–(19), tK(k−1)
T , t+�tR, and �(k−1) denote the tangent stiffness matrix, the external

force, and the residual force vector at the (k − 1)th iteration, respectively. The symbols Np and
Ne denote the number of the discretizing solid elements and the number of zero-length links,
respectively. The quantities defined at the element level are represented by small letters such as
t kstructure,(k−1)

T,i .

The definitions of Klink(c) and t+�t
0F

link,(k−1) are

Klink(c) =
Ne∑
i=1

klinki (�i ) (20)

t+�t
0F

link,(k−1) =
Ne∑
i=1

[klinki × t+�t u(k−1)
i ] (21)

As shown in Figure 3(a), the most general connection case, Case I, has 28 links that connect
eight adjacent solid elements. However, only one design variable �i will be introduced to each

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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1286 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 5. A three-dimensional element surrounded by a set of zero-length link elements.

connection; therefore, the stiffnesses of all 28 links for Case I and 6 links for Case II and stiffness
of 1 link for Case III are controlled by a single design variable.

To represent the optimal structural layout from the optimized distribution of the link design
variables, the raster imaging scheme is used. This scheme calculates the density of a solid element,
�rastere as the average of the design variables of all links surrounding the element. For example, the
density of an eth solid element shown in Figure 5 is

�rastere = 1

Ns

Ns∑
i=1

�i (22)

where Ns is the number of connections surrounding the solid element. (In this case, Ns = 8.)

2.2.1. Use of finite element package for E-ECP models. Because all solid elements should be
connected by links for topology optimization, a standard finite element model is difficult to convert
to a model suitable for E-ECP. Thus, a systematic conversion technique described in Figure 6 is
developed. In Appendix, a Matlab file to convert an ANSYS finite element model to the E-ECP
model is presented. An ANSYS file reading the node and element information of the E-ECP model
is also presented as ECPMODEL.DAT in APPENDIX.

2.3. Internal ECP (I-ECP): a new development

Although E-ECP is easy to implement even with commercial software, the links introduced to
connect solid elements result in a substantial increase of the total degrees of freedom, i.e. the
size of the final system matrix. In three-dimensional cases, a connection point is shared by eight
solid elements so that the total system matrix size increases by about 8 times than that of the
standard density approach. The increased matrix size naturally requires larger memory and more
computation time. Therefore, a new ECP-based formulation that does not increase the final system
matrix size must be developed to fully overcome this drawback of the ECP method. The new
version of the ECP method will be called the internal ECP method (I-ECP) because the connecting
links will lie inside discretization pixels or voxels. The main characteristics of I-ECP may be
understood if the E-ECP and the I-ECP modelling techniques in Figure 7 are compared.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1287

Figure 6. The procedure to convert a standard finite element model to a model needed for the E-ECP
method: (a) schematic flow chart; and (b) graphical illustration.

The following is the summary of the essential characteristics of the newly proposed I-ECP
method:

(1) All continuum elements used in I-ECP for analysis during topology optimization have the
original material properties as in E-ECP.

(2) I-ECP uses zero-length internal links that lie inside every domain-discretizing pixel (or
voxel) while E-ECP uses external links that lie outside every pixel (or voxel). In I-ECP,
every plane (or solid) element is supported by elastic links at the nodes of its surrounding
pixel (or voxel).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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1288 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 7. The modelling comparison of the external ECP and the internal ECP:
(a) a two-dimensional case; and (b) a three-dimensional case.

(3) Paradoxically, the initial models use more nodes than the E-ECP model for the same
discretization resolution, but the degrees of freedom of inner nodes (shown in Figure 7(a))
are condensed out in every pixel (or voxel) level in order to avoid the matrix size increase.

(4) After the condensation, the matrix size of each pixel (or voxel) in I-ECP becomes the same
as that of the standard finite element.

(5) The stiffness of all of the internal links lying inside every pixel (or voxel) is controlled by
one design variable �e.

(6) The density of the eth pixel (or voxel) �rastere is assumed to be proportional to �e, i.e.

�rastere = �e (23)

Note that Equation (23) is used only for mass calculation and the rastering of the final optimized
result, not for the pixel (voxel) stiffness calculation. To clarify the modelling technique used for
I-ECP, Figure 8 is prepared.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1289

Figure 8. Design domain discretized by voxels. Every voxel contains a solid element. The solid element
is connected to the outer nodes that define the edges of a voxel.

2.3.1. Static condensation scheme. The key step to reduce the system matrix size is the static con-
densation of the inner nodes. This means that only the outer nodes (see Figure 7(a))
connecting discretizing voxels are used for the construction of the system matrix. To explain
the static condensation scheme for the geometrically non-linear problem in consideration, let us
denote the incremental displacements of the outer and the inner nodes of the eth element at time
t of iteration k by �u(k)

e,out, and �u(k)
e,in, respectively. In the present development, it is assumed that

the external force is applied only at the outer nodes. For every voxel, the following incremental
equation represents the equilibrium condition:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
kI,e −kI,e

−kI,e kI,e

]
︸ ︷︷ ︸

Stiffness matrix for links

+
⎡
⎣ 0 0

0 t kstructure,(k−1)
T,e

⎤
⎦

︸ ︷︷ ︸
Tangent stiffness matrix for the

eth solid element

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

⎡
⎣�u(k)

e,out

�u(k)
e,in

⎤
⎦

︸ ︷︷ ︸
The incremental displacement

for the eth voxel

=
⎡
⎣�(k−1)

e,out

�(k−1)
e,in

⎤
⎦

︸ ︷︷ ︸
The residual force
for the eth voxel

(24)

where the displacement is updated by the Newton–Raphson scheme as⎡
⎣ t+�t u(k)

e,out

t+�t u(k)
e,in

⎤
⎦ =

⎡
⎣ t+�t u(k−1)

e,out

t+�t u(k−1)
e,in

⎤
⎦+

⎡
⎣�u(k)

e,out

�u(k)
e,in

⎤
⎦ (25)

In Equation (24), the symbol 0 denotes a 24× 24 zero matrix for three-dimensional problems. The
subscript ‘structure’ is used to denote the quantities related to the eth solid finite element lying

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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1290 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

inside the eth voxel. The definition of kI,e is

kI,e = leI24× 24 (where I24× 24 is a 24× 24 identity matrix) (26)

Simplifying the left-hand side of Equation (24) yields⎡
⎣ kI,e −kI,e

−kI,e kI,e + t kstructure,(k−1)
T,e

⎤
⎦

︸ ︷︷ ︸
The assembled tangent stiffness for

the voxel having the eth solid element

⎡
⎣�u(k)

e,out

�u(k)
e,in

⎤
⎦

︸ ︷︷ ︸
The incremental
displacement

=
⎡
⎣�(k−1)

e,out

�(k−1)
e,in

⎤
⎦

︸ ︷︷ ︸
The residual force

(27)

where the residual force terms �(k−1)
e,out and �(k−1)

e,in for the I-ECP can be found as⎡
⎣�(k−1)

e,out

�(k−1)
e,in

⎤
⎦ =

[ t+�tRe

0

]
︸ ︷︷ ︸
External Force

−
[

0

t+�t
0 f

structure,(k−1)
e

]
︸ ︷︷ ︸

Internal force
from the structure

−
⎡
⎣ t+�t

0 f
link,(k−1)
e,out

t+�t
0 f

link,(k−1)
e,in

⎤
⎦

︸ ︷︷ ︸
Internal force
from the links

(28)

In Equation (28), t+�tRe and t+�t
0 f

structure,(k−1)
e denote the externally applied force on the outer

nodes and the internal force acting on the inner nodes, respectively (see also Reference [14]). The
internal force terms, t+�t

0 f
link,(k−1)
e,out and t+�t

0 f
link,(k−1)
e,in , can be easily calculated from⎡

⎣ t+�t
0 f

link,(k−1)
e,out

t+�t
0 f

link,(k−1)
e,in

⎤
⎦ =

[
kI,e −kI,e

−kI,e kI,e

]⎡⎣ t+�t u(k−1)
e,out

t+�t u(k−1)
e,in

⎤
⎦ (29)

The size of the stiffness matrix in Equation (29) for the I-ECP implementation becomes 16× 16
for two-dimensional cases and 48× 48 for three-dimensional cases.

Since all governing field equations are available, the next step is to condense out the degrees of
freedom associated with the inner nodes. Using the second equation of (27), �u(k)

e,in is written as

�u(k)
e,in = (kI,e + t kstructure,(k−1)

T,e )−1(�(k−1)
e,in + kI,e�u

(k−1)
e,out ) (30)

Substituting Equation (30) into the first equation of (27) yields

t k(k−1)
Con,e︸ ︷︷ ︸

The condensed
tangent stiffness matrix

for the eth voxel

�u(k)
e,out = �(k−1)

e,out + kI,e(kI,e + t kstructure,(k−1)
T,e )−1�(k−1)

e,in︸ ︷︷ ︸
The condensed residual force acting on the eth voxel

(31)

where

t k(k−1)
Con,e = (kI,e − kI,e(kI,e + t+�t kstructure,(k−1)

T,e )−1kI,e) (32)

The condensed tangent stiffness matrix for three-dimensional cases has the dimension of 24× 24,
which is exactly the same as that for a standard solid element.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1291
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×

×

×
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2 D 25 2 1n n

n n

 + + 22    ( 1)n +
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3 29          3

3 1n
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+  +
33   ( 1)n +

* The total node number is the sum of the number of internal nodes and the number of

external nodes. 

Dimension

×

×

×
×

× 

×

Figure 9. The total node number and the global system matrix size by various
approaches: (a) given domain discretization; and (b) comparison.

The global tangent matrix for the whole structural system is now assembled as

tK(k−1)
Con︸ ︷︷ ︸

The assembled
condensed tangent
stiffness matrix

=
Np∑
e=1

t k(k−1)
Con,e (33)

where Np is the total number of voxels, which is the same as the total number of the solid elements
used. The system equation for the assembled global incremental displacement vectors of the outer
nodes at iteration k, �U(k)

out, becomes

tK(k−1)
Con︸ ︷︷ ︸

The assembled
condensed tangent
stiffness matrix

�U(k)
out = �(k−1)

Con︸ ︷︷ ︸
The assembled

condensed residual
force

(34)

where

�(k−1)
Con =

Nd∑
e=1

[�(k−1)
e,out + kI,e(kI,e + t kstructure,(k−1)

T,e )−1�(k−1)
e,in ] (35)
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1292 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM
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Figure 10. Comparison of the solution procedures of: (a) the standard element density
method; (b) the E-ECP method; and (c) the I-ECP method.

After solving for �U(k)
out by Equation (34), the internal displacement �u(k)

e,in for each voxel can be
calculated by Equation (30). Figure 9 compares the total number of nodes used and the global
system matrix size for three different approaches. To identify the difference in the three modelling
approaches, their analysis procedures are compared in Figure 10. The box ‘ITERATION’ in
Figure 10 implies the iterative procedure of the Newton–Raphson method.

2.4. Numerical stability and efficiency of E-ECP and I-ECP

Before applying the E-ECP and I-ECP methods to topology optimization, both methods will be
examined in their numerical performances such as solution accuracy. (Additional discussions on
the solution accuracy issue of the E-ECP method may be found in Reference [2].)

First, the effects of the link stiffness value le on the solution accuracy and the condition number
of the assembled system matrix will be investigated. For this study, a three-dimensional cantilever
beam discretized by 10 voxels as shown in Figure 11(a) is selected as an analysis model. The
voxels are connected by zero-length links for ECP models while no link is used for a standard
finite element model.

Figure 11(b) shows the variation of the vertical displacement �ECP as le/kdiagonal varies from
1 to 105. The tip displacement by a 10-element standard finite element model is denoted by
�FEM = − 518.38. Both I-ECP and E-ECP yield sufficiently accurate results as le/kdiagonal be-

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1293
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Figure 11. The convergence and the conditions numbers of the ECP methods: (a) the considered
linear problem (The standard finite element solution with standard bi-linear brick element
provides 518.38 for the displacement (�FEM) at the tip where the forces are applied.); (b) the
displacement convergence with respect to the link stiffness; and (c) the condition numbers of

ECP methods. (The diagonal stiffness is denoted by kdiagonal.)

comes larger than 104 : �E-ECP = −518.40, �I-ECP = −518.44 for le/kdiagonal = 104, and �E-ECP =
�I-ECP = − 518.38 for le/kdiagonal = 105.

Figure 11(c) shows the condition numbers of the system stiffness matrices for the analysis of the
cantilever in Figure 11(a) by the ECPmethods. In this figure, the results for the I-ECPmethod before
and after the static condensation are included. When E-ECP and I-ECP|B.C (the I-ECP before the
application of the static condensation) are used, the condition number (which can be calculated as
the ratio of the maximum eigenvalue of the system matrix to the minimum eigenvalue) increases as
le/kdiagonal increases. Because nodes connected by the elastic links introduce additional eigenmodes
having the eigenvalues proportional to the link stiffness, the condition number increases. The
magnitude of the condition number by E-ECP differs from that of I-ECP|B.C because the actual
system stiffness size is different.

When I-ECP (i.e. I-ECP after the application of the static condensation) is used, the eigenmodes
discussed above are eliminated. Consequently, the condition number of the system stiffness matrix
of I-ECP approaches that of the stiffness matrix of the standard finite element model as le/kdiagonal
increases. This limiting behavior is shown in Figure 11(c); the condition number by I-ECP for
le/kdiagonal = 105 is 1.13× 105 and those by a standard finite element model is 1.126× 105. The

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
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1294 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 12. The numerical performance test for a three-dimensional benchmark problem considering
geometrical non-linearity: (a) a given model; (b) the model used in the standard element density
method; and (c) and (d) the models used in the E-ECP method and the I-ECP method, respectively

(F: applied force, E : Young’s modulus).

small condition number by I-ECP (after the static condensation) is also very useful especially
when an iterative solver is used.

Now, the solution convergence of the Newton–Raphson method and the computation time for
non-linear problems will be studied. The problem depicted in Figure 12(a) is solved by the ele-
ment density method, E-ECP, and I-ECP. The numerical performances of the three methods are
compared in Figure 13. The direct finite element approach using the model in Figure 12(a) and
the E-ECP/I-ECP methods yielded the identical tip displacement up to the three decimal points
(the vertical displacement: −3.679) as shown in Table I. If the L2-norm of the incremental resid-
ual �(k) in the Newton–Raphson method becomes equal to or less than 10−6, the corresponding
solution is considered the converged solution. To facilitate the comparison of the numerical perfor-
mances for the benchmark problem shown in Figure 12, the Crout factorization method with the
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DOI: 10.1002/nme

 10970207, 2007, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1808 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1295
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Figure 13. The history of the incremental residual �(k) in the Newton–Raphson method based on: (a) the
original model; (b) the model by the element density method; and (c), (d) the models by the E-ECP and

I-ECP methods for the problem shown in Figure 12.

bandwidth reduction algorithm (TOMS 508 in the Netlib library [16]) is used.‖ A Pentium com-
puter (2.59 GHz XEON CPU, 4 GB RAM) was used for the comparison.

From the results in Figure 13 and Table I, the following conclusions may be drawn:

(1) Both E-ECP and I-ECP yield stably converging results, unlike the element density method.
(2) The solution accuracy by the ECP method is similar to that by direct analysis using the

model in Figure 12(a).

‖For topology optimization problems considered in the next section, the preconditioned conjugate gradient (PCG)
method is used to reduce the required computer memory size. For instance, the second example in the next section
required less than 60MB RAM for the PCG method whereas over 2GB RAM, causing an overflow error on a
32 bit operating system, was required for the direct solver using the LU decomposition. However, since several
parameters of the PCG solver varied depending on the topology optimization modelling methods, we used the
standard direct solver to solve the benchmark problem in this section for accurate comparison of different topology
optimization modelling techniques. Nevertheless, the numerical findings with the direct solver were almost the same
to those with the PCG solvers.
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1296 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Table I. The comparison of the total CPU time and the number of iterations for the benchmark
problem shown in Figure 12.

Direct analysis
using the model Density E-ECP I-ECP

Method in Figure 12(a) method method method

Displacement at (0.000,−1.206, No convergence (0.000,−1.206, (0.000,−1.206,
the loaded point −3.679) −3.679) −3.679)
Number of the 16 No convergence 10 14
Newton–Raphson
iterations
Total CPU time (s) 74.7 No convergence 1488.4 200.5
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Figure 14. Comparison of the numerical efficiencies of E-ECP and I-ECP methods using non-linear
analysis at various discretization levels of the problem defined in Figure 11(a).

(3) The I-ECP method yields less computation time than the E-ECP method because the system
matrix size is reduced by the static condensation of the inner nodes.

To show the advantage of the I-ECP method over the E-ECP method in terms of computational
efficiency, the geometrically non-linear analysis of a three-dimensional cantilever structure sub-
jected to an end couple shown in Figure 11(a) is also considered. The total CPU times of both
methods at various discretization levels are compared in Figure 14. For fair comparison, the accu-
mulated CPU time spent for the first twenty Newton–Raphson iterations was compared between
the two methods. Figure 14 clearly shows that I-ECP with the static condensation scheme yields
significantly less CPU time than E-ECP, especially at high discretization levels.
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1297

3. TOPOLOGY OPTIMIZATION BY E-ECP AND I-ECP

Since the stability of the two ECP methods for numerical analysis has been demonstrated in the
previous section, the effectiveness of the ECP methods in the topology optimization of three-
dimensional geometrically non-linear problems will be investigated in this section. The underlying
optimization formulation of the ECPmethod is outlined below. If the formulation given in Reference
[1] for E-ECP is slightly modified, it can be directly applied for I-ECP; thus no detailed optimization
formulation for I-ECP will be given here. Three-dimensional compliance minimization problems
will be considered to check the performances of the E-ECP and I-ECP methods. The optimality
criteria (OC) method was used as the optimization algorithm [4].

The topology optimization for the compliance minimization of geometrically non-linear struc-
tures can be written as

Minimize
c

W (c) =LT t+�tU(c) (36)

Subject to H =
Np∑
e= 1

�e(c)Ve − V ∗ � 0 (37)

where the equilibrium condition (8) is assumed to be satisfied in the form of either (15) or (34).
The equilibrium state is assumed to be reached at time t +�t for a given load. In Equation (36), L
is the load vector consisting of zeros except for the positions where loads are applied, and t+�tU
denotes the converged displacement of the geometrically non-linear analysis.

To facilitate the sensitivity calculation of dW/d�i , it is convenient to use the adjoint variables
t+�tk which satisfy

t+�tKT
t+�tk=L (38)

where t+�tKT is the tangent stiffness matrix for the converged state of equation t + �t of the
geometrically non-linear analysis. The definition of t+�tKT is given in Equation (18) for E-ECP
and in Equation (33) for I-ECP. Following the procedure given in Reference [1], one can show
that the sensitivity dW/d�i becomes

dW

d�i
= − t+�t	Ti

dklinki

d�i
t+�t ui (39)

where t+�t	i and t+�t ui are the adjoint variable vector and the converged displacement vector
defined on the link set at the i th connection.

3.1. Case study 1: compliance minimization of a structure with all side surfaces fixed

As the first numerical example, the compliance minimization of the structure shown in Figure 15(a)
is considered (mass constraint ratio= 20%). A downward force of F = 6.9× 107 N is applied at
the center of the top surface. The side surfaces are all clamped. The three results in Figure 15(b)
are those obtained by the density method using linear analysis, the E-ECP method using non-
linear analysis, and the I-ECP method using non-linear analysis, respectively. It was difficult to
obtain a converged solution by the element density method without some numerical treatments for
non-linear analysis. Thus, only the linear result is presented. Almost identical layout configurations
were obtained by E-ECP and I-ECP.
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1298 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 15. Compliance minimization of a structure with all side surfaces fixed: (a) problem definition
(the design domain is descretized by 30× 30× 10 voxels); (b) optimized layouts; and (c) the

load–deflection curve obtained at the loaded point.
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OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1299

Figure 16. Compliance minimization of a slender body with its two side surfaces fixed: (a) problem
definition (the design domain is discretized by 120× 40× 2 voxels); (b) optimized layouts; and

(c) the load–deflection curve obtained at the loaded point.
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1300 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

Figure 17. Compliance minimization of a hook structure with one side fixed: (a) problem definition
(The design domain is discretized by 1248 voxels.); (b) optimized layouts; and (c) the load–deflection

curve obtained at the loaded point.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
DOI: 10.1002/nme

 10970207, 2007, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1808 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1301

Using the topological layouts in Figure 15(b), the load–deflection relations at the loaded point
are compared in Figure 15(c). Figure 15(c) shows that geometrical non-linearity is important to
consider when the applied force is large. As expected, the optimized result by the linear analysis
performs better than those by the non-linear analysis for a small load. The slight difference between
the force-displacement curves by two ECP methods in Figure 15(c) appears to result from the
different numerical characteristics of the two methods as evidenced by Figures 11(b) and (c) and
Figures 13(c) and (d) and the presence of many local optima.

3.2. Case study 2: compliance minimization of a slender body with two sides fixed

As the second case study, a slender body shown in Figure 16(a) is considered. The optimized
results by three different approaches are shown in Figure 16(b). To obtain the results, the lay-
out symmetry was used. The results obtained by the ECP methods for this three-dimensional
problem are similar to those obtained for the two-dimensional cases [1, 6, 7]. The optimal lay-
out by E-ECP is almost the same as that of I-ECP. The load–deflection curve at the loaded tip
is plotted in Figure 16(c). Obviously, Layout A performs better when the applied load is small
but will experience a snap-through when the applied load exceeds a certain value. The opti-
mal topologies by two ECP methods are also almost the same. The load–displacement relations
for the two results obtained by E-ECP and I-ECP are very close although they are not exactly
the same.

3.3. Case study 3: compliance minimization of a hook structure

As the last example, the compliance minimization of a hook structure shown in Figure 17(a) is
considered to demonstrate the applicability of the ECP methods to problems defined on arbitrarily-
shaped design domains. The optimized results are shown in Figure 17(b), and the load–deflection
curve is shown in Figure 17(c). Since there is no phenomenon such as a snap-through, the stiffness
increases of Layouts B and C obtained by non-linear analysis are not so significant. However,
this example demonstrates that the developed ECP methods including the I-ECP method can be
applied to arbitrarily-shaped domains.

4. CONCLUSIONS

In this paper, the topology optimization of three-dimensional geometrically non-linear structures
was carried out by two versions of the element connectivity parameterization (ECP) meth-
ods, the external ECP (E-ECP) method and the internal ECP (I-ECP) method. Unlike the el-
ement density method, both methods yield numerically stable results because the solid finite
elements used to predict the structural response of a three-dimensional body remained solid
throughout the optimization of the ECP methods. When the newly-developed I-ECP was used,
zero-length links controlling inter-element connectivity were placed within each of the domain-
discretizing voxels. The element wise static condensation of inner nodes enhanced the com-
putational efficiency of I-ECP considerably. The E-ECP method, which directly connects the
nodes of solid voxels, required more computation time than I-ECP, but could directly incorpo-
rate commercial analysis software for the analytic sensitivity calculation needed for topology
optimization.
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1302 G. H. YOON, Y. S. JOUNG AND Y. Y. KIM

APPENDIX

A Matlab file, called CONVERT.M, converts a standard finite element model generated by ANSYS
to a model needed for the E-ECP method. The generated files by CONVERT.M are ‘ecp.nod’ (node
information) and ‘ecp.ele’ (element information).

CONVERT.M
1. % Read in properly formatted data files of a finite element model by ANSYS 6.0
2. % node.dat and element.dat contain node and element information
3. load node.dat; load element.dat;
4. % Set the default parameters
5. epi=1.0E-6; en=1;
6. nformat=0%8d%20.13f%20.13f%20.13f\r\n0;
7. eformat=0%6d%6d%6d%6d%6d%6d%6d%6d%6d%6d%6d%6d%6d%6d\r\n0;

8. % Node information generation for the E-ECP method
9. fid=fopen(0ecp.nod0,0w0);

10. for k=1:size(element,1),
11. fprintf(fid,nformat,[8*k+[-7:0]; node(element(k,1:8),2:4)0]);
12. end
13. fclose(fid);

14. % Link element information generation for the E-ECP method
15. load ecp.nod
16. fid=fopen(0ecp.ele0,0w0);
17. % For link elements
18. for k=1:size(element,1)*8;
19. for l=k+1:size(element,1)*8;
20. if norm([ecp(k,2:4)-ecp(l,2:4)]) <epi
21. fprintf(fid,eformat,[ecp(k,1),ecp(l,1),zeros(6,1)0, [1 2 1 1 0,en]]);en=en+1;
22. end
23. end
24. end

25. % Disconnected solid element information generation for the E-ECP method
26. for k=1:size(element,1),
27. fprintf(fid,eformat,[[k*8-7:1:k*8],ones(1,4),0,en]); en=en+1;
28. end
29. fclose(fid);

ECPMODEL.DAT
1. /prep7
2. LENUM=(User define) ! Set the number of links
3. Et,1,45 ! Solid element
4. Et,2,27 ! Link element
5. KEYOPT,2,3,4
6. nread,ecp,nod !Read the node information

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2007; 69:1278–1304
DOI: 10.1002/nme

 10970207, 2007, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1808 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



OPTIMAL LAYOUT DESIGN OF THREE-DIMENSIONAL NON-LINEAR STRUCTURES 1303

7. eread,ecp,ele !Read the element information

8. MP,EX,1,(User define) ! Young’s modulus
9. MP,NUXY,1, (User define) ! Poisson’s ratio
10. MaxLinkE=(User define) ! Set the maximum link stiffness
11. MinLinkE=(User define) ! Set the minimum link stiffness
12. N=(User define) ! Penalization parameter
13. M=(User define) ! Penalization parameter
14. AL=MaxLinkE-MinLinkE ! Auxiliary parameter
15. BE=MinLinkE ! Auxiliary parameter

16. *do,i,1,LENUM,1 ! Update the link stiffness
17. ECH=AL* (dv(i))**N)/(1+(1-dv(i)**N)*M)+BE
18. R,i
19. RMODIF,i,1,ECH
20. RMODIF,i,13,ECH
21. RMODIF,i,24,ECH
22. RMODIF,i,7,-ECH
23. RMODIF,i,19,-ECH
24. RMODIF,i,30,-ECH
25. RMODIF,i,58,ECH
26. RMODIF,i,64,ECH
27. RMODIF,i,69,ECH
28. EMODIF,i,REAL,i,
29. *enddo

30. ! Apply the boundary condition and solve
31. ! Calculate the sensitivity analysis
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