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Abstract 
 
This research applies a layerwise theory to topologically optimize laminate composite. As laminate composite structures are consisted 

of many thin layers, some limitations exist in analyzing and optimizing based on linear plate or shell theory. To overcome these limita-
tions and problems, various layerwise theories have been developed. Thus, more accurate solutions can be efficiently obtained by these 
layerwise theories. In this research, one of the layerwise theory is applied to topologically optimize laminate structures. In the forward 
analysis for structural displacements, it is possible to efficiently conduct a numerical analysis and the sensitivity analysis in topology 
optimization. By solving several numerical examples, we observed that the directions of optimal layouts are different from each other 
depending on the type of load applied. Also, various design shapes were drawn to complement the difference in stiffness due to the rota-
tion of each layer. In addition, an analysis of how the various combinations of angles and their position affect the stiffness was also dis-
cussed in this study.  
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1. Introduction 

Composites are widely used throughout industry field due 
to their ability having better mechanical performance than 
they were in the original state. Many researches about com-
posite have been reported and composites have verified their 
performances by experiment or computational simulations. 
Composites are generally made by stacking of thin composite 
plates (see Fig. 1). Each layer also can have different 
mechanical properties or strengths. In addition, even with a 
same anisotropic material, different mechanical properties can 
be utilized depending on the rotation angle of each layer. To 
predict the mechanical behaviors of composite, a classical 
plate theory was firstly used to compute the displacement of 
the laminated composite structure [1-3]. 

The conventional plate and shell theories cannot accurately 
predict the behaviors of thick laminated composite structures 
because the transverse shear deformation is simplified in these 
theories [1, 3]. In the case of thinner composite structure, the 
simplifying or neglecting the effect of the shear deformation 
can be possible. In case of thicker composite structure, the 

simplifying or neglecting of the effect of the shear deforma-
tion causes large errors in predicting mechanical behavior. For 
instance, the shear correction factor is used in the first order 
shear deformation theory and the tangential transverse shear 
effect is used in the high order theory [3]. Although these 
methods are applicable in the mechanical problem with a sin-
gle layer problem, some other issues have to be solved for the 
application to laminated composite structure composed of 
several layers. Therefore, the zigzag shape function of in-
plane displacements and the inter laminar continuity of trans-
verse stresses were developed [4-7]. Recently a theory called  
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Fig. 1. General configuration of laminate composite structure. 
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the layerwise theory was introduced solving the zig-zag dis-
placement issue and the inter-laminar continuity of trans-
verse stresses issue [8-12]. Unfortunately, these theories still 
possess an issue of many dominant variables depending on 
the number of layers. Recently, an improved layerwise the-
ory accurately estimating stresses or strains and saving the 
computational cost was presented [3, 13-18]. As this im-
proved layerwise theory employs the zig-zag shape function 
with small number of unknown variables, computation time 
is slightly decreased by applying continuity conditions. Fur-
thermore, it can accurately predict the zigzag shape of in-
plane displacement and the transverse shear stress continuity 
is satisfied at all inter laminar surfaces. For more informa-
tion, see Refs. [3, 16-18] and references therein. 

This research presents the topology optimization of lami-
nar composite structure based on the layerwise theory. To-
pology optimization was introduced in the late 1980s and 
many researches and applications have been reported (see 
Refs. [19-30] and references therein). To our knowledge, 
there are few researches in topology optimization for lami-
nate composite structure. In Refs. [31-35], the classical 
plate theory was applied in structural optimization. These 
researches are applicable to thin laminate composite struc-
tures and the accurate calculations of displacements, strains 
and stresses are not limited [31-35]. Recently, interest in 
energy harvesting technology has been increasing, and stud-
ies have been carried out to apply topology optimization 
method to piezoelectricity material to maximize power gen-
eration or electromechanical coupling coefficient [36-39]. 
And even then, classical plate theory has been used for 
analysis. The layerwise theory employed in the present to-
pology optimization study can accurately compute dis-
placements and stresses regardless of the number of com-
posite layers and the thickness of the structure. Furthermore, 
computational cost can be extremely saved because the 
primary variables independent of the number of layers are 
used in this theory. 

To show the validity and the efficiency of the present de-
velopment, the compliance minimization problems of lami-
nated composite structure are solved; the compliance mini-
mization problem subject to the mass constraint. In addition 
to the design variables defining void domain or solid domain, 
i.e., densities of each finite element, the angles of each layers 
are optimized simultaneously. By optimizing these angles, 
some significant improvements in compliance can be achiev-
able. 

The present research is organized as follows: In Sec. 2, the 
layerwise theory is described in short. And the computa-
tional efficiency is shown by comparing the computation 
times spent by 3-dimensional FE analysis and the layerwise 
theory. Sec. 2 also presents the topology optimization theory 
and the sensitivity analysis of the layerwise theory. Sec. 3 
solves several optimization problems to show the efficiency 
of the present developments. In Sec. 4, some discussions are 
presented. 

2. Composite laminate structure formulation and 
topology optimization 

2.1 Mathematical theory – improved layerwise theory 

Composite laminate structures being consisted of thin or 
thick layers, 3-dimensional FE analysis requires a lot of com-
putational resources for accurate response computation for 
displacements and stresses. To overcome these limitations, 
some classical plate theories were developed by simplifying or 
neglecting the influence of transverse shear deformation. As 
discussed in the introduction, the layerwise theory was devel-
oped for the purpose of overcoming this limitation of some 
classical plate theories [3, 13-18]. Improved predictions of 
displacements and stresses are possible with the help of the 
layerwise theory. Displacement fields in the layerwise theory 
are approximated as follows [16-18]: 
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where k

xU  and k
yU  denote the in-plane displacements of the 

k-th layer of the laminate and k
zU  denotes the transverse 

deflection of the k-th layer or ply of the laminate. The quanti-
ties xu , yu  and w  denote the displacements of the refer-
ence plane. The rotations of the normal to the reference plane 
about x and y axes are xf  and yf . The terms k

xq , k
yq , k

xy  
and k

yy  are the layerwise structural unknowns defined at the 
k-th ply. The through-laminate-thickness functions, ( )g z  
and ( )h z , are used to address the characteristics of in-plane 
zigzag deformations and have the following forms. 
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where t  is the total thickness of laminate structure and the 
functions ( )g z  and ( )h z  render high order odd and even 
distributions, respectively. 

The assumed layerwise displacement field can be further 
simplified by applying the structural constraints [16-18] in 
order to reduce the number of structural variables. Here, ap-
plied structural conditions are traction free boundary condi-
tions on top and bottom and continuity conditions of trans-
verse shear stress and in-plane displacement on each inter-
laminar. By applying these conditions, modified in-plane dis-
placement fields are presented as follows: 
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Because the in-plane displacement fields are consisting of 

xu , yu , w , xf , yf , xw  and yw , it is independent from 
the number of layers. The layerwise coefficients, k

xa , k
ya , 

k
xb , k

yb , k
xc , k

yc , k
xd  and k

yd , are obtained from the con-
straint equations (more details are presented in Refs. [17, 18]) 
and are expressed in term of laminate geometry and material 
properties [17, 18]. 

 
2.2 Finite element implementation 

To implement the layerwise theory into finite element 
model, the certain procedures should be introduced. The linear 
Lagrange interpolation function is employed to interpolate the 
in-plane displacements whereas the Hermite cubic interpola-
tion function is used for the out-of-plane displacement interpo-
lation [17, 18]. 
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where Nm represents the Lagrange interpolation function and 
Hm, Hxm and Hym represent the Hermite interpolation functions. 
The number of nodes in each element is n. The displacements 
in x and y-direction, rotations of the normal to the reference 
plane about x and y axes at mth node in each element are de-
noted by ( )x m

u , ( )y m
u , ( )x m

f  and ( )y m
f , respectively. The 

displacement in z-direction and the partial derivatives for x 
and y directions at the mth node in each element are w , 
( ),x m
w  and ( ),y m

w , respectively. 
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where U , eu  and N  are global displacement, displace-
ment of e-th element and shape function, respectively. Then 
the finite element procedure for static problem can be formu-
lated as follows: 

=KU F                     (10) 
T

e e
V

dV= òòòk B Q B               (11) 

=B LN                     (12) 
 

where the global stiffness, the global force, the e-th elemen-
tary stiffness matrix and the constitutive matrix are denoted by 
K  and F , ek  and eQ , respectively. In order to reflect the 
influence due to the angle, the constitutive matrix is defined as 
follows: 
 

0 .p
e eg=Q Q                   (13) 

 
The design variable and the penalty value are denoted by 

eg  and p, respectively. To consider a rotational angle (q ) of 
ply, the transformation matrices, T1 and T2, are multiplied. 

 
1

0 1 0 2 .-=Q T Q T                 (14) 
 
The term 0Q  represents the 3-dimensional constitutive 

matrix for orthotropic material. 
As discussed in the previous chapter, the increase of the 

number of layers does not increase the computation time using 
the layerwise theory. To show this aspect numerically, a com-
parison between the computation times by general 3D ele-
ments and the present layerwise theory for the 3D solid struc-
ture in Fig. 2 are compared. The width, height and thickness of 
the analysis domain are 60 cm, 30 cm and 3 cm, respectively. 
The boundary condition and the applied force are shown in 
Fig. 2. Using the layerwise theory, the domain is discretized 

xy z 30 cm

60 cm

F 3 cm  
(a) 

 

 
(b) 

 
Fig. 2. A comparison of the computational times of 3D finite element 
procedure and the layerwise theory: 1E = 139 GPa, 2 3E E= = 9.4 
GPa, 12 13G G= = 4.5 GPa, 23G = 2.89 GPa, 12 13v v= = 0.02, 23v =
0.33: (a) The analysis problem; (b) the computational time comparison.
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by 20x10x1. As a reference, the analysis domain is discretized 
with 8 node hexagonal finite element. The computational 
times solved by the finite elements formulated by the layer-
wise theory and the 3D solid finite element procedure are 
compared by increasing the number of the layers from 1 to 10. 

The number of degrees of freedom and the analysis time in-
crease steadily by increasing the number of layers with the 3D 
finite element procedure. With the layerwise theory, the com-
putation time is not significantly increased. Also, the maxi-
mum displacement obtained through 3d analysis is 4.4143, 
and the maximum displacement obtained through layerwise 
theory is 4.5446. The result obtained through layerwise theory 
is slightly larger, but there is no significant difference between 
two values. 

 
2.3 Topology optimization formulation: Compliance minimi-

zation problem 

The following formulation in Eq. (15) is the compliance 
minimization problem for laminate composite structure. Note 
that in the present formulation, the density parameters and the 
angles are optimized simultaneously. 
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where compliance, global force, global displacement, the total 
volume and the maximum allowable volume are denoted by C, 
F , U , V and *V , respectively. The design variables are de-
noted by γ  and θ , and each vector indicates the topological 
density and angle of each layer. Also, X  means the density 
filtering. The sensitivity analyses for topological density and 
angles of layers are performed as follows: 
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The subscripts e and k, are the element number and the 
layer number, respectively. And K means global stiffness 
matrix. 

 
3. Numerical examples 

To show the validity of the developed topology optimiza-
tion method, some numerical examples are considered in this 
chapter. For an optimization algorithm, the method of moving 
asymptotes is used [40]. 

 
3.1 Example 1: MBB beam 

For the first example, the MBB beam structure with a com-
posite layer is considered in Fig. 3. The two bottom points of 
the design domain are clamped and a downward static load 
with 8000 N is applied at the bottom center in Fig. 3. Unlike 
the topology optimization with a homogeneous material, the 
design domain is modeled with the composite layers with four 
layers in Fig. 3(b). 

It is assumed that all the layers consist of T300/5208 carbon 
epoxy composite material in Fig. 3. In the present optimiza-
tion, the angles of the plies are fixed to 0°, 0°, 0° and 0° de-
grees; the angles are excluded from the design variables. Fig. 
4 solves the compliance minimization problem with the fixed 
angles in the optimization formulation Eq. (15) with 40 % 
mass constraint. Simply the result in Fig. 4 is optimized with 
the orthotropic material. Because the material is oriented par-
allel to the axes, the symmetric design can be obtained. 

Fig. 5 solves the two optimization problems with the rotated 
angles (dash lines: The direction of the orientations of the 
fibers). As shown, the directionality of the plies causes the 
different designs. When the fibers align in x or y-direction, the 
symmetric optimal layout can be obtained in Fig. 4(a). How-

 
(a) 

 

 
(b) 

 
Fig. 3. MBB beam problem (The total number of elements in the de-
sign domain: 3750, F: -8000 N, thickness of each layer: 0.218 cm): (a) 
2-dimensional view; (b) 3-dimensional view ( 1E = 132 GPa, 2 3E E=
= 10.8 GPa, 12 13G G= = 5.65 Gpa, 23G = 3.38 GPa, 12 13v v= = 0.24, 

23v = 0.59). 
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ever, when the stiffness values have the directionality due to 
the rotations of the layers, i.e., 30 degrees or -30 degrees, the 
asymmetric optimal layouts can be obtained in Figs. 5(a) and 
(b). Due to the different rigidities in the parallel direction and 
the orthogonal direction of the plies, the thinner and the 
thicker arms do appear. 

In the previous examples, it is observed that the different ri-
gidities of the plies make some differences in the optimal lay-
outs. As formulated in Eq. (15), it is also possible to optimize 
the angles of the plies simultaneously. Fig. 6 shows the opti-
mal layout optimizing the angles of the plies with the same 
condition of the previous example. As shown in Fig. 6(b), the 
angles are optimized to increase the stiffness. The second and 
third layers are rotated counterclockwise by about 48 degrees. 
To prevent twist of composite material, their layers are lami-
nated as symmetrically. So, this result can avoid structural 
issue like warping of composite. Also, the shape of right part 
becomes thicker with asymmetrical layout. 

 
3.2 Example 2: MBB beam with an inclined force 

Fig. 7 shows the optimal layout with the same conditions of 
the example 1 except the force condition. The inclined force 

applied at the top surface and the angles of the plies are set to 
constants. Because the load is applied in the direction of 30 
degrees to the x-axis, the structural member in this direction 
becomes thicker than the other area. 

With the inclinable force, all asymmetrical results are ob-
tained. In addition, it is confirmed that the members in the di-
rection in which the load is applied are thicker than the other 
parts in all the results. In Fig. 7(c), the thickness of the opposite 
direction of the load is the smallest. This is because the orienta-
tion of each layer is set to -30 degrees, and the stiffness in this 
direction is higher than the other results. As observed in the 
previous example, the angles of the plies are optimized with 
the inclined force and result is presented in Fig. 8. And the 
lowest compliance is drawn with optimization of angle of plies. 

 
3.3 Example 3: Square frame 

Fig. 9 considers a squared design domain with in-plane and 

  
          Optimal layout          Deformed optimal shape 

(a) 
 

 
(b) 

 
Fig. 4. Optimization result (compliance: 20.6208 J): (a) An optimal 
layout and deformed shape (scale factor: 5); (b) the object value his-
tory. 

 

 
(a) (b) 

 
Fig. 5. Optimal layouts with the different angles (dash line: direction of 
the orientation of the fibers): (a) Angle: [30/30/30/30], compliance: 
28.8847 J; (b) angle: [-30/-30/-30/-30], compliance: 28.8845 J. 

 

 
(a) 

 

 
(b) 

 
Fig. 6. Optimal layout and history of angle: (a) Optimal design (com-
pliance: 17.9086 J); (b) the optimized history of the angles. 

 

 
 

(a) 
 

(b) 
 

  
(c) (d) 

 
Fig. 7. Optimal results with constant ply angles (dash line: the direc-
tion of the fibers): (a) Design modain; (b) angle: [0/0/0/0], compliance: 
5.1852 J and converged volume: 39.95 %; (c) angle: [30/30/30/30], 
compliance: 4.7712 J and converged volume: 39.79 %; (d) angle: [-
30/-30/-30/-30], compliance: 12.4208 J and converged volume: 
39.88 %. 
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out-of-plane loads with the fixed four corners. Magnitude of 
loads are 8000N for all cases and direction is presented in Fig. 
9. All optimal shapes are presented in Fig. 10. 

Basically, last one has different shape (horizontal shape 
structure) from first and second results (x-shaped structures) in 
Fig. 10(a) because in the first two results, the in-plane loads 
are considered, and the final result is that the out-of-plane load 
is taken into account. Also, Fig. 10 shows the optimal results 
with 0 and 20 degrees for all load cases. The differences in the 
stiffness in each direction cause the differences in the designs. 
With the force in the z-direction, the structures aligned in the 
fiber’s direction, i.e., 0 or 20 degrees, can be obtained. 

To check the validity of the above optimized results, Fig. 11 
compared the deformations of the optimized layouts with the 
rotated plies. With the optimized layout of Fig. 11(a), the de-
formation is successfully decreased when the large deforma-
tion is observed with the rotated plies of Fig. 11(b). 

Then we can simultaneously optimize the layouts and the 
angles of the plies in Fig. 12. As illustrated, the inclusion of 
the angles of the plies causes some differences in the opti-
mized layouts. With the square shaped design domain, Figs. 
12(a) and (b) are the 90 degrees rotated designs to each other. 
With the z-direction force in Fig. 12(c), the different design is 
obtained. Unlike the previous two designs, the bending type 
design is obtained. 

 
3.4 The effect of angles and the comparison of the computa-

tional costs 

The overall stiffness of composite layer being highly de-
pendent on the angle of the plies, we more teste the effect of 

 
(a) 

 

 
(b) 

 
Fig. 8. Design domain and an optimal layout: (a) Design domain; (b) 
an optimal layout and the angle of each layer (Compliance: 3.4193 J). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
Fig. 9. Square design domain (Total number of elements in the design 
domain: 4900, thickness of each layer: 0.218 cm, 1E = 132 GPa, 

2 3E E= = 10.8 GPa, 12 13G G= = 5.65 Gpa, 23G = 3.38 GPa, 
12 13v v= = 0.24, 23v = 0.59): (a) x-direction load: 8000 N; (b) y-

direction load: 8000 N; (c) z-direction load: 8000 N. 

 

   
x-direction load y-direction load z-direction load 

3.8731 J 5.6473 J 1.3993x104 J 

(a) 
 

   
x-direction load y-direction load z-direction load 

3.4557 J 5.0568 J 1.0843x104 J 

(b) 
 
Fig. 10. Optimal results with the fixed angles of the plies (dash line: 
the direction of the fibers): (a) Fixed angle: [0/0/0/0]; (b) fixed angle: 
[20/20/20/20]. 

 

 
(a) 

 

 
(b) 

 
Fig. 11. Difference in deformation according to direction of the mate-
rial distribution: (a) Strong stiffness direction ( aD = 1.7491 cm); (b) 
weak stiffness direction ( aD = 2.8108 cm).  
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angles in Fig. 13. 
To investigate the effect of the stacked angles, the five an-

gles, 0°, 30°, 45°, 60° and 90°, were selected and the five 
combinations of Fig. 13 are tested in Fig. 14. As shown, the 
optimized layouts are influenced very much. 

 
4. Conclusions 

The present study develops a new topology optimization 
technique for a laminated composite structure with the layer-
wise theory. Although some relevant researches performed the 
topology optimization with classical plate theory, it is not rare 
to consider the topology optimization with the layerwise the-
ory. Laminate structures with large thickness of each layer are 
not expected to be highly accurate when analyzed using clas-
sical plate theory. One of the methods developed to solve this 
problem is the layerwise theory. In composite structures with 

some layers, the improved theories like the layerwise theory 
are required to improve the accuracy of in-plane displace-
ments and stress. Furthermore, the computation time can be 
significantly saved with the layerwise theory. From the results 
of this research, it is drawn that the optimized shape varies 
with angle of layers. Even with the same optimization prob-
lem, different optimal shapes are obtained when the rotation 
angles of all layers are different. Also, it is important to opti-
mize the angles of plies to minimize the compliance. In addi-
tion, the present study shows that the optimal layouts and the 
optimal angles of plies are depending on the direction of the 
loads. Several examples show that there is a difference in the 
direction of material distribution when in-plane load is applied, 
and out-of-plane load is applied. 
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direction load (Compliance: 2.9625x103 J). 

 

 
 
Fig. 13. Different angle configurations for the 3rd load condition of Fig. 9. 
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(b) (c) 

  
(d) 

 
(e) 

Fig. 14. Optimized layouts with the different combinations of Fig. 13: 
(a) Case 1 (compliance: 7782.85 J); (b) case 2 (compliance: 
8261.16 J); (c) case 3 (compliance: 6887.84 J); (d) case 4 (compliance: 
6221.22 J); (e) case 5 (compliance: 9571.85 J). 
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where iE , ijG  and ijn  mean the Young’s modulus in the i-
direction, the shear modulus in the ij-plane and Poisson’s ratio 
between i and j-direction. 
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