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Abstract
In this study, we developed an acoustic topology optimization using moving morphable components (MMCs) for the design 
of two-dimensional sound reduction structures. MMC-based topology optimization has been developed for structural topol-
ogy optimization; however, no extant study on the design of sound reduction structures has utilized MMC-based topology 
optimization. Instead of directly changing the distribution of pixel-wise materials to form the shape of a structure, MMC-
based topology optimization changes the geometric and positional parameters of MMCs and forms the shape of a structure 
through the overlapping of MMCs. In this study, finite element analysis based on the Helmholtz equation was performed to 
calculate the acoustic performance of sound reduction structures. To complement the unsatisfactory performance of designs 
by local optimal points, we evaluated many designs optimized under different design conditions and optimization settings 
with respect to the original design condition. We also devised additional design procedures to improve the acoustic perfor-
mance of sound reduction structures by exploring a lot of design samples modified from the designs based on MMC-based 
topology optimization. Owing to the rather long time required for repeated performance calculations, the performance was 
estimated by using a multilayer perceptron to roughly select the design samples that need to be evaluated by finite element 
analysis. Design examples for barrier structures and duct internal structures were considered to demonstrate the validity of 
the proposed approach.

Keywords  Acoustic topology optimization · Moving morphable component · Artificial neural network · Multilayer 
perceptron · Sound reduction

1  Introduction

Topology optimization is a useful technique for designing 
the shape of structures. In the field of computational acous-
tics, topology optimization methods mainly employ gradi-
ent-based optimization algorithms (Kim and Yoon 2015, 
2020; Yoon 2013; Yoon et al. 2018; Duhring et al. 2008; 
Christiansen et al. 2015; Kook et al. 2012, 2013; Goo et al. 
2017; Lee and Kim 2009; Lee 2015). However, the solu-
tions obtained by gradient-based optimization algorithms 
are not guaranteed to be near the global optimal points, but 
likely local optima; a design at a local optimal point for the 

intended design condition may not always be the best. This 
implies that a local optimal point for another design condi-
tion could provide a better design for the intended design 
condition. From this perspective, it is worth considering gen-
erating various optimized designs by changing the design 
conditions and optimization settings to determine an appro-
priate design for the intended design condition. In this case, 
further exploration of the design with better performance 
can be performed by generating partially modified designs 
from various pre-acquired designs. Computing the perfor-
mances of a large number of partially modified designs can 
take a long time. Artificial neural networks (ANNs) can be 
used to select candidate designs that are expected to have 
relatively superior performance and, thus, reduce the compu-
tation time. Then, the most improved design for the intended 
design condition can be selected from among the candidate 
designs on the basis of the performance computation. In 
this context, the design of sound reduction structures using 
moving morphable component (MMC)-based topology 
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optimization and performance estimation by using a multi-
layer perceptron (MLP) was performed in this study.

1.1 � Adoption of MMC‑based topology optimization 
in acoustic problems

Topology optimization techniques based on the solid iso-
tropic material with penalization (SIMP) method derive 
the shape of structures through the optimized distribution 
of pixel-wise materials. These are distinguished from size 
optimization techniques from the perspective that a basic 
shape is not provided. In acoustic problems, the pres-
ence of a pixel-wise material at a certain position can be 
represented by the material interpolation parameter that 
determines the material properties between air and a rigid 
material. For example, if the material interpolation param-
eter is equal to 1, a pixel-wise material is a rigid mate-
rial. However, the material interpolation parameter of zero 
indicates that the pixel-wise material is air. In SIMP-based 
acoustic topology optimization, the material interpolation 
parameters of individual finite elements are appropriately 
defined for the implicit design variables assigned to each 
finite element. These implicit design variables are continu-
ous between 0 and 1, similar to the material interpolation 
parameters. The SIMP method has been widely used in 
previous studies on the design of sound-related structures 
based on topology optimization. For example, sound barri-
ers (Kim and Yoon 2015, 2020; Duhring et al. 2008; Kook 
et al. 2012), muffler partitions (Yoon 2013; Lee and Kim 
2009; Lee 2015), acoustic focusers (Yoon et al. 2018), and 
structures inside a room or cavity (Duhring et al. 2008; 
Christiansen et  al. 2015; Kook et  al. 2013; Goo et  al. 
2017) were considered in SIMP-based acoustic topology 
optimization.

However, when utilizing acoustic topology optimiza-
tion techniques, it is not easy to find appropriate local 
optimal solutions that can be regarded as a global optimal 
solution if there are many local optimal solutions with dif-
ferent shapes. The nature of the acoustic design problem 
affects the presence of various local optimal solutions. In 
this case, considering a plurality of local optimal solutions 
obtained under various optimization conditions may help 
to find out the global optimum design. For example, the 
initial values of design variables can be diversified for this 
purpose. In this context, obtaining various shapes through 
acoustic topology optimization is beneficial to discovering 
the design with the best performance. It may be considered 
desirable that the influence of the initial values of design 
variables on the optimization result is small, but it does not 
always guarantee the convergence to the global optimum 
point. Therefore, when local optima rather than global 

optimum are obtained, the sensitivity of local optima with 
respect to the initial design parameters may help to explore 
the solution space.

In our previous studies (Kim and Yoon 2015, 2020) on 
the SIMP-based topology optimization of sound reduction 
structures, it was difficult to obtain various shapes of struc-
tures because of the similar patterns of optimized material 
distributions according to the initial design variables. The 
initial values of the design variables did not significantly 
affect the optimized material distribution unless the finite 
element size was sufficiently small. In addition, the distri-
bution of materials was restricted, owing to the use of fil-
tering techniques that prevent intermediate materials, often 
called gray elements. An SIMP-based topological design 
is inherently difficult to modify through random variations 
in design variables. Therefore, SIMP-based topology opti-
mization in acoustic problems may be disadvantageous for 
exploring the various shapes of structures with better acous-
tic performance.

In this study on the design of sound reduction structures, 
topology optimization based on MMCs is adopted as an 
alternative to SIMP-based topology optimization. Topol-
ogy optimization based on MMCs, proposed by Guo et al. 
(2014), is a new technique in the field of structural topol-
ogy optimization. Guo et al. (2014) proposed to represent 
the shape of a structure based on the layout of MMCs that 
can overlap each other. Zhang et al. (2016) improved the 
approach by Guo et al. (2014) by using the components of 
variable thicknesses. In contrast to many advances in MMC-
based topology optimization in solid mechanics (Guo et al. 
2016b; Deng and Chen 2016; Takalloozadeh and Yoon 
2017; Zhang et al. 2018a; Lei et al. 2019; Lian et al. 2020), 
no extant study has considered acoustic topology optimiza-
tion by using MMCs.

MMC-based topology optimization adopts explicit design 
variables related to geometric parameters such as the length, 
thickness, angle, and position of an MMC. To define the 
material interpolation parameters for the explicit design vari-
ables, a formulation based on a level-set function was con-
sidered. Compared with SIMP-based topology optimization, 
MMC-based topology optimization has the following advan-
tages. The MMC-based topological design inherently has 
gray elements only at the boundary of the designed shape. 
In addition, different initial settings of design variables can 
provide different optimized shapes that are visually distinct. 
Because the design variables explicitly represent the geo-
metric parameters, MMC-based topological designs can be 
partially modified through random variations in the design 
variables. Therefore, MMC-based topology optimization is 
effective for exploring various shapes of structures with bet-
ter acoustic performance.
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1.2 � Design exploration procedures using 
performance estimation by multilayer 
perceptron

Additional design exploration procedures were developed 
for determining a new design exhibiting improved acoustic 
performance using designs obtained in advance by topol-
ogy optimization. Figure 1 depicts the presented design 
procedures. First, basic design samples are prepared from 
the results of MMC-based topology optimization performed 
under different acoustic conditions and optimization settings. 
From the basic design samples, certain extracted design sam-
ples are selected based on the acoustic performances of the 
basic design samples under a given design condition. The 
mean sound pressure level (SPL) is used as an indicator of 
acoustic performance. The process of extracting the design 
samples and the subsequent processes are all performed 
under the same design conditions. Then, many modified 
design samples for additional design exploration are gener-
ated by subjecting the extracted design samples to random 
changes. Owing to the time cost of computing the acoustic 
performances of a large number of modified design samples, 
only the performances of certain modified design samples 
are computed. On the contrary, the performances of the other 
modified design samples are estimated by the MLP, which 
is modeled using the precomputed performances of certain 

modified design samples. Then, candidate design samples 
with relatively high estimated performances are selected 
from the remaining modified design samples that are not 
computed. Finally, the final design samples are selected by 
computing the accurate acoustic performances of the candi-
date design samples. The acoustic performances of the final 
design samples are expected to be better than those of the 
designs obtained solely by topology optimization.

To build an artificial neural network that estimates the 
acoustic performance of MMC-based design data, an MLP 
was adopted in this study. Pixel-wise values representing 
the shape of the structure, that is, the material interpola-
tion parameters, were used as inputs of the MLP. Although 
it is also possible to use the MMC-based design variables 
as inputs, this study adopted pixel-wise values considering 
the convenience of training an MLP. This study aimed to 
examine the possibility of using a simple MLP before using 
state-of-the-art ANN techniques in the design processes 
of acoustic structures. The application of advanced ANNs 
such as convolutional neural networks (CNNs) and various 
training techniques are considered for further research in 
the future.

Typical strategies utilizing ANNs in the computational 
design of structures can be broadly divided into two. One is 
to estimate the performances of the explored structures using 
ANNs, and the other is to estimate the optimized structures 
for the given design conditions. The strategy used in this 
study corresponds to the former. Regarding the former strat-
egy, ANNs have been used as an approximate model for vari-
ous physical performance indicators in computer-aided engi-
neering. In the field of computational acoustics, to which this 
study belongs, MLPs have been used to predict the acoustic 
performance of design parameters (Durali and Delnavaz 
2005; Yahya et al. 2010; Chang et al. 2018). Durali and Del-
navaz (2005) modeled an MLP using the optimization param-
eters of a submarine shape as inputs and the acoustic pressure 
amplitude and phase at the reference point as outputs. Yahya 
et al. (2010) used an MLP to predict a classroom’s rever-
beration time obtained by a finite element method (FEM). 
Chang et al. (2018) used an MLP in conjunction with muffler 
design parameters and sound transmission loss simulated by 
an FEM. In the field of computational fluid dynamics, ANNs 
have been used to mitigate high computational costs (Rai 
and Madavan 2001; Yilmaz and German 2017; Zhang et al. 
2018b; Guo et al. 2016a). Rai and Madavan (2001) applied 
a two-layer ANN to predict the airfoil surface pressure for 
the aerodynamic design of a turbomachinery airfoil. Yilmaz 
and German (2017) predicted the airfoil pressure coefficient 
using CNNs that take the coordinates of the airfoil geom-
etry as inputs. Zhang et al. (2018b) represented the airfoil 
geometry with an image-like array of pixels instead of a set 
of coordinates to apply a CNN to the prediction of lift coeffi-
cients. The pixels in the external space of the airfoil geometry Fig. 1   Presented design procedures for finding the optimum designs
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were colored with the freestream Mach number to combine 
the input information into a single data format. Guo et al. 
(2016a) proposed an approximation model based on a CNN 
for the real-time prediction of nonuniform steady laminar 
flow. In the field of computational solid mechanics, some 
studies have used ANNs to predict stress distributions (Liang 
et al. 2018; Nie et al. 2020). Liang et al. (2018) used a deep 
learning model to estimate the stress distribution of an aortic 
wall. Nie et al. (2020) predicted stress fields in cantilevered 
structures using CNNs.

Regarding the latter strategy, ANNs have been used as 
generative models to efficiently generate the optimal topo-
logical design of structures (Ulu et al. 2016; Sosnovik and 
Oseledets 2019; Yu et al. 2019; Li et al. 2019; Oh et al. 2019; 
Zheng et al. 2021a, 2021b). Ulu et al. (2016) proposed to 
project an optimal topology into a lower-dimensional space 
using principal component analysis (PCA) and constructed 
a fully connected ANN between the loading configurations 
and PCA weights for the optimal topology. Sosnovik and 
Oseledets (2019) used deep learning techniques to estimate 
the final result of optimization from the intermediate results 
of iterative topology optimization. Yu et al. (2019) predicted 
an optimized low-resolution structure according to the 
design conditions using a CNN-based encoder and decoder, 
and then generated an optimized high-resolution structure 
using a conditional generative adversarial network (GAN). 
Similarly, Li et al. (2019) used a GAN and super-resolution 
GAN to predict low-resolution and high-resolution struc-
tures for conductive heat transfer structures. Oh et al. (2019) 
proposed a design framework that integrated topology opti-
mization and a GAN in an iterative manner to generate a 
large number of new designs. Zheng et al. (2021a, 2021b) 
predicted MMC-based (2021a) and SIMP-based (2021b) 
structural topologies based on the design conditions using 
U-Net neural networks.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the mathematical formulation for MMC-
based acoustic topology optimization. Section 3 describes 
the design procedures for using an MLP to explore new 
designs with improved performance. Two design examples 
adopting the proposed approach are presented in Sect. 4. The 
conclusions of this work are drawn in Sect. 5.

2 � MMC‑based acoustic topology 
optimization

2.1 � Acoustic finite element analysis

2.1.1 � Finite element formulation of Helmholtz equation

In this study, the acoustic performance of two-dimensional 
structures was computed using the FEM applied to the 

Helmholtz equation in Eq. (1). In Eq. (1), ω, c, and p rep-
resent the angular frequency, speed of sound, and acoustic 
pressure, respectively. The weak formulation of the Helm-
holtz equation is expressed in Eq. (2). In Eq. (2), the vir-
tual acoustic pressure p̃ is defined in the analysis domain 
Ω, and the component ni of the outward unit normal vector 
is defined on the domain boundary Γ. To express the rigid 
domain as well as the wave propagation domain, the weak 
formulation is divided by the variable ρ, representing the 
material density. The three boundary conditions in Eq. (3) 
were used in the examples considered in this study, where 
pin represents the amplitude of the acoustic pressure of an 
incident wave. Substituting Eq. (3) into Eq. (2) gives the 
equation for the numerical analysis in Eq. (4).

A discretized form of Eq. (4) for a single finite element is 
shown in Eq. (5), where the unknown vector {p} represents 
the values of the acoustic pressure at the four nodes of a 
square finite element. The local matrices [M], [K], [Mbc], and 
[fbc] are formed by the linear shape function [N] and the dif-
ferentiated shape function [Bi], as shown in Eq. (6). The bulk 
modulus B and characteristic impedance z are defined in 
Eqs. (7). The matrix equation for the entire analysis domain 
is expressed in Eq. (8), where the unknown vector p rep-
resents the values of the acoustic pressure at all nodes in 
the discretized analysis domain. The global matrices M, K, 
Mbc, and fbc are constructed by assembling local matrices, as 
shown in Eq. (9). Subsequently, the matrix equation Ap = b 
is solved.

(1)
(
∇2 +

�2

c2

)
p = 0

(2)

𝜔2

𝜌c2 ∫ p̃p dΩ −
1

𝜌 ∫
𝜕p̃

𝜕xi

𝜕p

𝜕xi
dΩ +

1

𝜌 ∫ p̃
𝜕p

𝜕xi
ni dΓ = 0

(3)

�p

�xi
ni =

⎧
⎪⎪⎨⎪⎪⎩

0 for reflected waves

−i
�

c
p for outgoing waves

−i
�

c
p + 2i

�

c
pin for outgoing waves and incedent waves

(4)

𝜔2

𝜌c2 ∫ p̃pdΩ −
1

𝜌 ∫
𝜕p̃

𝜕xi

𝜕p

𝜕xi
dΩ − i

𝜔

𝜌c

∫ p̃pdΓout = −2i
𝜔

𝜌c
pin ∫ p̃dΓin,

(5)
[
�2

B
[M] −

1

�
[K] − i

�

z
[Mbc]

]
{p} = −2i

�

z
pin[fbc],
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2.1.2 � Material representation by interpolation parameters

The material states of the finite elements in the design area 
are determined by the material interpolation parameter γj 
assigned to each finite element, as shown in Fig. 2. The 
material interpolation parameter γj has a value between 0 
and 1, where a value of 0 represents air, 1 represents a rigid 
material, and any intermediate vale represents an interme-
diate material. The vector γ is defined for the n material 
interpolation parameters in Eq. (10). As Eq. (11), the inverse 
density ρinv and the inverse bulk modulus Binv of the j-th 
finite element are interpolated linearly for the material inter-
polation parameter γj between the two material states of air 
and a rigid material. The subscripts “a” and “r” represent 
air and a rigid material, respectively. The material properties 

(6)

[M] = ∫ [N]T[N]dΩ, [K] = ∫ [Bi]
T[Bi]dΩ, [Mbc]

= ∫ [N]T[N]dΓout,{fbc} = ∫ [N]TdΓin,

(7)B = �c2, z = �c,

(8)
[
�2� −� − i��bc

]
� = −2i�pin�bc → �� = �,

(9)

� =

�
1

B
[M]

�
, � =

�
1

�
[K]

�
, �bc =

�
1

z
[Mbc]

�
,

�bc =

�
1

z
{fbc}

�
⟨⟩ ∶ assemble for all elements.

used for air and a rigid material are listed in Table 1. It 
should be noted that the intermediate materials that appear 
in the topology optimization results are replaced by air or a 
rigid material by discretization of the material interpolation 
parameters.

2.1.3 � Acoustic performance indicators

In this study, two acoustic indicators were considered in 
relation to the objective function of optimization problems. 
One is the squared amplitude of the acoustic pressure, and 
the other is the SPL. These indicators are expressed by the 
acoustic pressure pi at the i-th finite element node, as shown 
in Eq. (12) and Eq. (13), respectively. The acoustic pressure 
pi is expressed by the acoustic pressure vector p, as shown 
in Eq. (14) using the row vector Li, which has one element 
equal to 1 and the other elements equal to 0. Using the deriv-
atives of the acoustic pressure pi in Eq. (14), the derivatives 
of the two indicators for the interpolation parameters are 
formulated as in Eq. (15) and Eq. (16), respectively. The 
symbols Re and conj represent the real part and complex 
conjugate of a complex number, respectively. The common 
logarithm and natural logarithm are represented by log and 
ln, respectively.

(10)� = [�1 , ... , �j , ... , �n]
T (0 ≤ �j ≤ 1),

(11)

�inv =
1

�
=

1

�a
+ (

1

�r
−

1

�a
) × �j, Binv =

1

B
=

1

Ba

+ (
1

Br

−
1

Ba

) × �j.

(12)Squared amplitude of acoustic pressure : ||pi||2,

(13)

Sound pressure level : SPLi = 10 log
||pi||2
|||pref

|||
2

(
pref = 2 × 10−5 Pa

)

(14)pi = �i� →

�pi
��j

= �i

(
−�−1 �A

��j
�

)
,

(15)

�fSA
��j

= 2 Re

[
conj(pi)

�pi
��j

]
= 2 Re

[
−conj(pi)�i�

−1 �A

��j
�

]
,

Fig. 2   Shape of the structure represented by the distribution of mate-
rials in design area

Table 1   Material properties 
used for air and a rigid material

Material type Density Speed of sound Bulk modulus Character-
istic imped-
ance

Air ρa = 1.25 kg m–3 ca = 343 m s–1 Ba = ρa ca
2 za = ρa ca

Rigid material ρr = ρa × 107 cr = ca × 10 Br = ρr cr
2 zr = ρr cr
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2.2 � Design parameterization using moving 
morphable components

This subsection describes the manner in which the material 
interpolation parameters are parameterized using MMC-
based design variables. First, the expression of the material 
interpolation parameters for the geometric parameters of 
MMCs is described. Then, the expression of the geometric 
parameters for the design variables is described.

2.2.1 � Parameterization of material interpolation 
parameters for geometric parameters

The parameterization of material interpolation parameters 
for the geometric parameters of MMCs essentially follows 
the method presented in the literature on structural topol-
ogy optimization based on MMCs (Guo et al. 2014; Zhang 
et al. 2016). Figure 3 depicts the calculation process of the 
material interpolation parameter from geometric parameters 
of MMCs. As Eq. (17), the material interpolation parameter 
γ of each finite element is determined by the value of the 

(16)

�fSPL
��j

= 2 Re

[
10

1

pi ln 10

�pi
��j

]
= 2 Re

[
−10

1

pi ln 10
�i�

−1 �A

��j
�

]
.

function ϕs(x, y) at the center point of the corresponding 
finite element. The coordinate (xcenter,j, ycenter,j) of the center 
point is defined for the origin point located at the lower-left 
point of the design area. The function ϕs(x, y) represents 
the shape of a structure that is determined by the geometric 
parameters of the MMCs. The function ϕs(x, y) is formulated 
using the level-set function ϕk, the approximate Heaviside 
function ϕh,k, and the Max function, as shown in Eq. (18).

The level-set function ϕk for a single MMC is expressed 
by Eq.  (19), where parameters Ak and Bk are defined in 
Eq. (20). The geometric parameters Lk, tk, θk, x0,k, and y0,k 
represent the length, thickness, angle, and x- and y-coordi-
nates of the k-th MMC, respectively. The exponential n is 
an even integer, and n = 6 was used in this study. The area 
where the level-set function satisfies ϕk > 0 represents the 
shape of a single component. To limit the values of the level-
set function between zero and one, the approximate Heavi-
side function is applied to the level-set function, as shown in 
Eq. (21). To represent the overlap of multiple components, 

(17)�j = �s(x = xcenter,j , y = ycenter,j),

(18)

�k(Lk, tk, �k, x0,k, y0,k, x, y) → �h,k(�k) → �s

= Max(�h,k=1, �h,k=2, �h,k=3, ...).

Fig. 3   Calculation process of material interpolation parameter from geometric parameters of MMCs
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the Max function is applied to the multiple approximate 
Heaviside functions, as shown in Eq. (22), where nc is the 
number of MMCs. The upper part of Fig. 4 depicts a visu-
alization example of the approximate Heaviside function 
applied to the level-set function. It is shown that the approxi-
mate Heaviside function decreases sharply from 1 to 0 near 
the edges of the component. The lower part of Fig. 4 shows 
a visualization example of function ϕs, which represents the 
shape formed by two components.

The derivative of the function ϕs for each of the geo-
metric parameters was calculated using the chain rule in 

(19)�k = −

(
2Ak

Lk

)n

−

(
2Bk

tk

)n

+ 1,

(20)

Ak = cos �k ⋅ (x − x0,k) + sin �k ⋅ (y − y0,k),Bk

= − sin �k ⋅ (x − x0,k) + cos �k ⋅ (y − y0,k),

(21)𝜙h,k =

⎧⎪⎨⎪⎩

0 if 𝜙k ≤ 1
3

4

�
𝜙k −

𝜙3
k

3

�
+

1

2
if − 1 ≤ 𝜙k ≤ 1

1 if 𝜙k > 1

(22)�s = Max( �h,k ) k = 1 , ... , nc.

Eq. (23) without using the finite-difference method. Both 
the level-set function and approximate Heaviside function 
are continuously differentiable. Although the Max function 
is nondifferentiable, its derivative can be defined by Eq. (24).

2.2.2 � Parameterization of geometric parameters for design 
variables

This study adopted continuous design variables between 
zero and one, as shown in Eq. (25) instead of directly using 
the geometric parameters of MMCs as design variables. In 
this case, each design variable interpolates the minimum and 
maximum values of each geometric parameter, as shown in 
Eq. (26), where Ddesign and Hdesign represent the lengths of 
the design area in the x and y directions, respectively. Under 
this treatment, the geometric parameters of different ranges 
can be updated to an appropriate extent using the optimi-
zation algorithm. When the thicknesses of the MMCs are 
fixed to a constant middle value, that is, tk = (tmin + tmax)/2, 
the number of design variables is reduced to 4nc. In this 
case, the order of the design variables assigned to the other 
geometric parameters is the same as the order in Eq. (26).

2.3 � Formulation of optimization problem

2.3.1 � Setup of optimization problem

The formulation of the optimization problem used for the 
design examples considered in this study is expressed as 
shown in Eq. (27). The objective function f(x) and the con-
straint function g(x) are adjusted by the artificial variables y 
and z to prevent the optimal point from becoming infeasible. 
The objective function f is defined as the mean value of the 
acoustic performance in the measurement area, as shown in 

(23)

��s

�(Lk, tk, �k, x0,k, y0,k)
=

��s

��h,k

��h,k

��k

��k

�(Lk, tk, �k, x0,k, y0,k)
,

(24)
��s

��h,k

=

{
1 if �h,k = �s

0 if �h,k ≠ �s

(25)� = [x1 , ... , xi , ... , x5×nc ]
T, 0 ≤ xi ≤ 1,

(26)

⎧⎪⎪⎪⎨⎪⎪⎪⎩

Lk

tk

�k

x0,k

y0,k

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

Lmin + (Lmax − Lmin) × xk

tmin + (tmax − tmin) × xnc+k

�max × x2×nc+k

Ddesign × x3×nc+k

Hdesign × x4×nc+k

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

(1 ≤ k ≤ nc )

Fig. 4   Visualized approximate Heaviside function applied to the 
level-set function
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Eq. (28). The acoustic performance can be either the squared 
amplitude of the acoustic pressure (|p|2) or the SPL. The 
gradient of the objective function for the design variable 
vector x can be expressed using the chain rule in Eq. (29), 
where n is the number of material interpolation parameters γ, 
that is, the number of finite elements in the design area. The 
constraint g is formulated as in Eq. (30), where the constraint 
parameter b represents the maximum occupancy rate of the 
rigid materials in the design area. In this study, the constraint 
parameter b can be set to its maximum value (b = 1), owing 
to the inherent size limits of the MMCs.

In this study, the method of moving asymptotes (MMA), 
which is widely used in the field of topology optimization, 
was used as a gradient-based optimization algorithm. The 
MMA algorithm solves a subproblem approximated by mov-
ing asymptotes in each iteration step to update the design 
variables toward the optimal point. The solution of the 
subproblem in the current iteration step becomes the initial 
value of the subproblem in the next iteration step.

The lower asymptote L and the upper asymptote U of 
each design variable in the current iteration step (k) are cal-
culated using the lower and upper asymptotes in the previ-
ous iteration step (k − 1), as shown in Eq. (31). In the first 
two iteration steps (k ≤ 2), however, the lower asymptote 
L and the upper asymptote U are determined by the lower 
constraint x and the upper constraint x of design variables 
using the parameter sinit. The values of the lower and upper 
constraints x and x are 0 and 1, respectively, as defined in 
Eq. (27). After the first two iteration steps (k > 2), the param-
eter s determined by the convergence tendency of design 
variables in the previous two iteration steps adjusts the mov-
ing asymptotes, as shown in Eq. (32). If the parameter s is 
greater than 1, the asymptotes move farther away from the 
design variable than in the previous iteration step. In the 

(27)

Minimize f (�) + z + 105y

� = [x1 , ... , xi , ... , xnd ]
T

subject to g(�) − y ≤ 0

0 ≤ xi ≤ 1

y ≥ 0, z ≥ 0

,

(28)f = Mean
(||pi||2

)
or f = Mean

(
SPLi

)
,

(29)
�f

��
=

n∑
j=1

�f

��j

��j

��
=

(
�f

��T
��

��T

)T

,

(30)g =
1

n

n∑
j=1

�j − b ,
�g

��
=

1

n

n∑
j=1

��j

��
.

opposite case, the asymptotes move closer to the design vari-
able. In this study, the value of the parameter sinit is set to 0.5 
and the value of the parameter s is set to 1.2/0.7, referring 
to the studies by Svanberg (1998, 2007). As suggested by 
Svanberg (1987), the lower move limit α and upper move 
limit β are also defined as in Eq. (33) to prevent the possibil-
ity of “division by zero”.

Based on the original MMA algorithm, the move range 
δ, which represents the maximum change in the design vari-
ables, was additionally defined in this study to find the local 
optimal point more effectively. Therefore, the possible range 
for updating the design variables at each iteration step is 
expressed as Eq. (34). If the objective function value does 
not decrease at the next iteration step, the design variables 
are updated again with the reduced value of the move range. 
The move range is gradually reduced by multiplying the cur-
rent move range by 0.8 until the objective function value 
of the next iteration step is decreased. The initial value of 
the move range is set to 0.01, considering the appropriate 
search of a local optimal point and the affordable time cost in 
repeated computational experiments. The iterative process of 
optimization ends when the stop criteria in Eq. (35) are met.

2.3.2 � Postprocessing of acoustic topology optimization 
results

From the optimization results, the values of the material inter-
polation parameters are discretized to 0 or 1 by comparison 
with 0.9, as shown in Eq. (36), to represent a structure con-
sisting of only rigid materials. Here, some readers may have 
a question why the criterion value for discretization is set to 
0.9. One may simply uses 0.5 as this value. But, as shown 
in Table 2, the material properties calculated according to 
Eq. (11) by the material interpolation parameters under 0.9 
do not represent a solid material that interrupts the transmis-
sion of sound. A simple numerical example is provided to 

(31)

if k ≤ 2∶ L
(k)

i
= x

(k)

i
− sinit(x − x), U

(k)

i
= x

(k)

i
+ sinit(x − x)

if k > 2∶ L
(k)

i
= x

(k)

i
− s(x

(k−1)

i
− L

(k−1)

i
), U

(k)

i
= x

(k)

i
+ s(U

(k−1)

i
− x

(k−1)

i
),

(32)
{

s = 1.2

s = 0.7

if (x
(k)

i
− x

(k−1)

i
)(x

(k−1)

i
− x

(k−2)

i
) > 0

if (x
(k)

i
− x

(k−1)

i
)(x

(k−1)

i
− x

(k−2)

i
) < 0

,

(33)
�(k)

i
= 0.9L

(k)

i
+ 0.1x

(k)

i

�(k)
i

= 0.9U
(k)

i
+ 0.1x

(k)

i

.

(34)
max(0 , x

(k)

i
− 𝛿(k) , 𝛼(k)

i
) < x

(k)

i
< min(1 , x

(k)

i
+ 𝛿(k) , 𝛽(k)

i
),

(35)𝛿 < 10−3 or k = 500.
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validate this argument, as shown in Fig. 5. When a straight 
duct with incident waves is considered, an area of adjusted 
material properties is imposed at the middle of the duct to test 
the effect of intermediate materials on the mean SPL at the 
outlet area. The area of adjusted material properties has four 
square finite elements in horizontal direction. Table 3 shows 
the calculation results for the mean SPL according to the val-
ues of the material interpolation parameters that determine 
the intermediate material properties. Compared with the mean 
SPL when no intermediate material exists, that is, “γj = 0” rep-
resenting air, the result from “γj = 0.5” indicates very slightly 
lowered mean SPL. Considering the entire results in Table 3, 
0.9 was chosen as the criterion value for discretization. In 
terms of the acoustic performance after postprocessing, the 
best criterion value is different for each optimization result. 
As it is not possible to determine the best criterion value that 
can be applied in common, 0.9 can be used as an appropri-
ate criterion value. In addition, since the sum of the material 
interpolation parameters decreases in most cases when post-
processing is performed based on 0.9, the constraint on mate-
rial usage is still valid after postprocessing. Of course, since 
the shape by MMCs has its own maximum size, consideration 
for this is actually unnecessary.

(36)
𝛾 → 0 if 𝛾 ≤ 0.9,

𝛾 → 1 if 𝛾 > 0.9

3 � Additional design procedures using 
multilayer perceptron

3.1 � Description of presented design procedures

In this subsection, additional design procedures are pre-
sented to improve the acoustic performance of the sound 
reduction structure designed by MMC-based topology opti-
mization. The detailed design procedures from the topology 
optimization results to the final designs are described step 
by step in Fig. 6.

3.1.1 � Generation of basic design samples

In step 1, the basic design samples are prepared from various 
topology optimization results that are obtained by chang-
ing some design conditions such as the sound source posi-
tion, sound measurement area, and frequency of the sound 
source. In addition, optimization settings, such as the objec-
tive function and the initial values of the design variables, 
can be changed to obtain various optimization results. The 
obtained structure after postprocessing is considered as the 
basic design sample.

Table 2   Material properties calculated according to Eq. (11) by the material interpolation parameters

γj 0 0.5 0.8 0.9 0.95 0.99 0.999 1

ρ (kg m−3) 1.25 2.50 6.25 1.25 × 101 2.50 × 101 1.25 × 102 1.25 × 103 1.25 × 107

B (kg m−3 s−2) 1.47 × 105 2.94 × 105 7.35 × 105 1.47 × 106 2.94 × 106 1.47 × 107 1.47 × 108 1.47 × 1014

Fig. 5   Simple numerical 
example to test the effect of 
intermediate materials

Table 3   Mean SPL according to the values of the material interpolation parameters that determine the intermediate material properties for the 
test example in Fig. 5

γj 0 0.5 0.8 0.9 0.95 0.99 0.999 1

Mean SPL at 100 Hz (dB) 93.98 93.97 93.85 93.44 92.12 82.40 62.71 − 17.30
Mean SPL at 200 Hz (dB) 93.98 93.93 93.48 92.15 89.04 76.63 56.71 − 23.32
Mean SPL at 300 Hz (dB) 93.98 93.87 92.93 90.63 86.40 73.20 53.23 − 26.84
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3.1.2 � Selection of extracted design samples

In step 2, relatively superior design samples are extracted 
from the basic design samples based on the acoustic perfor-
mance calculated using finite element analysis (FEA) for a 
specific design condition. These extracted design samples 
are used in the remainder of the design procedures. The 
extraction of design samples is necessary for the effective 
exploration of design samples that will be additionally gen-
erated by partial modification. This is related to the train-
ing of the MLP considered in step 4. The high diversity 
and complexity of the training data used in the modeling 
of an ANN make it difficult to train the ANN. The number 
of extracted design samples can be appropriately selected 
according to design problems.

3.1.3 � Generation of modified design samples

In step 3, the modified design samples are generated from 
the extracted design samples by adding a random number 
Nrandom to the design variable, as shown in Eq. (37). The 
random number is drawn from a normal distribution with 
a mean value of 0 and a standard deviation of 0.02, which 
results in a slight shape change in the modified design sam-
ple. Owing to the nature of the normal distribution, the num-
ber of design samples with relatively small modifications is 

greater than the number of design samples with relatively 
large modifications. In the modification of the design sam-
ple, MMCs connected to each other can be separated. Con-
versely, separated MMCs can be connected to each other. 
For each of the extracted design samples, multiple modified 
design samples are generated by applying different sets of 
random numbers. In this way, 110,000 modified design sam-
ples are generated from the extracted design samples.

3.1.4 � Selection of candidate design samples

In step 4, candidate design samples are selected from the 
modified design samples using an MLP. Of the 110,000 
modified design samples, 10,000 samples are used as train-
ing data for the MLP. Therefore, the acoustic performances 
of these 10,000 samples are calculated using FEA. The 
input and output of the MLP represent the design informa-
tion and the estimated value of the acoustic performance, 
respectively. Using the constructed MLP, the performances 
of the remaining 100,000 samples are estimated. From the 
100,000 design samples, the top 10,000 design samples are 
selected as candidate design samples based on the estimated 
performance.

(37)xi + Nrandom → xi.

Fig. 6   Detailed design procedures from topology optimization results to final designs
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3.1.5 � Selection of final design samples

In step 5, the accurate acoustic performances of 10,000 can-
didate design samples are calculated using FEA. Then, the 
design samples ranked at the top in terms of the accurate 
performance are selected as the final design samples. The 
final design samples are also compared with several top 
design samples out of the 10,000 modified design samples 
used to train the MLP.

3.2 � Modeling of multilayer perceptron

In this study, an MLP that estimates the acoustic perfor-
mance of a structure under a specific acoustic condition was 
constructed using a dataset obtained from the MMC-based 
topology optimization and acoustic FEA.

3.2.1 � Calculation process in multilayer perceptron

Figure 7 represents an MLP that computes the output vec-
tor from the input vector through a series of operations. In 
this study, the input vector x represents a set of material 
interpolation parameters for topological design, as shown in 
Eq. (38). The symbol x in Eq. (38) is used differently from 
the symbol x in Eq. (27), which represents a design variable 
vector for topology optimization. As shown in Fig. 7, an 
MLP has multiple hidden layers and one output layer. Each 
hidden layer performs a linear operation and then a nonlinear 
operation, as shown in Eq. (39), where the nonlinear opera-
tion R(x) represents the rectified linear unit (ReLU) function. 
The output layer performs only a linear operation without 
a nonlinear operation, as shown in Eq. (40). In this study, 
the output vector from the output layer has only one com-
ponent, that is, the output value fest. The output value fest is 

the estimated value of the accurate value facc corresponding 
to the input vector. The accurate value facc is set to the mean 
value of the SPL in the measurement area for a topological 
design given as input, as expressed in Eq. (41).

3.2.2 � Training of multilayer perceptron

In the training process of the MLP, the weight matrices W 
and bias vectors b of the layers are optimized to generate the 
estimated value closest to the accurate value facc. The loss 
value L in Eq. (42) represents the square of the error between 
the estimated value fest and the accurate value facc. To con-
sider the mean of the loss values for a batch of input vectors, 
the batch loss value Lbatch is defined by Eq. (43), where the 
batch size Nbatch represents the number of input vectors in 
the batch. This batch loss value Lbatch is used as an objective 
function of the optimization problem for the weight matri-
ces W and bias vectors b. In this study, the weight matrices 
and bias vectors were updated using the gradient descent 
method, as shown in Eq. (44), where η denotes the learning 
rate. One completion of sequential updates for all batches 
of input vectors is called an epoch. For multiple epochs, the 
composition of the batches changes in each epoch. The ini-
tial values of the weight matrices are set to random numbers 
drawn from a normal distribution, and the initial values of 
the bias vectors are set to zero.

In this study, approximately 64%, 16%, and 20% of the 
total dataset were used as the training, validation, and test 
datasets, respectively. The validation dataset was used to 
determine whether the MLP was appropriately trained and 

(38)� = [ x1 , ...,xj,...,xn], xj = �j,

(39)�h = R
(
�h−1�h + �h

)
, R(x) =

{
x(x > 0)

0(x ≤ 0)

(40)fest = � = �h�out + �out,

(41)facc = Mean
(
SPLi

)
.

(42)L = (fest − facc)
2,

(43)
Lbatch =

Nbatch

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Lsample1 + Lsample2 +…

Nbatch

,

(44)�updated = � − �
�Lbatch
��

, �updated = � − �
�Lbatch
��

.

Fig. 7   Diagram of MLP
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to adjust the hyperparameters for training. The basic hyper-
parameters are the batch size Nbatch, number of hidden layers, 
size of each hidden layer (called the number of nodes), mean 
and standard deviation of initial weights, learning rate η, and 
number of epochs.

4 � Design examples

In this section, three design examples for barrier structures, 
duct internal structures, and ground structures are presented 
using the proposed MMC-based topology optimization and 
additional design procedures. The objectives of the pre-
sented design examples are to investigate the shape of a two-
dimensional structure in the design area that minimizes the 
mean SPL in the measurement area under a specific design 
condition. The size of the design area is 0.5 m × 0.5 m. The 

entire acoustic domain for FEA is discretized by 4-node 
square elements of side length 0.01 m.

The structure to be investigated can be understood as the 
cross-sectional shape of a regular three-dimensional struc-
ture in two-dimensional sound wave assumption as depicted 
in Fig. 8. In the case of designing a regular 3D structure, 
it is possible to expand the MMC-based acoustic topology 
optimization presented in this study to 3D acoustic topology 
optimization. However, in the case of designing an irregular 
3D structure, it is necessary to define a mathematical model 
representing the material interpolation parameters in 3D 
space for the geometric parameters of 3D MMCs.

4.1 � Setup of three design problems

The design example for barrier structures is configured as 
shown in Fig. 9. In this example, the upper part of a vertical 

Fig. 8   Diagram for 2D structure 
as the cross-sectional shape of 
a regular 3D structure in 2D 
sound wave assumption

Fig. 9   Acoustic analysis conditions for the acoustic barrier including design area
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structure built on the ground is treated as the design area, 
where topology optimization is performed. The FEA domain 
includes only the air area and design area, but not the area 
corresponding to the vertical structure. As depicted in Fig. 9, 
the solid line boundaries on the lower side of the acoustic 
domain represent the ground and perimeter of the vertical 
structure. At these boundaries, sound waves are reflected 
without transmission. On the contrary, dotted line bounda-
ries represent the open border in the air, where sound waves 
propagate outward without reflection. In this example, a 

monopole sound source at a single frequency is situated on 
the left side of the design area, and a sound measurement 
area is specified on the right side of the design area.

The other design example for the duct internal structures 
is configured as shown in Fig. 10. In this example, a design 
area is positioned inside a straight duct, slightly separated 
from the inner wall of the duct. The upper and lower bounda-
ries of the acoustic domain represent the inner walls of the 
duct with no sound transmission. At the left boundary, both 
incident and outgoing sound waves exist, and at the right 
boundary, only outgoing sound waves exist. In this exam-
ple, a sound measurement area is specified near the outlet 
of the duct.

The third design example for ground structures is con-
figured as shown in Fig. 11. This example has been modi-
fied in the barrier example. The design area is placed right 
above the ground. In this example, a monopole sound source 
is located higher than the height of the design area, and a 
sound measurement area is specified on the right side of the 
design area.

In the barrier example, the basic setting for the objective 
function to be minimized is set to the mean value of |p|2 in 
the measurement area. In contrast, in the duct example and 
ground structure example, the basic setting for the objective 
function is set to the mean value of the SPL in the measure-
ment area. The number of MMCs to form the structure in 
the design area is also different in each design example. The 
design examples for the barrier structure, the duct internal 
structure, and the ground structure use 4, 10, and 9 MMCs, 
respectively. The geometric parameters of the MMCs are 
determined by design variables according to the settings in 
Table 4. The basic settings for the initial values of design 

Fig. 10   Acoustic analysis con-
ditions for the duct including 
internal design area

Fig. 11   Acoustic analysis conditions for the ground structure to be 
designed

Table 4   Geometric settings of 
MMCs for the design examples

Design example nc Lmin Lmax tmin tmax θmax Ddesign Hdesign

Barrier structure 4 0.1 m 0.5 m 0.04 m 0.04 m 2π 0.5 m 0.5 m
Duct structure 10 0.1 m 0.5 m 0.03 m 0.05 m 2π 0.5 m 0.5 m
Ground structure 9 0.1 m 0.5 m 0.04 m 0.04 m 2π 0.5 m 0.5 m
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variables in MMC-based topology optimization are listed 
in Table 5.

4.2 � MMC‑based topology optimization results 
for target design conditions

In the design example for barrier structures, a case study 
was conducted to see the effect of the objective function, 
the initial layout of MMCs, and the number of MMCs on 
the MMC-based topology optimization results. Among the 
design conditions depicted in Fig. 9, the sound source posi-
tion (1 m, 0 m), the measurement area “Mid 3”, and the 
three frequencies (100 Hz, 200 Hz, and 300 Hz) are used as 
target design conditions for optimization. Figure 12 presents 
the layout of the MMCs as the iteration number of the opti-
mization process increases under the frequency of 100 Hz. 
Each image depicts the values of the material interpolation 
parameters in the design area. Starting from the initial lay-
out, separated MMCs join to form a shape.

Figure 13 shows the optimization results for the target 
design conditions using the two different objective functions 
in Eq. (28). In Fig. 13, the optimization results are displayed 
as an optimized shape that has been postprocessed. In each 
of the cases with three different frequencies, the optimized 
shape when the objective function is set to the mean of |p|2 
does not appear considerably different from the optimized 
shape when the objective function is set to the mean of the 
SPL. The target performance based on the optimized shape 
is also similar for the two objective functions. The target 
performance herein refers to the mean SPL for the design 
conditions under which the optimization was conducted. 

However, similar results cannot be generalized for the two 
objective functions.

MMC-based topology optimization can start with various 
initial layouts of MMCs. Figure 14 depicts the optimization 
results for four different initial layouts. From the optimiza-
tion results shown in Fig. 14a, the effect of the initial lay-
out on the optimized shape does not seem to be significant. 
However, in the optimization results of Fig. 14b which were 
obtained for the measurement area “Mid 2” instead of the 
measurement area “Mid 3”, different initial layouts generate 
quite different optimized shapes.

The number of MMCs is also an important considera-
tion for deriving an appropriate shape. Figure 15 depicts the 
optimization results for 9 MMCs and 16 MMCs. In the case 
of 100 Hz, the effect of increasing the number of MMCs is 
confirmed by the optimized shape change and the perfor-
mance improvement compared with the results in Fig. 14a. 
In the case of 200 Hz and 300 Hz, the increased number of 
MMCs causes more complex shapes with slight performance 
improvement. In the design example for the barrier structure, 
four MMCs are used considering the design of a relatively 
simple shape.

In the design example for duct internal structures, the 
three frequencies (100 Hz, 200 Hz, and 300 Hz) are used as 
the target design conditions for optimization. Similarly, in 
the design example for ground structures, the measurement 
area “H3” and the three frequencies (100 Hz, 200 Hz, and 
300 Hz) are used as the target design conditions for optimi-
zation. For these two design examples, Figs. 16 and 17 show 
the postprocessed optimization results for the target design 
conditions when the initial values of design variables are set 

Table 5   Basic settings for the 
initial values of design variables 
in MMC-based topology 
optimization

Design example Initial values of design variables

Barrier structure x1 ∼ xnc = 0 , xnc+1 ∼ x2×nc = 1∕8

x2×nc+1 = 0.1,x2×nc+2 = 0.5,x2×nc+3 = 0.5,x2×nc+4 = 0.9

x3×nc+1 = 0.5,x3×nc+2 = 0.1,x3×nc+3= 0.9 , x3×nc+4 = 0.5

Duct structure x1 ∼ x2×nc = 0

x2×nc+1 ∼ x3×nc = 1∕8

[x3×nc+1 ∼ x4×nc ] = 0.1, 0.5, 0.9, 0.2, 0.4, 0.6, 0.8, 0.1, 0.5, 0.9

x4×nc+1 ∼ x4×nc+3 = 0.1,x4×nc+4 ∼ x4×nc+7 = 0.5,x4×nc+8 ∼ x4×nc+10 = 0.9

(random cases)x1 ∼ x2×nc = 0,x2×nc+1 ∼ x5×nc = xrandom(0 ≤ xrandom ≤ 1)

Ground structure x1 ∼ xnc = 0,xnc+1 ∼ x2×nc = 1∕8

x2×nc+1 ∼ x2×nc+3 = 0.1,x2×nc+4 ∼ x2×nc+6 = 0.5,x2×nc+7 ∼ x2×nc+9 = 0.9

x3×nc+1, x3×nc+4, x3×nc+7 = 0.1,x3×nc+2, x3×nc+5, x3×nc+8 = 0.5,x3×nc+3, x3×nc+6, x3×nc+9 = 0.9

(random cases)x1 ∼ xnc = 0,xnc+1 ∼ x4×nc = xrandom(0 ≤ xrandom ≤ 1)
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to the basic setting and the random case “random 1”. From 
these results, it can be seen that irregular initial layouts of 
MMCs by randomized design variables can provide different 
optimized layouts with improved target performance.

4.3 � Comparison with SIMP‑based topology 
optimization results

In this subsection, the SIMP-based topology optimization 
results obtained with the same target design conditions as 
the MMC-based topology optimization are presented. In the 
presented SIMP-based topology optimization, the material 
interpolation parameters are expressed by the design vari-
ables using a linear filter in Eq. (45). The weight value wj,i is 
calculated by the filter radius R and the distance dj,i between 
the j-th and i-th finite elements. The filter radius R is set 
to 0.025 m. The constraint parameter b, representing the 

Fig. 12   Change of objective 
function value during optimiza-
tion and layouts of MMCs in 
some iteration numbers

Fig. 13   Optimization results for the target design conditions  (source 
position (1  m, 0  m) and measurement area “Mid 3”) in the barrier 
example using different objective functions
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Fig. 14   Optimization results 
for different initial layouts of 
MMCs under the design condi-
tions of a the measurement area 
“Mid 3” and b the measurement 
area “Mid 2” (barrier example)
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maximum occupancy rate of the rigid materials, is set to 0.3. 
The initial value of the design variables is set to 0.3, which 
is the same as the constraint parameter b. The initial value 
of the move range is set to 0.2, considering the appropriate 

change of material distribution. The objective function used 
for the SIMP-based topology optimization is the same as 
the basic setting used for the corresponding MMC-based 
topology optimization.

Figure 18a presents the SIMP-based optimization results 
in the barrier example, which is compared to the MMC-
based optimization results in Fig. 13. The postprocessed 
SIMP-based shapes are not exactly the same as the corre-
sponding MMC-based shapes. However, compared with the 
shapes in Fig. 15 using 9 MMCs, similar visual character-
istics can be identified in the optimized shapes at 100 Hz 
and 200 Hz frequencies. Figure 18b shows the SIMP-based 
topology optimization results in the duct example, which 
is compared to the MMC-based optimization results in 
Fig. 16. Unlike the MMC-based shapes, the SIMP-based 
shapes show symmetrical shapes vertically and horizontally. 
Figure 18c shows the SIMP-based topology optimization 
results in the ground structure example, which is compared 
to the MMC-based optimization results in Fig. 17. Although 
there are some differences in the optimized shapes accord-
ing to the two methods, it can be seen that some MMCs are 
arranged where rigid materials are mainly distributed in the 
SIMP-based method. Depending on the design example, the 
similarity between the MMC-based optimized shape and the 
SIMP-based optimized shape can differ.

SIMP-based acoustic topology optimization is difficult 
to derive complex shapes because it uses filter techniques 
to prevent irregular patterns of gray elements. This can be 
seen as one reason for the phenomenon that SIMP-based 
optimization results are somewhat different from MMC-
based optimization results, even if the design conditions are 
the same. Another reason is that the MMC-based acoustic 
topology optimization is generally sensitive to the initial val-
ues of design variables and provides various local optimal 
solutions. The sensitivity of MMC-based optimized designs 
to the initial design variables can be confirmed in the fol-
lowing subsections. In this study, since SIMP-based designs 
are not investigated in detail under various conditions, it 
cannot be determined which optimization method is better in 
terms of target performance improvement. Nevertheless, the 
MMC-based design method has advantages over the SIMP-
based design method in that various irregular shapes can be 
derived and there is a possibility of additional performance 
improvement.

(45)�j =

nd∑
i=1

wj,ixi

nd∑
i=1

wj,i

,wj,i = max(0 , R − dj,i)

Fig. 15   Optimization results for different numbers of MMCs (barrier 
example)

Fig. 16   Optimization results for the target design conditions in the 
duct example

Fig. 17   Optimization results for the target design conditions (meas-
urement area “H3”) in the ground structure example
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Fig. 18   Optimization results 
using the SIMP-based topology 
optimization in a the barrier 
example, b the duct example, 
and c the ground structure 
example
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4.4 � Additional design exploration using 
MMC‑based topology optimization results

According to the design procedures presented in Sect. 3, 
a better design with an improved target performance is 
explored from MMC-based topology optimization results. 
The target performance refers to the mean SPL in the meas-
urement area. In the design example for barrier structures, 
the target performance is calculated for the sound source 
position (1 m, 0 m) and the measurement area “Mid 3”. In 
the design example for ground structures, the target perfor-
mance is calculated for the measurement area “H3”. Design 
explorations are carried out independently for the target per-
formances at three frequencies: 100, 200, and 300 Hz.

4.4.1 � Basic design samples

To generate multiple design samples, topology optimization 
was performed on the combinations of different design con-
ditions and optimization conditions. In the barrier example, 
9 sound source positions, 12 measurement areas, and 21 
frequencies were considered, as depicted in Fig. 9. The fre-
quencies were set at 10 Hz intervals. In the duct example, 2 
types of objective functions, 26 frequencies, and 20 initial 
values of design variables were considered, as depicted in 
Fig. 10. The initial design variables were set to 20 random 
cases as described in Table 5. In the ground structure exam-
ple, 4 measurement areas, 21 frequencies, and 11 initial 
values of design variables were considered, as depicted in 
Fig. 11. The initial design variables were set to one basic 
setting and 10 random cases, as described in Table 5. There-
fore, the number of basic design samples is 2268, 1040, and 
924 in each design example. Figure 19 depicts some basic 
design samples in the three examples.

4.4.2 � Extracted design samples and modified design 
samples

In the barrier example, the top 200 design samples, accord-
ing to the target performance, were extracted from the basic 
design samples. Table 6 presents the target performances of 
the highest, 200th, and lowest ranking for the basic design 
samples. Considering the performance of the 200th rank-
ing, it can be observed that the top 200 design samples have 
relatively superior performance. Figure 20 illustrates the 
200 extracted design samples based on the performance at 
the frequency of 100 Hz. The numbers of extracted design 
samples in the duct example and the ground structure are 
100 and 50, respectively. 110,000 modified design samples 
were generated from the extracted design samples. Figure 21 
depicts several design samples modified from one of the 
extracted design samples in the barrier example.

4.4.3 � Candidate design samples and final design samples

10,000 candidate design samples were selected from the 
modified design samples based on the target performance 
estimated by the MLP. In the MLP estimation model, the 
size of the input vector is 2500, which is the number of finite 
elements in the design area. Table 7 presents the settings 
for the basic hyperparameters of the MLP used in the three 
design examples. The batch size and the standard deviation 
of the initial weights were slightly changed according to the 
design examples for appropriate training of the MLP. To test 
the estimation accuracy of the trained MLP, the estimated 
performances of the test design samples were compared 
with the accurate performances by FEA. Figure 22 presents 
the estimation results for the 300 samples among 2,000 test 
design samples in the barrier example. The comparison of 
the performance at 100 Hz indicates that the estimates are 
remarkably consistent with accurate performances. How-
ever, the estimation accuracies for the performances at 200 
and 300 Hz are relatively lower than that for the performance 
at 100 Hz. The top 10 final design samples based on the 
accurate target performance by FEA were selected from the 
candidate design samples as Fig. 23.

4.5 � Discussion on design results

In this subsection, the best performance of the basic design 
samples, the best performance of the modified design sam-
ples used to train the MLP, and the best performance of the 
final design samples are compared. Figures 24, 25, and 26 
represent the compared design samples and their target per-
formances in the three design examples, respectively.

First, the best performance of the basic design samples 
is generally much better than the performance of the design 
obtained by the local optimal point for the target design con-
dition. Because of the local optima issue, it is interestingly 
observed in the case of the acoustic topology optimization 
that one local optimum for a different condition, i.e., the 
frequency, the target area for sound reduction, and the posi-
tion of sound source, shows the superior performance for the 
target condition. This means that various topological designs 
based on the local optimal points should be obtained under 
various design conditions that are different from the original 
design condition. In addition, in the cases of the duct exam-
ple and the ground structure example, it can be seen that 
various initial design variables help to find better designs.

In the three examples, the best performance of the modi-
fied design samples for training represents additional per-
formance improvement compared with the best performance 
of the basic design samples. From the numerical tests in the 
present study, the best design of the modified design samples 
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was not obtained from the best design of the basic design 
samples. The value in the parenthesis below the target per-
formance indicates the index of the corresponding extracted 
design sample. In other words, the designs with the same 
values in parentheses were modified from the same design 
sample. This fact also supports the importance of obtaining 
various design samples. Due to the acoustic characteristics 
of sound waves, there was a change in target performance 
even though the geometric values for MMCs were slightly 
modified.

The best performance of the final design samples can also 
represents additional performance improvement compared 
with the best performance of the modified design samples 
for training. However, the degree of performance improve-
ment is different in each design example. In the barrier 
example, the degree of performance improvement is less 
than 1 dB in the case of 100 Hz. In the case of 200 Hz, the 
best performance of the final design samples is not better 
than that of the modified design samples for training. In the 
duct example, the best performance of the final design sam-
ples is better than that of the modified design samples for 

training in all cases of three frequencies. However, in the 
case of 300 Hz, the degree of performance improvement 
is less than 1 dB. In the ground structure example, when 
10,000 candidate design samples were analyzed, the best 
performance of the final design samples is better than that 
of the modified design samples for training only in the case 
of 300 Hz. Accordingly, the number of candidate design 
samples analyzed was increased to 20,000, which corre-
sponds to the top 20% based on the estimated performance. 
As a result, performance improvement could be achieved 

Fig. 19   Basic design samples obtained from MMC-based topology 
optimization results in a the barrier example, b the duct example, and 
c the ground structure example

◂

Table 6   Target performances 
of the design samples in the 
highest, 200th, and lowest 
ranking among the basic design 
samples

Barrier example Mean SPL at 100 Hz Mean SPL at 200 Hz Mean SPL at 300 Hz

Sample of the highest ranking 49.95 dB 52.90 dB 38.25 dB
Sample of the 200th ranking 59.42 dB 59.55 dB 56.32 dB
Sample of the lowest ranking 74.38 dB 72.89 dB 70.58 dB

Fig. 20   200 extracted design 
samples based on the target per-
formance at 100 Hz frequency 
(barrier example)

Fig. 21   Examples for modification of a design sample (barrier exam-
ple)
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in all cases of three frequencies. However, in the case of 
200 Hz, the performance improvement is still less than 1 dB. 
The best performance of the final design samples obtained 
when only 1,000 candidate design samples were analyzed 
is also presented. However, in this case, the performance 
did not improve or the performance improvement is almost 
less than 1 dB. Therefore, the selection of 1,000 candidate 
design samples is insufficient. The three design examples 
show that the additional design procedures presented in this 
study may help improve the performance of MMC-based 
acoustic structures.

Figure  27 depicts the SPL distributions for the best 
designs of the basic design samples, the modified design 
samples for training, and the final design samples. It can 
be seen that the average SPL in the target performance 
measurement area decreases through the additional design 
process.

5 � Conclusions

In this study, we investigated the possibility of applying 
MMC-based topology optimization to the acoustic design 
problem. Despite the advantages of the topology optimiza-
tion method that generates novel shapes of structures, topo-
logical designs by certain local optimal points did not guar-
antee sufficiently satisfactory performance in the presented 
design examples. Therefore, we evaluated various designs 
optimized for different design conditions and optimization 
settings. Because the local optimum design under a nontar-
geted design condition is not a local optimum design under 
the targeted design condition, performance improvement for 
the targeted design condition was achieved through slight 
shape modification. In the additional design procedures 
through shape modification, we investigated the feasibility 
of MLP as a performance estimation model.

Although an appropriate selection of candidate design 
samples through the performance estimation by the MLP 
was possible in the present study, there are many challenges 
related to the estimation accuracy. As the degree of shape 
modification increases, it is advantageous to explore various 

Table 7   Settings for the hyperparameters of MLP

Design example Batch size Number of hid-
den layers

Hidden layer sizes Learning rate Number of 
epochs

Mean and standard 
deviation of initial 
weights

Barrier structure 10 4 64, 32, 16, 8 0.001 50 0, 0.001
Duct structure 20 4 64, 32, 16, 8 0.001 50 0, 0.005
Ground structure 10 4 64, 32, 16, 8 0.001 50 0, 0.005

Fig. 22   Estimated performances of MLP for the test design samples 
(barrier example)
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Fig. 23   Top 10 final design 
samples selected from candidate 
design samples in a the barrier 
example, b the duct example, 
and c the ground structure 
example
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Fig. 24   Comparison of best per-
formances of different groups 
of design samples (barrier 
example)

Fig. 25   Comparison of best per-
formances of different groups of 
design samples (duct example)
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design samples with different characteristics in the overall 
shape, but it becomes more difficult to estimate the perfor-
mance with high accuracy using an MLP. In other words, 
as the relationship between structural design information 
and acoustic performance exhibits high nonlinearity (com-
plexity), training the neural network becomes more difficult. 
Therefore, the number of extracted design samples subjected 
to shape modification and the degree of shape modification 
should be appropriately considered.

In the future, a study to improve the estimation accuracy 
of ANNs will be conducted. For example, a CNN special-
ized for image recognition could be used instead of an MLP. 
Furthermore, optimization methods other than the gradient 
descent method could be used to train an ANN. Changing 

the regression problem in this study to a multiclass classifi-
cation problem could also be an alternative. In this case, it 
would be possible to define several categories corresponding 
to the ranges that distinguish the performance values. Then, 
design samples could be classified according to the category 
predicted by an ANN.

To conclude, this study proposes a systematic design 
approach for a sound reduction structure based on MMC-
based topology optimization. The main idea of the proposed 
design approach is simple, but it is meaningful in that it 
complements the limited design results obtained using 
only topology optimization. Our approach helps not only 
to find a single design with the best performance, but also 
to explore various designs with different shapes and similar 

Fig. 26   Comparison of best per-
formances of different groups 
of design samples (ground 
structure example)
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performances. Of course, there may be more effective and 
practical design strategies than the design method proposed 
in this study, but the design examples presented in this study 
may be beneficial in inspiring researchers to create new and 
varied design methods.
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