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SUMMARY

In spite of the success of the element-density-based topology optimization method in many problems
including multiphysics design problems, some numerical difficulties, such as temperature undershooting,
still remain. In this work, we develop an element connectivity parameterization (ECP) formulation for
the topology optimization of multiphysics problems in order to avoid the numerical difficulties and
yield improved results. In the proposed ECP formulation, finite elements discretizing a given design
domain are not connected directly, but through sets of one-dimensional zero-length links simulating
elastic springs, electric or thermal conductors. The discretizing finite elements remain solid during the
whole analysis, and the optimal layout is determined by an optimal distribution of the inter-element
connectivity degrees that are controlled by the stiffness values of the links. The detailed procedure
for this new formulation for multiphysics problems is presented. Using one-dimensional heat transfer
models, the problem of the element-density-based method is explained and the advantage of the ECP
method is addressed. Copyright � 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Since the establishment of the topology optimization method [1], the method has been applied to
various design problems including multiphysics system design problems [1–3]. Though several
multiphysics systems are designed by the topology optimization method, some difficulties such
as the incorrect prediction of some field distributions still remain. In this work, we develop an
element connectivity parameterization (ECP) method for multiphysics problems in order to avoid
the numerical difficulties and yield improved results. To pinpoint the cause of the difficulties and
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1650 G. H. YOON AND Y. Y. KIM

to explain the advantage of the ECP formulation, the current element-density-based topology
optimization practice will be briefly reviewed.

The most popular design parameterization method for topology optimization is perhaps the
so-called SIMP (solid isotropic material with penalization) method (see Reference [1]). In the
SIMP method, real-valued continuously varying density variables are assigned to the finite
elements discretizing a design domain and they are used as design variables. In structural
problems, only the elastic property is assumed to be a penalized function of the density design
variable. However, in multiphysics system design, more than one physical property should be
modelled as the functions of the same density design variable. If all physical properties are
not properly modelled, however, the solution of field problems for some range of the design
variables can become physically incorrect.

As a specific multiphysics design problem, we will consider the topology optimization of an
electro-thermal-compliant (ETC) actuator. If the SIMP approach is used for this problem, all
of electric, thermal, and elastic properties are modelled as some functions of the same density
variable, and if they are not properly modelled, some numerical problems can occur. When
the SIMP modelling technique is used for the topology optimization involving heat transfer
analysis, for instance, undershooting or overshooting problems occur. More discussions on this
issue will be given below.

In formulating the topology optimization of multiphysics systems involving heat transfer
analysis, two modelling strategies of the convection coefficient and the thermal conductivity
have been suggested. In Reference [2], the thermal conductivity was assumed to vary as �nSIMP

(nSIMP �= 0) where � is the element density while the convection coefficient was assumed to be
independent of �. On the other hand, the interpolation functions of the same form were used
to model the thermal conductivity and the convection coefficient in Reference [3]. Regardless
of the adopted models, the temperature distributions along the interfaces of the finite elements
having certain density values turned out to be physically incorrect. For instance, the temperature
at some nodes was lower than the room temperature. This problem, called undershooting,
was indeed observed in Reference [2]. In this investigation, we will show theoretically why
undershooting or overshooting cannot be avoided if the current element-density-based topology
is used. We will also show that such numerical problems can be avoided when the proposed
ECP method is employed.

Since it is difficult or impossible to avoid the above-mentioned numerical problem with
the standard element-density method, we propose a different approach in which the degree
of the element connectivity is used to represent a structural layout. This idea [4, 5] was
originally developed to overcome the numerical instability problem appearing in the topology
optimization of geometrically non-linear structures (see References [6–8] for geometrically non-
linear design problems). The ECP method apparently was shown to effectively eliminate the
instability problem resulting from unstable elements [4, 5]. In this investigation, we formulate
the ECP method for multiphysics problems and show that the ECP method successfully avoids
the problems such as undershooting.

The key idea of ECP may be illustrated with Figure 1. Figure 1 compares the design param-
eterizations by the conventional topology optimization formulation and the ECP formulation.
Figure 1(b) illustrates the modelling of Figure 1(a) where all finite elements within the rect-
angular design domain are rigidly connected but the element densities have different values to
represent the structure of Figure 1(a). Figure 1(c) illustrates the modelling of Figure 1(a) by the
ECP approach where all finite elements have the original physical properties, but the element

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677

 10970207, 2005, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1422 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1651

Figure 1. Comparison of the modelling techniques by the standard-element density-
based method and the ECP method: (a) a given structure; (b) modelling by the

element-density-based method; and (c) modelling by the ECP method.

Figure 2. Topology optimization of an electro-thermal-compliant actuator.

connectivity degrees are allowed to vary to represent the structure of Figure 1(a). The element
connectivity degrees are modelled by sets of one-dimensional zero-length links that connect
the adjacent elements at a given location. In this work, the node will be called a connection
because the finite elements discretizing a given design domain are not rigidly connected to
each other at their common nodes. They are connected through the one-dimensional links, and
the connectivity is controlled by the value of the link stiffness.

In pure structural problems, the links were interpreted as elastic springs [4, 5]. For the ETC-
coupled design problems, we propose to interpret these links as zero-length electric conductors
for electric problems and zero-length heat conductors for thermal problems. Then the link
conductivities can be assumed as penalized functions of the link design variable.

The design of a geometrically non-linear ETC actuator shown in Figure 2 is a typical
multiphysics design problem and the topology optimization of the actuator was done in
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1652 G. H. YOON AND Y. Y. KIM

References [2, 3] by the element density approach. In this work, a special attention is paid to
heat transfer problems to address the issue of undershooting or overshooting phenomena.

The actuator described in Figure 2 is supposed to generate force or displacement along the
described direction under a given electric input. To calculate the performance of this actuator,
it is required to analyse the following three field problems written in finite element matrix
form (although non-linear structural analysis was performed for actual numerical calculation,
only the linear equation will be presented without the loss of generality):

Electric problem (symbol E used)

KE(�)UE(�) = FE(�) (1a)

Heat transfer problem (symbol T used)

KT(�)UT(�) = FT(UE(�), �) (1b)

Structural problem (symbol S used)

KS(�)US(�) = FS(UT(�), �) (1c)

where � is the array of design variables (In the element density approach, it denotes the
element density), UE, UT, and US the nodal values of the electric potential, the temperature,
the displacement, respectively, and K(◦) and F(◦) (◦ = E, T or S) the stiffness matrix and the
force vector.

If the conventional element-density-based SIMP approach is used, the dependence of K(◦)

(◦ = E, T or S) on � is written as

KE(�) =
NE∑
e=1

ke
E(�e), KT(�) =

NE∑
e=1

(ke
T(�e) + ke

h(�e)), KS(�) =
NE∑
e=1

ke
S(�e) (2a)

FE(�) = 0, FT(�) =
NE∑
e=1

f e
T(ue

E, �e), FS(�) =
NE∑
e=1

f e
S (ue

T, �e) (2b)

where NE denotes the number of finite elements and the element stiffness matrices ke
(◦) and

vectors f e
(◦) (◦ = E, T or S) are defined as

ke
E(�e) =

∫
Ve

�E(�e)B
TB dV , ke

T(�e) =
∫
Ve

�T(�e)B
TB dV

(3a)

ke
h(�e) =

∫
�e

conv

h(�e)N
TN�conv, ke

S(�e) =
∫
Ve

BTC(�e)B dV

f e
T(�e) =

∫
�e

conv

h(�e)u
∞
T N d�conv, f e

S (�e) =
∫
Ve

BTC(�e)�(�e)(u
e
T − u∞

T ) dV (3b)

where N is the shape function matrix, B the strain (or gradient) interpolation matrix, �e
conv the

convection area of the eth element, Ve the domain of the eth element, ue
(◦) (◦ = E, T or S)

the eth element’s solution for each disciplinary, �E the electric conductivity, �T the thermal
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1653

conductivity, h the convection coefficient, u∞
T the bulk or (room) temperature, C the elasticity

tensor, and � the thermal expansion coefficient.
The specific topology optimization design problems considered in this work are as the

followings:

1.1. Design of an electro-thermal-compliant actuator

Referring to Figure 2, the topology optimization of an ETC actuator can be written as

maximize uS = LTUS (the displacement at A in the direction of e) (4a)

subject to
NE∑
e=1

∫
Ve

�e(�e)Ve dV − M0 � 0 (mass constraint) (4b)

(ûS/uS)2 � �∗ (cross-sensitivity constraint) (4c)

where ûS denotes the displacement component at A in the perpendicular direction to e.
The symbol L in the definition of uS denotes a vector that has zero values except at the
location corresponding to point A in Figure 2. The value �∗ = 0.01 was used for actual numer-
ical calculation.

1.2. Design of a heat-dissipating structure

Since the numerical problem such as undershooting is related to heat transfer analysis during
ETC actuator design optimization iterations, it is worth focusing on the topology optimization
of heat transfer problems alone. The selected design problem is to find an optimal layout
maximizing the thermal energy dissipation with a limit on the mass usage. Thus, the following
optimization problem is set up:

minimize Q =
∫

�source

qT
TUT d�source (5a)

subject to
NE∑
e=1

∫
Ve

�e(�e)Ve dV − M0 � 0 (mass constraint) (5b)

where qT denotes heat flux into a domain of interest through its source boundary �source. (The
flux into the domain is assumed to be positive.)

2. ECP FORMULATION FOR MULTIPHYSICS SYSTEMS DESIGN OPTIMIZATION

To explain the key idea of the ECP formulation, let us begin with the modelling of the structure
shown in Figure 1(a). As in the standard topology optimization formulation, the structure of
Figure 1(a) is also enclosed inside a package (or design) domain in the ECP formulation. In
the conventional element-based density method, weak materials are assigned to void regions,
while strong materials are assigned to solid regions (i.e. the region occupied by a structure).
In the ECP approach, however, the whole design domain is discretized by disconnected plane

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1654 G. H. YOON AND Y. Y. KIM

Figure 3. ECP modelling by six zero-length one-dimensional links at Connection i.
(The local nodes are denoted by 1, 2, 3, and 4.)

finite elements having the original material property or the original stiffness, but the original
structure is weaved by stiff zero-length links (see Figure 1(c)). On the other hand, the void
region is weaved by very weak zero-length links. The links illustrated in Figure 1(c) have no
length for actual numerical calculation, but they are plotted as if they have finite lengths for
easier visualization of the result by the ECP modelling. In the ECP modelling, the magnitude
of the link stiffness controls the connectivity degree between elements.

For more detailed description of the ECP modelling, consider the element connectivity
at Connection i shown in Figure 3. There are four plane finite elements, E1–E4 around
Connection i. In the ECP method, the four elements are not rigidly connected, but connected
to each other by six one-dimensional links. If the stiffness of these links connecting local
nodes 1 and 4 in Figure 3 is sufficiently large, the nodal displacements at nodes 1 and 4 can
be treated as the same, i.e. nodes 1 and 4 can be assumed to be rigidly connected. If the
stiffness of the link is very small, on the other hand, nodes 1 and 4 can be assumed to be
disconnected. In the ECP modelling, therefore, the value of the link stiffness represents the
element connectivity degree; by adjusting the link stiffness values, a given structural layout can
be represented properly inside a package domain. The range of the link stiffness value will be
given in Section 3.

In the ECP modelling, six links at Connection i can vary independently, so six independent
design variables �pq

i (p, q ∈ [1, 2, 3, 4], p �= q ) can be introduced at every connection. However,
it is more convenient to use one unified design variable �i to control the element connectivity at
Connection i (see References [4, 5] for the six variable modelling technique). This means that
the stiffnesses of six links are always the same. If �i is used as the design variable controlling
the link stiffness, one may penalize the link stiffness matrix K link

i(pq) connecting nodes p and q

at Connection i as

K link
i(pq) = l0(�i )

nlK link
(◦),nominal with �Lower � �i � �Upper = 1 (◦ = E, T, and S) (6)

where l0 is the upper bound of the link stiffness, and nl is the penalty exponent used to push
�i to its bounds as in the conventional SIMP approach. The value of l0 should be large enough
to impose the two nodal displacements to be virtually the same, but should be moderately large
not to cause numerical instability. The symbol K link

(◦),nominal denotes a dimensionless stiffness

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1655

matrix whose form varies with the involved principle. For example, consider two-dimensional
structural problems for which every node has two degrees of freedom (the displacements in
the x1 and x2 directions in Figure 3). In this case, l0 implies the upper bound of the spring
stiffness and K link

S,nominal becomes the following 4 × 4 symmetric matrix:

K link
S,nominal =

⎡
⎢⎢⎢⎢⎢⎣

1 0 −1 0

0 1 0 −1

−1 0 1 0

0 −1 0 1

⎤
⎥⎥⎥⎥⎥⎦ (7)

For the electric or heat transfer problems, every node has only one degree of freedom repre-
senting the voltage potential or the temperature. In this case, l0 implies the upper bound of
the electrical conductivity or the thermal conductivity and K link

(◦),nominal becomes a 2 × 2 matrix,

K link
E,nominal or K link

T,nominal

K link
E,nominal = K link

T,nominal =
[

1 −1

−1 1

]
(8)

Depending on the physics involved, the different interpretations of the zero-length links can
be possible. For electric problems, the one-dimensional link can be interpreted as an electric
conductor. If �i reaches �Upper, the link simulates an ideal electric one-dimensional conductor
with very small or zero resistance. If �i reaches �Lower, the link simulates a non-conductor
of electricity. For heat transfer problems, the link simulates an one-dimensional thermal con-
ductor with the different conductivity. For other physical systems, similar interpretations can
be possible.

In the ECP modelling, the plane finite elements used to discretized the design domain are
connected through sets of zero-length one-dimensional links. Therefore, the global stiffness
matrix K(◦) in the ECP approach (◦ = E, T, and S) consists of the two parts as

K(◦)(�) = K̄(◦) + Klink
(◦) (�) (9)

where K̄(◦) is the stiffness matrix for the disconnected finite elements discretizing the de-
sign domain for each physical system. It is emphasized again that every element in K̄(◦) is
assumed to be disconnected to neighbouring elements. One can easily construct the associated
stiffness matrix K(◦)(�) if an in-house code is available. The ECP implementation is also quite
straightforward with a commercial code as illustrated in Figure 4.

In the ECP approach, therefore, K̄(◦) does not depend on the design variable � and only
Klink

(◦) (�) depends on the design variable. Perhaps, this is the key point of the ECP formu-

lation. Because of this characteristics, the ECP modelling separates K̄(◦) characterizing the
system physics, either linear or non-linear, from Klink

(◦) (�) that depends explicitly on the de-
sign variable �. Therefore, the sensitivity analysis becomes extremely easy and the numerical
problem such as the non-positive definiteness of the tangent stiffness matrix encountered in the
conventional SIMP formulation of non-linear structural problems can be avoided.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1656 G. H. YOON AND Y. Y. KIM

(a)

(b)

Figure 4. ECP modelling with ANSYS, a commercial finite element code: (a) modelling illustration;
and (b) the structure of the assembled stiffness matrix for the ECP method.

Now, let us consider the sensitivity of the objective function uS in (4) with respect to the
design variable � for the ECP method. Since the sensitivity analysis requires the solution of
(3), it is convenient to introduce the adjoint variables �E, �T, and �S satisfying

(LT + �T
SKS) = 0,

(
�T

TKT − �T
S

�FS

�UT

)
= 0,

(
�T

EKE − �T
T

�FT

�UE

)
= 0 (10)

To facilitate the sensitivity analysis, we replace uS in (4a) by the following expression:

uS = LTUS + �T
E(KEUE − FE) + �T

T(KTUT − FT) + �T
S(KSUS − FS) (11)

Taking the derivative of uS with respect to �i yields

duS

d�i
= LT dUS

d�i
+ �T

E

(
dKE

d�i
UE + KE

dUE

d�i
− dFE

d�i

)

+ �T
T

(
dKT

d�i
UT + KT

dUT

d�i
− �FT

��i
− �FT

�UE

dUE

d�i

)

+ �T
S

(
dKS

d�i
US + KS

dUS

d�i
− �FS

��i
− �FS

�UT

dUT

d�i

)
(12)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1657

Rearranging (12) gives

duS

d�i
=

(
�T

EKE − �T
T

�FT

�UE

)
dUE

d�i
+

(
�T

TKT − �T
S

�FS

�UT

)
dUT

d�i
+ (LT + �T

SKS)
dUS

d�i

+ �T
E

(
dKE

d�i
UE − dFE

d�i

)
+ �T

T

(
dKT

d�i
UT − �FT

��i

)
+ �T

S

(
dKS

d�i
US − �FS

��i

)
(13)

Substitute Equation (10) into Equation (13) yields the final result

duS

d�i
= �T

E

(
dKE

d�i
UE − dFE

d�i

)
+ �T

T

(
dKT

d�i
UT − �FT

��i

)
+ �T

S

(
dKS

d�i
US − �FS

��i

)
(14)

To obtain duS/d�i in (14), the adjoint systems in (10) should be sequentially solved for the
adjoint variables, �S, �T, and �E.

3. FEASIBLE SOLUTION FIELD BY ECP MODELLING

In the conventional element-density-based formulation, infeasible numerical solutions were
obtained for certain density values [2]. In this section, we will investigate this issue theo-
retically using one-dimensional heat transfer problems. This investigation is followed by the
numerical investigation of two-dimensional heat transfer problems. Through these investigations,
we will emphasize that no infeasible solution is obtained when the ECP modelling technique
is employed.

3.1. Theoretical analysis with one-dimensional model

3.1.1. Element-density-based modelling. Consider a one-dimensional heat transfer problem
depicted in Figure 5(a). The analysis domain is discretized by two linear finite elements,
Elements 1 and 2. The problem is to calculate the temperature distribution inside the one-
dimensional body subject to a prescribed temperature u1

T,1. The superscript e and the subscript
i in ue

T,i denote the element number and the local node number, respectively. The bulk or room
temperature is denoted by u∞

T . Using the standard finite element formulation (see References
[9, 10] for details or Appendix A), the following element-level matrix equation can be obtained:

[ke
T + ke

h]
{

ue
T,1

ue
T,2

}
=

⎧⎨
⎩

f e
T,1 + f̂ e

T,1

f e
T,2 + f̂ e

T,2

⎫⎬
⎭ (15)

where

ke
T = Ae�e

Le

(
1 −1

−1 1

)
(16a)

ke
h = hePeLe

6

(
2 1

1 2

)
(16b)

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1658 G. H. YOON AND Y. Y. KIM

Figure 5. Theoretical analysis of the temperature variations in one-dimensional heat transfer problems
for varying density values. (u1

T,1 = 600, u∞
T = 300): (a) two finite-element model; and (b) the variation

of u1
T,2 and u2

T,2 as the function of �2 (�1 fixed as unity).

f e
T,i = heu

∞
T PeLe

2
(i = 1, 2) (16c)

The symbol f̂ e
T,i is the concentrated heat flow input at node i of element e. In (16), Ae, Le,

and Pe denote the cross-sectional area, the length, and the perimeter of the eth element.
Let us examine the solution behaviour when the thermal conductivity �e and the heat con-

vection coefficient he vary as the functions of the element density variable �e (0 � �e � 1). This
situation simulates the design parameterization of the standard element-density-based approach.
If the SIMP modelling is employed, �e(�e) and he(�e) can be written as

�e = �0(�e)
n�, he = h0(�e)

nh (e = 1, 2) (17)

where the subscript 0 stands for the nominal value, and (n�, nh) are the orders of the poly-
nomials. To simplify numerical calculations, the following numerical values (units are ignored)
will be used without the loss of generality:

�0 = 10, h0 = 1, Ae = Le = Pe = 1, u∞
T = 300, u1

T,1 = 600 (18)

Using the conditions u2
T,1 = u1

T,2 and f̂ 1
T,1 = 0, f̂ 1

T,2 + f̂ 2
T,1 = 0, f̂ 2

T,2 = 0 (i.e. no concentrated
heat flow input), the following system equation can be formed:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�1 + h1

3
−�1 + h1

6
0

−�1 + h1

6
�1 + h1

3
+ �2 + h2

3
−�2 + h2

6

0 −�2 + h2

6
�2 + h2

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

u1
T,1

u1
T,2( = u2

T,1)

u2
T,2

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

h1u
∞
T

2
+ 0

h1u
∞
T

2
+ h2u

∞
T

2
+ 0

h2u
∞
T

2
+ 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(19)
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1659

Figure 6. The solution behaviour of u2
T,2 for varying values of nh when h2 = h0�

nh

2 (theoretically,

u2
T,2 should approach u∞

T as �2 goes to zero).

To examine the solution behaviour as �e varies, �1 is set as unity, (equivalently, Element 1 has
the nominal property) and only �2 will be varied. Using the data in (18), the nodal temperatures
are calculated as

u1
T,2(�2) = u2

T,1(�2) = 300[3(�nh

2 )2 + 7260�n�
2 + �nh

2 (242 + 360�n�
2 )]

3(�nh

2 )2 + 3720�n�
2 + 4�nh

2 (31 + 90�n�
2 )

(20a)

u2
T,2(�2) = 300[3(�nh

2 )2 + 7260�n�
2 + �nh

2 (65 + 360�n�
2 )]

3(�nh

2 )2 + 3720�n�
2 + 4�nh

2 (31 + 90�n�
2 )

(20b)

Let us choose n� = 3 and nh = 0 as in the topology optimization formulation [2] (i.e. h2
is independent of �2) and check the solution behaviour. Figure 5(b) shows the behaviour of
u1

T,2(�2) = u2
T,1(�2) and u2

T,2(�2) as the function of �2. When �2 reaches zero, no material

in Element 2 exists. In this limit, u2
T,2(�2) must approach u∞

T , but the plot in Figure 5(b)

shows that u2
T,2(�2) becomes even lower than u∞

T as long as �2<0.2554. Obviously, this is
physically unacceptable or infeasible. This problem was reported as the undershooting problem
in Reference [2], which may not be avoided as long as �e and he are interpolated as the
function of the element density variable. If this problem occurs in the ETC actuator design
problem, the structural region having undershot temperature will shrink, not expand. So the
quality of the optimized result may be affected.

One may now wonder what will happen if different values of nh are used instead of nh = 0.
(n� = 3 is set without the loss of generality) To investigate the effect of nh on the solution, we
varied nh from 0 to 4 and plotted u2

T,2(�2) in Figure 6. Before examining Figure 6, it is noted

that the exact solution of u2
T,2 must be equal to u∞

T as �2 approaches zero. When nh<n�,

however, u2
T,2 drops below the room temperature u∞

T as �2 approaches 0. If nh � n�, on the

other hand, u2
T,2 becomes higher than u∞

T as �2 approaches 0. That is, the temperature at node

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1660 G. H. YOON AND Y. Y. KIM

Figure 7. Theoretical analysis for one-dimensional heat transfer problems by the ECP modelling:
(a) one-dimensional model by ECP; and (b) the variation of ue

T,i as the function of �.

2 of Element 2 is overshot. Yin and Ananthasuresh [3] used some interpolation functions of
�e and he different from �0�

n�
e and h0�

nh
e , but their functions can be regarded as (17) with

the same values of n� and nh. From this one-dimensional analysis, it is clearly shown that
physically infeasible or inaccurate solutions cannot be avoided if �e and he are treated as the
functions of the element density variables.

3.1.2. ECP modelling. Let us now investigate the solution behaviour when the ECP modelling
technique is employed. Figure 7(a) shows the ECP-based model that is equivalent to the
element-density-based model in Figure 5(a). The matrix equations for Elements 1 and 2 are
the same as (15), but �e and he (e = 1, 2) have the nominal values �0 and h0 in this ECP
modelling. The matrix equation for the zero-length link is

l

[
1 −1

−1 1

]⎧⎨
⎩

u1
T,2

u2
T,1

⎫⎬
⎭ =

⎧⎨
⎩

f 1
T,2

f 2
T,1

⎫⎬
⎭ (21)

where l is the thermal conductivity varying from zero to l0 as

l = l0�
nl (�lower � � � �upper) (22)

In the ECP modelling, the element connectivity is controlled by the value of l. If l becomes
l0 or zero, Elements 1 and 2 are treated as being rigidly connected or disconnected. To reach
the states of rigid connection or no connection correctly, the value of l0 and �lower should be
selected appropriately.

Our guideline for l0 and �lower is

l0 ≈ 1000k

(23)
�lower ≈ 0.01 if nl = 3 ∼ 5

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677

 10970207, 2005, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1422 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1661

Zero-length link

(Stiffness : )s

T,1u T,2u T,3u

0 , ,e eA L 
Zero-length link

(Stiffness )

T,1u T,2u T,3u

0 , ,e eA Lσ

Figure 8. A simple one-dimensional example.

where k implies the diagonal term of the element stiffness matrix in Equation (15). To support
the validity of the suggested values of l0 and �lower, a simple one-dimensional one-element heat
conduction model in Figure 8 is considered. (The nodes in Figure 8 are globally numbered.)

To investigate the solution behaviour for varying values of � with the suggested values of
l0 and �lower, the stiffness matrix relating (uT,1, uT,3) and (f1, f3) is obtained:

sk

s + k

[
1 −1

−1 1

][
uT,1

uT,3

]
=

[
f1

f3

]
(24)

where s is the link stiffness. In Equation (24), fi and uT,i are the nodal heat input and
temperature at node i. If heat conduction is considered alone, k is simply �eAe/Le (see
Equation (16a)). Note that the heat is assumed to be introduced through node 3, not node 2.
If the link stiffness is penalized as s = l0�nl and the suggested values of l0 and �lower in (23)
are used, the following results are obtained (with nl = 5)

if � = �lower = 0.01, s = 10−7k and
s

s + k
= 1.0 × 10−7

(
s

s + k

∣∣∣∣
exact

= 0.000

)

if � = �upper = 1, s = 103k and
s

s + k
= 0.999

(
s

s + k

∣∣∣∣
exact

= 1.000

)
As shown above, the stiffness of the modified system by the link approaches the exact value
within the error of 0.01% in the limits of �lower and �upper.

Back to the model in Figure 7(a), the following system matrix of the whole configuration
is considered:⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�0 + h0

3
−�0 + h0

6
0 0

−�0 + h0

6
�0 + h0

3
+ l −l 0

0 −l �0 + h0

3
+ l −�0 + h0

6

0 0 −�0 + h0

6
�0 + h0

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

u1
T,1

u1
T,2

u2
T,1

u2
T,2

⎞
⎟⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hnu
∞
T

2

hnu
∞
T

2

hnu
∞
T

2

hnu
∞
T

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(25)
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1662 G. H. YOON AND Y. Y. KIM

Figure 9. A two-dimensional heat transfer problem defined in an H-shaped
structure. (�0 = 10, h0 = 1, u∞

T = 300, TP = 600).

Using l0 = 1000 and the numerical data given in (18), one obtains⎛
⎜⎜⎜⎝

u1
T,2

u2
T,1

u2
T,2

⎞
⎟⎟⎟⎠ = 1

3751 + 4207000 × �nl

⎛
⎜⎜⎝

18150(121 + 130000 × �nl )

36300(31 + 65000 × �nl )

9300(121 + 248000 × �nl )

⎞
⎟⎟⎠ (26)

Figure 7(b) shows the nodal temperature variation as the function of �. When the ECP modelling
is employed, the temperature always remains feasible for all values of �. In particular, u2

T,1 and

u2
T,2 behave correctly as � approaches zero. Therefore, one can see that the ECP modelling

technique can simulate all material distribution states from solid to void by varying � of the
zero-length link while the temperature distribution remains feasible for all values of �.

3.2. Numerical analysis with two-dimensional model

The theoretical analysis carried out with a one-dimensional model may be extended to the
case of two-dimensional problems. For two-dimensional cases, however, we investigated the
solution behaviour numerically. Figure 9 shows a two-dimensional problem defined in an H-
shaped structure. Figure 10 shows three modelling techniques. The mesh refinements for two
models in Figures 10(b) and (c) are identical. The embedded model in Figure 10(b) results
from the standard element-density method (n� = 3, nh = 0 as in Reference [2]) and the em-
bedded model in Figure 10(c) results from the proposed ECP method. Figure 11 compares
the temperature distributions along the centreline C1–C2 obtained by the element-density-based
modelling technique and by the ECP modelling technique. The direct model refers to the model

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1663

Figure 10. Three modelling techniques for the analysis of the H-shaped structure shown in
Figure 9: (a) direct modelling; (b) embedded model in a package domain by the element-density

method; and (c) embedded model in a package domain by ECP.

Figure 11. The centreline temperature distribution calculated by different modelling methods.

consisting of the finite element discretizing the H-shaped structure alone, not including the rest
of the package domain. Figure 11 shows that the temperature (TEDM) by the element-density
method is quite off from the temperature (TDMM) by the direct modelling method. On the
other hand, the temperature (TECP) by the proposed ECP method is almost the same as TDMM.
To see the reason for the inaccuracy in TEDM, the temperature distribution inside the whole
package domain is examined in Figure 12. Unlike TECP, the TEDM distribution by the element-
density method has lower temperature than the bulk temperature at some nodes near solid–void
interface boundaries. This is exactly the same undershooting problem that was observed in the
one-dimensional problem. This numerical example shows that the solution by the ECP method
is feasible and very accurate.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1664 G. H. YOON AND Y. Y. KIM

Figure 12. The temperature distribution inside the package domain: (a) temperature on the
plane; and (b) the temperature at the sections.

3.3. Remarks

If more accurate heat transfer analysis is needed, one may consider the side convection [3].
In the standard element-density-based method, it is difficult to incorporate the side convection
for topology optimization. However, it is quite easy to take into account the side convection
in the ECP method. This issue will be explained below.

Consider a plane element shown in Figure 13(a), which is surrounded by four sets of
links. Here, the links simulate heat conductors. Since the element connectivity between plane
finite elements is imposed only at the node in the ECP method, side convection can be easily
incorporated. For instance, if Side 4 of the plane element is disconnected from its neighbouring
element (�1 = 0 and �4 = 0) in the ECP method, side convection should take place on this side as
in Figure 13(b). On the contrary, when Side 4 is connected to its neighbouring element (�1 = 1
and �4 = 1), no side convection should occur through this side, but heat conduction should
occur when ECP is used. The physical behaviour mentioned above can be easily modelled by
interpolating the side convection coefficient hside

q (q = 1, 2, 3, 4) as

hside
1 = h0 × (1 − (�1�2)

nside
h ), hside

2 = h0 × (1 − (�2�3)
nside

h )

hside
3 = h0 × (1 − (�3�4)

nside
h ), hside

4 = h0 × (1 − (�1�4)
nside

h )

(27)
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1665

Figure 13. Modelling issue of the side convection (the surface convection in z con-
sidered for analysis, but no depicted here): (a) two-dimensional element surrounded
by four sets of one-dimensional zero-length links; (b) side convection at Side 4

when �1 = �4 = 0; and (c) conduction through Side 4 when �1 = �4 = 1.

when nside
h is the penalty exponent. (We will use nside

h = nl for all numerical calculation without
loss of generality.) The side convection model in (27) will be used whenever the side convection
needs to be considered.

The modelling issue related to heat transfer analysis was mainly discussed. It was shown
that when more than one physical property is interpolated by the element density variable,
infeasible solutions such as the undershoot temperature could occur. If fully coupled multi-
physics design optimization problems are solved by the element-density-based approach, the
situation will be even severe. Because of the difficulty in modelling, no unified form of the
interpolation function for the thermal expansion coefficient � was available within the element-
density-based approach. The expansion coefficient was treated as an independent function of
the element density in Reference [2] and as a dependent function of the element density in
Reference [3]. However, no such difficulty arises in the ECP approach. The length of the link
is zero, so the thermal expansion only takes place in the discretizing finite elements.

A few remarks on non-linear analysis will be made. The topology optimization of the ETC
actuator may require geometrically non-linear analysis for large deformation. When the element-
density-based formulation is employed, the tangent stiffness of the elements having low densities
can become singular. As a result, the elements become unstable, so convergence problems may
occur. However, it is shown in References [4, 5] that the problem of unstable elements does
not occur when the ECP method is employed. Even if the actual structural analysis requires
non-linear analysis, the links connecting the elements discretizing the design domain can be
modelled simply as linear elastic links. In this work, the non-linear elastic analysis was carried
out by employing the ECP formulation given in References [4, 5], so the detail account on the
non-linear analysis will not be given here.

The main disadvantage of the ECP formulation is the increase in the size of the system
matrix. Since all finite elements are connected not rigidly but by length-zero links, the total
degrees of freedom for the system matrix increase. For two-dimensional problems, the size
of the system matrix for the ECP approach is almost four times as large as the size for the

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677
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1666 G. H. YOON AND Y. Y. KIM

element-density method. Therefore, more computation time will be required. However, the
increase in the system matrix size may not be a serious problem since the computation time
for the topology optimization of geometrically non-linear structures by the ECP method took
considerable less computation time [4, 5] because no unstable element appears in the ECP
formulation.

4. NUMERICAL EXAMPLES

The effectiveness of the ECP method will be checked by the topology optimization of heat-
dissipating structures and geometrically non-linear ETC actuators. For all optimization problems,
the method of moving asymptotes [11, 12] was employed. For all numerical analyses, standard
four-node bilinear finite elements were used.

4.1. Structural layout identification

To identify the structural layout from a given or optimized distribution of �, two schemes
may be used. The first scheme is called the skeleton-imaging scheme which is illustrated in
Figure 14(b). In this scheme, the horizontal and vertical lengths of the links are assumed to
be proportional to the sizes of their adjacent analysis plane finite elements. In this scheme,
the original plane elements are not plotted. The second scheme is called as the raster-imaging
scheme illustrated in Figure 14(c). The optimized values of the design variables �i are used
to render the finite elements. If an eth element is surrounded by four links (�1, �2, �3, �4), its
darkness will be proportional to its average, (�1 + �2 + �3 + �4)/4 but the element densities are
not the design variables in the ECP formulation.

To explain the connection between the rastered layout obtained by the averaging and the
original layout connected by the links, let us consider the structural responses of a skeleton
image and a raster image in Figure 15. If the applied load F is of the same magnitude,
the displacements obtained with the skeleton layout (modelled by ECP) and the raster layout
(post-processed by the averaging) are those given in Table I.

Figure 14. Representation of a structural layout: (a) the distribution of the link design variables;
(b) skeleton-imaging method; and (c) raster-imaging method.
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1667

Figure 15. A simple test to compare the structural behaviour of the skeleton
layout and the post-processed raster layout.

Table I. Comparison of the displacement by ECP and the displacement
by a post-processed raster image.

0.446 0.448 0.4918
Displacement with the raster layout If nSIMP = 3 If nSIMP = 3.61564 If nSIMP = 4

Displacement with the skeleton
layout (present ECP) 0.448

For structural analysis, we used E0 (Young’s modulus) = 1.0, � (Poisson’s ratio) = 0.3.
The stiffness of the intermediate-density element for results in Table I was penalized by
SIMP as

E(�e)︸ ︷︷ ︸
from the

raster image

= E0 �nSIMP
e︸ ︷︷ ︸

from the
raster image

(28)

As illustrated in Table I, the displacements with the skeleton layout and the post-processed raster
layout can be identical if the intermediate-density element stiffness is properly interpolated.
From this comparison, one can see that if necessary, the skeleton layout can be interpreted
as an equivalent element-density-based layout. It is remarked that the rastered elements may
have intermediate-density values even if the link design variables have reached lower or upper
bounds because of the nodal averaging. Similar problems were also observed when nodal
density approaches were employed in the conventional element density formulation. If the
number of the design variables is large, however, the usual post-processing technique can yield
clear white-and-black images that are sufficient in identifying the optimal layout.
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1668 G. H. YOON AND Y. Y. KIM

Figure 16. Problem definition for the design of heat-dissipating structures (L = 40, thermal
conductivity = 1, surface convection coefficient = 0.002, uniform heat input = 0.5 at nodes, bulk
temperature u∞

T = 0, and the mass constraint = 40% of design domain, and 40 × 40 finite element
discretization. Both nodes and elements are numbered downward from the left to the right).

Figure 17. The optimized result for Problem A by the SIMP approach (n� = 3, nh = 0):
(a) density distribution; and (b) temperature plot.

Case 1: Design of heat-dissipation structures.
The objective is to find the most effective heat-dissipating structure subjected to a prescribed heat
input. Three design problems were considered as depicted in Figure 16, which are designated
as Problem A, Problem B, and Problem C depending on the heat input condition. Figure 17
shows the results by the density-based SIMP approach with n� = 3 and nh = 0 for Problem A.
As in the one-dimensional problem, the temperature near solid–void interface was undershot.
It is interesting to see the effect on nh (with n� fixed) on the optimized results. Figure 18
compares the results by nh = 1, 2, 3 and 4. If nh � n�, the temperature undershooting problems
disappeared, but the resulting layouts were not satisfactory due to the temperature overshooting
as predicted by Figure 6. Adjusting the parameters of the optimizer and the problem definition
may yield better results, but it was not pursued as the main objective of varying nh was to
show the effect of nh/n� on the behaviour of the temperature distribution.
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1669

Figure 18. The optimized result for Problem A by the SIMP approach with varying values of nh

(n� = 3 fixed): (a) the density distribution; and (b) the temperature plot.

The result obtained by the present ECP is shown in Figure 19. The raster image shown in
Figure 19(b) appears somewhat better in identifying the final optimal shape than the skeleton
image in Figure 19(a), and the temperature distribution inside the whole design domain turned
out to be feasible: see Figures 19(c) and (d).

The effect of the penalty exponent nl on the optimized result in the ECP method is similar
to its effect in the SIMP method. Since the link stiffness behaves as l0�nl , l0 should be
sufficiently large to simulate the rigid connection when � = 1 but should not be too large in
order to simulate no connection when � = �lower (�lower = 0.01). Thus, if l0 becomes too large,
the value of l0�

nl

lower increases and thus grey areas tend to appear, as seen in Figure 20. To
reduce the intermediate design, we can use higher values for nl . The effect of nl on the
optimized results is illustrated in Figure 21.

Figures 22 and 23 show the results obtained for Problem B by the element-density-based
SIMP approach and by the ECP approach, respectively. The observations made for Problem A
apply equally to the results obtained for Problem B.

Figures 24 and 25 show the results obtained for Problem C by the element-density-based
SIMP approach and by the ECP approach, respectively. The observations made for Problem A
apply equally to the results obtained for Problem C.
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1670 G. H. YOON AND Y. Y. KIM

Figure 19. A result for Problem A by the ECP approach (�lower = 0.01,
l0 = 1000, nl = 3): (a) skeleton representation; (b) raster image representation;

(c) temperature contour plot; and (d) nodal temperature distribution.

For the considered problems, some nodal temperatures computed by the element-density-
based method turned out to be higher than they should; otherwise the thermal balance cannot
be satisfied.

Case 2: Electro-thermal-compliant actuator design.
The specific design problem definition is given in Figure 26. For elastic deformation analysis,
the geometrical non-linearity (see Appendix A) was taken into account. To suppress the for-
mation of checkerboard patterns, the sensitivity was averaged using the sensitivities at adjacent
connections. For instance, the sensitivity �us/��p at Connection p is replaced by

dūs

d�p
=

(
dus

d�p
+

4∑
q=1

dus

d�q

)/
5 (29)

where q denotes the connection points near connection p.
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1671

Figure 20. The effect of the link stiffness upper bound l0 on the optimized solution
(nl = 3): (a) l0 = 10; (b) l0 = 100; and (c) l0 = 1000.

Figure 21. The effect of the link stiffness penalty exponent (l0 = 1000 was
used): (a) nl = 1; (b) nl = 4; and (c) nl = 8.

Figure 22. The optimized result for Problem B by the SIMP approach (n� = 3, nh = 0): (a) density
distribution; and (b) temperature inside the design domain.
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1672 G. H. YOON AND Y. Y. KIM

Figure 23. A result for Problem B by the ECP approach (�lower = 0.01,
l0 = 1000, nl = 3): (a) skeleton representation; (b) raster image representation;

(c) temperature contour plot; and (d) nodal temperature distribution.

Figure 24. The optimized result for Problem C by the SIMP approach (n� = 3, nh = 0). (a) density
distribution; and (b) temperature inside the design domain.
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1673

Figure 25. A result for Problem C by the ECP approach (�lower = 0.01,
l0 = 1000, nl = 3): (a) skeleton representation; (b) raster image representation;

(c) temperature contour plot; and (d) nodal temperature distribution.

Figure 26. The problem definition for the design of an electro-thermal-
compliant actuator. (ks = 100 N/m, Young’s modulus = 200 GPa, Poisson’s
ratio = 0.31, depth = 15 �m, electric conductivity = 6.4 × 106 K/� m, thermal
conductivity = 90.7 W/K m, convection coefficient = 18.7 × 103 W/m2 K, thermal

expansion coefficient = 15 × 10−6 K−1, applied voltage V0 = 0.3 V).
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1674 G. H. YOON AND Y. Y. KIM

Figure 27. A result using the element connectivity method without the side convection model: (a) the
intermediate results; and (b) the converged result (niter: the iteration number).

Figure 28. A result obtained by the element connectivity method with the side convection model:
(a) intermediate results; and (b) the converged result (niter: the iteration number).

Figures 27 and 28 show the results by the ECP method without and with the consideration of
the side convection. The mass constraint was 30%. When the side convection was considered,
the interpolation scheme proposed in (27) was employed. The temperature distributions at the
converged state are plotted in Figures 29(a) and (b). The effect of the consideration of the
side convection on the optimal actuator layout was not significant, but the output displacement
by the optimal actuator designed with the side convection was smaller than that without the
side convection. This is because more heat is dissipated when the side convection is taken into
account. When the input voltage becomes larger, the consideration of the side convection will
become more important as shown in Figure 29(c). Note that the output displacements us in
Figure 29 were calculated based on the geometrically non-linear deformation.

5. CONCLUSIONS

The topology optimization of multiphysics problems was newly formulated by the element
connectivity parameterization method, with a special emphasis on heat transfer problems. First,
it was shown that when more than one physical property needs to be interpolated as the
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1675

Figure 29. Temperature distribution of the optimized results: (a) temperature of a result
without the side convection; (b) temperature of a result with the side convection; and

(c) output displacements with the various input voltage.
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1676 G. H. YOON AND Y. Y. KIM

functions of the element density variable in the standard element-density-based method, infea-
sible solutions can be obtained. Regardless of the interpolation functions employed, it is difficult
or impossible to avoid infeasible solutions as long as the element densities are used as the
design variables of topology optimization. Second, a new element connectivity parameterization
formulation was developed to avoid infeasible solutions for multiphysics problems. The idea
was to connect finite elements using sets of one-dimensional zero-length links, so a desired
structural layout was represented by the element connectivity degree governed by the value of
the link stiffness. When this approach was used for the analysis and optimization involving
heat transfer, no problem such as undershooting or overshooting appeared. Finally, satisfactory
results were obtained when the proposed method was applied to optimize a heat-dissipating
structure and an electro-thermal-compliant actuator.

APPENDIX A: THE GOVERNING EQUATIONS FOR ETC ACTUATOR ANALYSIS

To analyse electric, heat transfer, and structural systems, three field variables are introduced: uE
denoting the electro potential, uT denoting the temperature, and uS denoting the displacement.
The boundary condition is assumed to be given either as the Dirichlet condition on �u(◦)

or
the Neumann boundary condition on �t(◦)

(◦ = E, T, S).
When the electric field is assumed to be independent of the thermal field and the structural

deformation, the governing equation for uE is written as

(�EuE,i ),i = 0 in � with uE = ūE on �uE (A1)

The symbol �E denotes the electric conductivity. The barred quantity denotes the value pre-
scribed on the boundary �u(◦)

. The comma denotes the differentiation.
For semi-coupled analysis, the temperature distribution inside the analysis domain � can be

obtained from the following form of Poisson’s equation:

(�TuT,i ),i = �Eu2
E,i in �

uT = ūT on �uT and ni(�TuT,i ) = t̄T on �tT

(A2)

where the source term �Eu2
E,i denotes the Joule heat generated by the electric field. The

prescribed heat flux input t̄T implies the boundary convection, and ni denotes the component
of the normal vector.

If the temperature distribution uT is obtained from Equation (A2), the structural displacement
uS is obtained from the following equations:

sij,j = 0 (in the absence of the body force) in �

uS(i) = ūS(i) on �uS and sij,j nj = t̄S(j) on �tS

(A3)

To take into account geometrical non-linear deformation, the second Piola–Kirchhoff stress
tensor sij is used, which is related to the Green–Lagrangian strain �ij as

sij = Eijkl(�kl − �kl(uT − u∞
T )) (A4)
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ECP FORMULATION FOR MULTIPHYSICS SYSTEMS 1677

where Eijkl and �kl denote the elasticity tensor and the thermal expansion coefficient. For the
problem considered in this work, �kl = � was assumed. The definition of �ij is

�ij = 1
2 [uS(i,j) + uS(j,i) + uS(k,i)uS(k,j)] (A5)

The finite element formulation of Equations (A1)–(A3) may be found in most books on the
finite element method. In this investigation, the notation in Reference [9] was used.

ACKNOWLEDGEMENTS

For this research, the first author was supported by the Korea Research Foundation Grant funded
by Korea Government (MOEHRD, Basic Research Promotion Fund) (KRF-2004-214-M01-2004-000-
20114-0).

REFERENCES

1. BendsZe MP, Sigmund O. Topology Optimization Theory, Methods and Applications. Springer: New York,
2003.

2. Sigmund O. Design of multiphysics actuators using topology optimization—part I: one material structure.
Computer Methods in Applied Mechanics and Engineering 2001; 190(49–50):6577–6604.

3. Luzhong Y, Ananthasuresh GK. A novel topology design scheme for the multiphysics problems of electro-
thermally actuated compliant micromechanisms. Sensors and Actuators A 2002; 97–98:599–609.

4. Yoon GH. Geometrical nonlinear topology optimization with feature scale control. School of Mechanical and
Aerospace Engineering. Seoul National University: Seoul, Korea, 2004.

5. Yoon GH, Kim YY. Element connectivity parameterization for topology optimization of geometrically nonlinear
structures. International Journal of Solids and Structures 2005; 42(7):1983–2009.

6. Bruns TE, Tortorelli DA. An element removal and reintroduction strategy for the topology optimization of
structures and compliant mechanisms. International Journal for Numerical Methods in Engineering 2003;
57:1413–1430.

7. Buhl T, Petersen CBW, Sigmund O. Stiffness design of geometrically nonlinear structures using topology
optimization. Structural and Multidisciplinary Optimization 2000; 19(2):93–104.

8. Cho SH, Jung HS. Design sensitivity analysis and topology optimization of displacement-loaded nonlinear
structures. Computer Methods in Applied Mechanics and Engineering 2003; 192:2539–2553.

9. Bathe KJ. Finite Element Procedures. Prentice-Hall: Englewood Cliffs, NJ, 1996.
10. Daryl LL. A First Course in the Finite Element Method. PWS Publishing Company: Boston, 1993.
11. Svanberg K. The method of moving asymptotes—a new method for structural optimization. International

Journal for Numerical Methods in Engineering 1987; 24:359–373.
12. Zillober C. SCPIP—an efficient software tool for the solution of structural optimization problems. Structural

Multidisciplinary Optimization 2002; 24:362–371.

Copyright � 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2005; 64:1649–1677

 10970207, 2005, 12, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.1422 by H
anyang U

niversity L
ibrary, W

iley O
nline L

ibrary on [20/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense


