
Computers and Structures 228 (2020) 106146
Contents lists available at ScienceDirect

Computers and Structures

journal homepage: www.elsevier .com/locate /compstruc
Efficient topology optimization of multicomponent structure using
substructuring-based model order reduction method
https://doi.org/10.1016/j.compstruc.2019.106146
0045-7949/� 2019 Published by Elsevier Ltd.

⇑ Corresponding author at: School of Mechanical Engineering, Hanyang Univer-
sity, Seoul, Republic of Korea.

E-mail address: ghy@hanyang.ac.kr (G.H. Yoon).
Hyeong Seok Koh, Jun Hwan Kim, Gil Ho Yoon ⇑
Mechanical Engineering, Hanyang University, Republic of Korea

a r t i c l e i n f o
Article history:
Received 12 July 2019
Accepted 28 October 2019
Available online 18 November 2019

Keywords:
Topology optimization
Model reduction schemes
Substructure design
Krylov subspace
Ritz vector method
a b s t r a c t

This study develops a novel model reduction (MR) scheme called the multi-substructure multi-frequency
quasi-static Ritz vector (MMQSRV) method to compute dynamic responses and sensitivity values with
adequate efficiency and accuracy for topology optimization (TO) of dynamic systems with multiple sub-
structures. The calculation of structural responses of dynamic excitation using the framework of the finite
element (FE) procedure usually requires a significant amount of computation time. The ever-increasingly
complex phenomena of FE models with many degrees of freedom make it difficult to calculate FE
responses in the time or frequency domain. To overcome this difficulty, model reduction schemes can
be utilized to reduce the size of the dynamic stiffness matrix. This paper presents a new model order
reduction method called MMQSRV, based on the quasi-static Ritz vector method, with Krylov subspaces
spanned at multiple angular velocities for efficient TO. Through several analysis and design examples, we
validate the efficiency and reliability of the model reduction schemes for TO.

� 2019 Published by Elsevier Ltd.
1. Introduction

This study developed a novel model reduction (MR) scheme and
investigated how the dynamic characteristics of multicomponent
structures could be efficiently improved through the density-
based topology optimization. For a long time improving the vibra-
tion or noise characteristics of structure by changing its geometry
has been a subject of research and discussion for engineers and sci-
entists [1,2]. To improve these characteristics systematically via
finite element (FE) method, topology optimizations have been
developed and applied to various engineering problems
[2,5,6,10,11,14,17–20,22–26,28–33]. However, despite the interest
in topology optimization for dynamic structures, the very high
computation time required for the optimization process often
becomes a huge obstacle for practical applications. FE method
must frequently consider complex manifold structures with many
degrees of freedom (DOFs), which can easily become unsupport-
able for step-by-step frequency or time-domain analyses, in spite
of technological developments in high-performance computer
hardware and computer-aided engineering (CAE) software. When
we consider topology optimization for complex manifold struc-
tures shown in Fig. 1, a large computation time would be required
to calculate FE procedure with fine incremental frequencies or
times.

One of the efficient and effective approaches to reduce the com-
putation time in the FE procedure is reducing the system size prior
to calculating the structural responses by using model reduction
schemes. Many innovative model order reduction (MOR) methods,
such as the Guyan reduction method [9,13], the mode superposi-
tion method (MS method) [22], the proper orthogonal decomposi-
tion method [20,27], the Ritz vector method (RV method)
[15,22,26,28], the quasi-static Ritz vector method (QSRV method)
[14,31], the multi-frequency quasi-static Ritz vector (MQSRV)
method [30], and the transient quasi-static Ritz vector (TQSRV)
method [31], have been developed. In [26], comparative transient
dynamic analyses were performed using the load-dependent and
the mode-superposition method based on the superposition of
eigenvectors. In [8], they employed static recurrence procedures
to generate the Ritz vectors. As such, these vector methods are best
suited for low-frequency problems with the so-called quasi-static
Ritz vector. In [3], the mode acceleration method and the mode
superposition method have been employed to solve structural
engineering problems. Especially, the time reduction effect of
MOR methods come to remarkable when we have to deal with
large scale problem [7]. Furthermore, MORmethods play an impor-
tant role in connection to structural optimization, because many
optimization and analysis iterations can be accelerated by a MOR
approach in frequency domain [19,20,29,32]. The first MOR
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Fig. 1. Complex manifold structure.

Fig. 2. Application of MMQSRV method in simple model.
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approach in topology optimization can be found in [29] which
investigated three types of MOR approaches, i.e., the MS, the RV,
and the QSRV methods in topology optimization and showed that
the mode superposition approach using the eigenvector can be
troublesome due to the local mode issue. In [17], a MOR approach
was applied to transient analysis in TO using the mode acceleration
method (MAM) and mode displacement method (MDM). In
[32,33], three kinds of objective functions (the mean dynamic com-
pliance, the mean strain energy, and the mean squared displace-
ment) were considered for TO. using MAM and MDM. Recently,
Mediante et al. applied the projection-based parametric MOR
method to reduce the computational cost of material or size opti-
mization in large vibroacoustic models [21].

To contribute this research subject, the present study develops a
newmodel order reduction formultiple components shown in Fig. 2.
and applies it to the structural topology optimization with multiple
components. To our best knowledge, themodel order reductions for
multiple components have been developed [4,12,18,20]. However,
its application to structural topology optimization has not been
studied or developed before this research. The existing model order
reduction shows high efficiency with multi-components connected
through points or shallow regions [18]. Indeed by presenting the
model order reductionwith Ritz vectors for multi-components con-
nected through line or surface, the approximately structural
responses are efficiently predicted. As the number of the Ritz vectors
is proportional to the number of nodes along the interface lines, the
numerical efficiency is also influenced. After that, its applications for
efficient TO have been proposed.
The layout of the paper is organized as follows: First, we explain
the basic concepts of density-based topology optimization and MR
schemes. Then, a new MOR method called the multi-substructure
multi-frequency quasi-static Ritz vector (MMQSRV) method for
calculating the reduction bases for multiple substructures is pre-
sented. Using some analysis examples with arbitrary chosen mate-
rial properties and boundary conditions, the efficiency and
accuracy of the MMQSRV method will be checked. Then, the TO
with the MMQSRV method will be solved. Finally, we summarize
our findings and discuss some topics for future research in the
conclusion.

2. Optimization formulation

2.1. Frequency response analysis of FE

Without the loss of generality, Newton’s second equation is
solved for the time-varying response of linear solid structure with
time-varying force, Ft as follows:

M€Xt þ C _Xt þ KXt ¼ Ft ; ð1Þ
whereM, C, and K are the mass matrix, the damping matrix, and the
stiffness matrix. The time-varying displacements, velocities, and
accelerations of the structure are denoted by Xt , _Xt , and €Xt , respec-
tively. For the sake of simplicity, it is assumed that the following
Rayleigh damping with damping coefficients ar and br in Eq. (2).

C ¼ arMþ brK ð2Þ
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For the frequency response analysis, the following harmonic
excitation is assumed [1].

Xt ¼ Xeixt ; Ft ¼ Feixt ð3Þ
The dynamic stiffness matrix, S, can be derived as follows:

SX ¼ F; S ¼ �x2Mþ ixCþ K ð4Þ
2.2. Statement of topology optimization formulation

Optimized design for given static or dynamic external loads has
been an important issue in many structural applications. In this
study, the topology optimization problem involves a volume con-
straint and strives to minimize the dynamic compliance defined
by Ma et al. [19] and Jensen [11]. The topology optimization of a
linear problem minimizing the dynamic compliance and subject
to a volume constraint can be formulated as follows:

Minimize
c

U ¼ Rxe

xs
FTX
��� ���dx

Subject to
PNE
i¼1

civi 6 V�

M€Xt þ C _Xt þ KXt ¼ Ft

0 < c 6 1

ð5Þ

where the starting and ending angular velocities are denoted by xs

and xe, respectively. The design variable c is varying from 0 to 1.
The volume of the i-th element and the prescribed volume limit
are vi and V�, respectively. To solve the optimization problem in
(5), the method of moving asymptotes (MMA), is employed here.
Meanwhile, for the sensitivity analysis for the objective function
and the constraint with respect to design variable c, the adjoint
variable method (AVM) and Lagrange multiplier method are
adopted. The sensitivity analysis is derived via the following:

/L ¼ /ðxÞ þ kT1ðSX� FÞ þ kT2ðS
�
X
�
� F

�
Þ where / ¼ FTX

��� ��� ð6Þ

The conjugate dynamic stiffness and the conjugate force are

denoted by S
�

and F
�
, respectively. The Lagrange multipliers are

denoted by k1 and k2, respectively. By differentiating the Lagrange
equation /L with respect to the design variable c, the sensitivity
analysis and two adjoint variables k1 and k2 can be obtained as
follows:

d/L

dc
¼ d/

dc
þ kT1

@S
@c

X� @F
@c

� �
þ kT2

@ S
�

@c
X
�
� @ F

�

@c

 !
ð7Þ

Sk1 ¼ 1
2

� @/
@Xreal

þ i
@/

@Ximag

� �
ð8Þ

S
�
k2 ¼ 1

2
� @/
@Xreal

� i
@/

@Ximag

� �
or

S
�
k2 ¼ 1

2
� @/
@Xreal

þ i
@/

@Ximag

� �
ð9Þ

Because Lagrange multipliers k1 and k2 are equal to each other,
by comparing Eq. (10) with Eq. (11), we can simply get the follow-
ing equation:

d/L

dc
¼ @/

@c
þ 2Real kT1

@S
@c

X� @F
@c

� �� �
ð10Þ

Sk ¼ �1
2

� @/
@Xreal

� i
@/

@Ximag

� �
; k � k1 ¼ k

�
2 ð11Þ

Finally, the sensitivity value can be obtained as follows.
dU
dc

¼
Z xe

xs

2Real kT
dS
dc

X
� �� �

dx ð12Þ

k ¼ �a
2

X; a ¼ XTF

XTF
��� ��� ; k � k1 ¼ k

�
2 ð13Þ
3. Model reduction (MR) schemes for topology optimization

3.1. Introduction of model reduction schemes

For precise response calculation, the number of DOFs in a com-
putational model is increased significantly over time. Therefore,
the solutions of refined FE meshes are difficult for even the most
advanced and state-of-the-art computational systems within a
moderate computation time. In frequency response analysis, these
limits are often overcome by applying a MOR scheme to reduce the
size of the assembled stiffness and mass matrices. Many relevant
studies have developed MOR methods, such as the Guyan reduc-
tion method [9,13], MS method [22], RV method [22,26,28], QSRV
method [8], MQSRV method [30], TQSRV method [31], and proper
orthogonal decomposition method [16]. By approximating the
original structural response X with the reduced response wQ, the
size of the linear algebra system can be decreased by transforming
a large set of system equations into a small set of equations [29,30].
From a mathematical point of view, the approximated response XA

of the original response X can be defined as follows:

AX ¼ B; ð14Þ
X|{z}

ns�1

¼ W|{z}
ns�nd

Q|{z}
nd�1

þ R|{z}
ns�1

ffi W|{z}
ns�nd

Q|{z}
nd�1

¼ XA; ð15Þ

W ¼ u1;u2; :::;und

h i
nd 6 nsð Þ; ð16Þ

where A and B denote an arbitrary ns � ns system matrix and an
ns � 1 force vector, respectively; the number of DOFs in the system
is denoted by ns, and the number of reduced DOFs is denoted by nd.
In (15), the frequency-dependent basis vectors of the order nd, the
reduced unknown variables, and the residual matrix are denoted
by W, Q , and R, Respectively. By pre-multiplying WT into (14), the
following reduced equation with order nd is obtained.

WTAW
n o
|fflfflfflfflfflffl{zfflfflfflfflfflffl}

nd�nd

Q|{z}
nd�1

¼ WTB|ffl{zffl}
nd�1

ð17Þ

After solving this reduced system with order nd for Q , the
approximate solution XA can be recovered using (15). Because we
use a small size of matrix (nd � ns), the involved computational
time can be reduced.

Similarly, Newton’s second equation (1) can be formulated as
following:

WTM€XþWTC _XþWTKX ¼ WTF ð18Þ

WTMW|fflfflfflffl{zfflfflfflffl}
MR

€Q þWTCW|fflfflffl{zfflfflffl}
CR

_Q þWTKW|fflfflffl{zfflfflffl}
KR

Q ¼ WTF|ffl{zffl}
FR

ð19Þ

Now the original system’s displacement matrix X can be repre-
sented by recovering process as follows:

X ffi XA ¼ WQ ð20Þ
The sensitivity analysis with the solutions or the responses by

the present MOR approach is similar to the previous one. In other
words, the solutions in (6) and the following adjoint systems are
simply replaced by the responses by the responses of the present
MOR approach as follows:
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/L ¼ /ðxÞ þ kT1ðSXA � FÞ þ kT2ðS
�
X
�
A � F

�
Þ where / ¼ FTXA

��� ��� ð21Þ

dU
dc

¼
Z xe

xs

2Real kT
dS
dc

XA

� �
dx; k ¼ �a

2
XA; a ¼ XT

AF

XT
AF

��� ��� ; ð22Þ
3.1.1. Multi-frequency quasi-static Ritz vector (MQSRV method)
The RV and QSRV methods construct their reduction basesW by

considering the external force F, the mass matrix M, and the stiff-
ness matrix K. The order m Krylov subspace jm, generated by an
arbitrary matrix A and an arbitrary vector B, is the linear subspace,
as follows:

jmðA;BÞ ¼ spanfB;AB;A2B; � � � ;Am�1Bg ð23Þ
For the practical computational implementation of the RV or

QSRV method with the Krylov subspace in (23), the bases are
stored through the following procedures.

u�
1 � ðK�x2

cMÞ�1
F LUdecompositionð Þ ð24Þ

u1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u�T

1 Mu�
1

q u�
1 ð25Þ

Krylov subspace :u�
j �ðK�x2

cMÞ�1ðMuj�1Þ LUdecompositionð Þ
ð26Þ

Orthogonalization : u��
j � u�

j �
Xj�1

k¼1

ðuT
kMu�

j Þuk ð27Þ

Normalization : uj ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u��T
j Mu��

j

q u��
j ð28Þ

wherexc is the center angular velocity of interest. Whenxc = 0, the
QSRV and TQSRV methods become the RV method.

In addition, the MQSRV method was developed as an extension
of the QSRV method. The MQSRV method adds the Krylov subspace
bases constructed at multiple center frequencies to frequency-
dependent systems, as follows:

us;1 � ðKðxc;sÞ �x2
c;sMðxc;sÞÞ�1

Fðxc;sÞ ð29Þ

us;j � ðKðxc;sÞ �x2
c;sMðxc;sÞÞ�1ðMðxc;sÞus;j�1Þ; ð30Þ

xc;s ¼ xs;start þxs;end

2
; s ¼ 1; :::;nf ; j ¼ 1; :::;nd;s ð31Þ

where the starting frequency, the ending frequency, and the center
frequency of the s-th frequency domain are denoted byxs;start ,xs;end,
andxc;s, respectively, and the total number of considered frequency
domains is nf . The number of bases calculated for the s-th frequency
domain is denoted by nd;s. The following bases are then constructed
for the MQSRV method:

W¼ u1;1 � � �u1;nd;1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
the 1st domain

;u1;2 � � �u1;nd;2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
the 2nd domain

� � �u1;nf�1 � � �u1;nd;nf�1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
the ðnf�1Þth domain

u1;nf � � �u1;nd;nf|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
the ðnf Þth domain

2
664

3
775;

ð32Þ
where the mass orthogonalized bases of the MQSRV method for the
i-th basis at the s-th center angular velocity are denoted by ui;s. The
number of bases at the s-th center angular velocity is denoted by
nd;s. After the bases of the QSRV method are built, the structural
response X is again approximated.
X ffi XA ¼ WQ ð33Þ
One of the reasons to use those combined bases is that multi-

frequency Krylov subspace bases effectively approximate the har-
monic motion of a structural part in a wide range of frequency
domains. TheMQSRVmethod is thus effective for harmonic systems.

3.1.2. A new MOR method: multi-substructure multi-frequency quasi-
static Ritz vector (MMQSRV)

Many novel MOR methods have been developed and imple-
mented to accommodate the differences and uniqueness of various
engineering applications. These efforts have been successfully
adopted in open and commercial analysis software packages to
accelerate solution procedures. However, because all these meth-
ods use internal information, easy access to internal information
is essential. Therefore, confining our interest to structural analysis,
the existing MORmodels have the following issues and limitations.

Issue 1: It is impossible to use existing MOR methods for
multiple-component systems with multiple subcomponents man-
ufactured by different vendors who do not share their core analysis
data, even with restrictions.

Issue2: These existingMORmethods are commonlybased onglo-
bal stiffness and mass matrices. If some small parts of a system are
modified, calculating and assembling new stiffness and mass matri-
ces will be drawbacks of the existing MOR methods because they
require additional computational resources, i.e., computing time.

As a new remedy for these structural problems, we present the
MMQSRV method, a new MOR method that is applicable to multi-
ple components and is based on the substructure method that uses
the bases of the MQSRV method and TQSRV method. In this new
MOR method, we divide a large computational system into several
subcomponents and reduce the system matrices of each divided
component using reduction bases. Therefore, the MMQSRVmethod
offers the following advantages as solutions to the above issues.

Advantage 1: Because the basis calculation processes are
achieved at the component level, each vendor is responsible for
calculating its reduction bases without interacting with other com-
ponents. A limitation of previous MOR method is that the meshes
of multiple components should be continuous at the interfaces
among subcomponents.

Advantage 2: Because the reduction processes are achieved at
the component level, it is unnecessary to assemble or determine
global stiffness and mass matrices for the mechanical system. The
DOFs at the interfaces should be retained in the reduced systems.

Systematic calculation of reduction bases
To derive the reduction bases systematically for the MMQSRV

method, we consider a mechanical system with multiple compo-
nents. Some conventions should be defined, as follows:

* The interfacing node set (Iji): the nodes along the interfacing
lines between i-th and j-th components.

* The interfacing element set: finite elements with at least one
interfacing node.

* The adjacent interfacing node set (AIji): the nodes composed
of interfacing elements, excluding the interfacing nodes
between i-th and j-th components.

* The adjacent interfacing node (AINði;jÞ
k ): the kth node of the

adjacent interfacing node set AIji.

* The number of adjacent interfacing nodes (inj
i): the number

of nodes in the adjacent interfacing node set AIji.

* The internal node (Iii): the node set inside the i-th
substructure, excluding the interfacing nodes of each
substructure.
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The following effective stiffness matrix is then decomposed as
follows:

Sj ¼ �x2Mj þ ixC j þ K j ð34Þ
S ¼
X
j

Sj ð35Þ

The stiffness matrix components can be represented as follows:

ð36Þ

where the symmetric stiffness matrix of the i-th component is Si,
which can be decomposed by the values along the kth interfacing

node set, i.e., S
Iik ;I

i
k

i and S
Iik ;I

i
i

i . Without the loss of generality, the i-th

internal DOFs (SIii ;I
i
i

i ) can be condensed and the whole system matrix
can be written as follows:

ð37Þ
Depending on the choice of MOR scheme, many different char-

acteristics appear for SRi . In this study, we use the MQSRV method
with some Krylov subspace for ui. However, it is unclear how to
compute the Krylov subspaces for each internal component
because some non-zero external forces and the full-rank system
stiffness matrices are essential, and they often do not exist. To
resolve this vector space issue, our proposed approach introduces
a pseudo-fixed boundary along the interfacing node set and some
pseudo-forces at the adjacent interfacing node set.

This research calculates the bases using the MQSRV approach.
Each component is considered as an independent mechanical sys-
tem that interacts with adjacent components. How to compute the
Krylov subspace of each component becomes a critical issue
because some external forces and the system stiffness matrices
are required, and often some substructures are missing external
forces and constraints. Therefore, it is regarded that the mechani-
cally interacting forces among substructures as external forces
for each component. Mathematically, the stiffness matrices of adja-
cent substructures directly influence the motions of the internal
nodes of each substructure through the interfacing nodes, as
shown in Fig. 3. One limitation is that matching discretization
among substructures should be used, as shown in Fig. 3; therefore,
with non-matching discretization, the proposed approach cannot
be applied. All the nodes constructing the FE adjacent to the inter-
face line, except those at the interface line, are of interest.

Fig. 3(a) is a schematic diagram of the interface. Some artificial
point loads are applied to the DOFs of the adjacent interfacing node
set, as shown in Fig. 3(b) for the multi-frequency Krylov subspaces.
After that, it is possible to reduce the size of the system matrix
using the MOR scheme.

The basis for the i-th substructure can then be written as
follows:

ui ¼

uexternal loads
i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Bases for extanal loads
at the internal nodes of
the ith component ðIiiÞ

; upseudo loads
i|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Bases for pseudo loads at
the adjacent interfacing nodes

of the ith component

2
66664

3
77775;

ð38Þ
where the reduction bases of the i-th component are expressed as
Eq. (38), comprising the bases for external loads and the bases for
pseudo-loads. The bases for the external loads are calculated using
external loads on the i-th component, if they exist. The reduction
bases for the pseudo-loads are decomposed as follows:

upseudo loads
i ¼ u

AI1i
i ;u

AI2i
i ; � � � ;uAIi�1

i
i ;u

AIiþ1
i

i ; � � � ;u
AIni
i

� �
ð39Þ

u
AIj

i
i ¼ u

AINði;jÞ
1

i ;u
AINði;jÞ

2
i ; � � � ;u

AINði;jÞ
inj
i

i

2
4

3
5

x

; u
AINði;jÞ

1
i ;u

AINði;jÞ
2

i ; � � � ;u
AINði;jÞ

inj
i

i

2
4

3
5

y

2
4

3
5;
ð40Þ

where the reduction bases of the i-th component along the j-th

adjacent interface node are denoted by u
AIj

i
i . As the number of bases

increases, the accuracy is improved but the computation time is
also increased.

3.1.3. Calculation of reduction bases example: Simple 2-component
cantilever problem

To understand the MMQSRV method, let us consider the system
in Fig. 4 with the predefined notations.

The effective system matrix can be written as follows:

SI
1
1 ;I

1
1

1 SI
1
1 ;I

2
1

1 0

SI
2
1 ;I

1
1

1 SI
2
1 ;I

2
1

1 þ SI21 ;I
2
1

2 SI
2
1 ;I

2
2

2

0 SI
2
2 ;I

2
1

2 SI
2
2 ;I

2
2

2

2
6664

3
7775

XI11

XI21

XI22

2
64

3
75 ¼

FI11

FI21

FI22

2
64

3
75; ð41Þ

where the displacements of each node set are denoted by XIj
i (i, j = 1

or 2). The effective force vector is divided similarly. Without the loss
of generality, the stiffness components corresponding to the DOFs

of each node set are defined by S
Iij ;I

k
l

m (i, j, k, l, m = 1 or 2). Before reduc-
ing the above system matrix, the reduction bases are generated
independently for the first and second components.

The reduction bases u1 are then computed via the following
procedure.

u1 ¼ uexternal loads
1 ; upseudo loads

1

h i
ð42Þ

Because the first component has an external load, the tempo-
rary bases for the external load before normalization and orthogo-
nalization are computed using the following procedure.

u
	 external loads

1 ¼u
	 I11

1

¼
"
ðu	 I11

ð1;1Þ;1; � � � ;u
	 I11

ðnd;1 ;1Þ;1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xð1;1Þ
c;1

Þ; � � � ;ðu	 I11
ð1;nf ð1;1ÞðeÞ Þ;1; � � � ;u

	 I11
ðn

d;nf ð1;1ÞðeÞ
;nf ð1;1ÞðeÞ Þ;1

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{xð1;1Þ
c;nf ð1;1ÞðeÞ

Þ
#

ð43Þ

u
	 I11
ð1;mÞ;1 ¼ KI11

1 � ðxð1;1Þ
c;m Þ2MI11
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Fig. 3. Schematic diagram of an interface between two substructures.

Fig. 4. An illustrative example with two substructures.
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Furthermore, the reduction bases for three pseudo-loads at the

first component are generated as in equations (46)–(50).
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where nf ð1;2ÞðpÞ is the number of center frequencies for the pseudo-

loads (FAI21 ), and nd;m is the number of Krylov subspaces at the m-

th center frequency (xð1;1Þ
c;m ) for pseudo-loads (FAI21 ). The orthogonal-

ization and normalization processes are applied to the temporary

bases u
	 external loads

1 and u
	 pseudo loads

1 for uexternal loads
1 and upseudo loads

1 ,
respectively.

The reduction bases u2 are computed using the following
procedure.

u2 ¼ uexternal loads
2 ; upseudo loads

2

h i
ð51Þ

Because the second component has no external load, the bases
for external load are empty.

uexternal loads
2 ¼ Empty½ 
 ð52Þ
Therefore, only the temporary reduction bases from the pseudo-

loads exist.
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Fig. 5. Two-dimensional beam model with a point load (a) cantilever beam (120 � 3 linear Q4 elements) with the two subcomponents and (b) the reduction process for each
model.
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where nf ð2;1ÞðpÞ is the number of center frequencies for pseudo-loads

(FAI12 ), and nd;m is the number of Krylov subspaces at the m-th center

frequency (xð2;2Þ
c;m ) for pseudo-loads (FAI12 ). After the above proce-

dures, the orthogonalization and normalization processes are

applied to the temporary bases u
	 pseudo loads

2 for upseudo loads
2 .

Without loss of generality, we reduce the second subsystem
before the first subsystem. The second component is first reduced
with the reduction bases u2, as follows:

XI22 ’ u2Q
I22 ð58Þ
The system matrix in Eq. (41) is then redefined as follows:
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After the procedures from equations (53)–(57), we further
reduce the system using the MMQSRV method for the first compo-
nent, as follows:

XI11 ’ u1Q
I11 ð60Þ

By replacing XI11 with u1Q
I11 , the system matrix is redefined as

follows:



Fig. 6. FRF responses with (a) Multi-MS, (b) Multi-RV, (c) Multi-QSRV, and (d) Multi-MMQSRV methods.

Table 1
Computational speedup for MOR example (Fig. 6).

Number of degrees of freedom Multi-MS Multi-RV Multi-QSRV MMQSRV
(1st component, 2nd component)
Center frequency (rad/s) none 0 10 0, 10, 20
Computed number of bases at each center frequency 117 (60, 57) 9 9 3

(eigen-modes)
Total number of bases 117 (60, 57)
(1st component, 2nd component)
Full finite element analysis 3.9286 s
MMQSRV analysis 0.5128 s 0.4416 s 0.4216 s 0.4441 s
(base generation, FRF analysis) (0.1487 s, 0.3641 s) (0.0461 s, 0.3955 s) (0.0511 s, 0.3705 s) (0.0719 s, 0.3722 s)
Speedup 7.6611 8.8963 9.3183 8.8462
Error indicator 1:0493 1:3923� 10�2 1:1197� 10�5 2:5231� 10�8
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Fig. 8. Two-dimensional cantilever beammodel (120� 20 Q4 elements, m=0.3, q=1,
thickness = 1) with two subcomponents.

Table 2
The error indicator with respect to the number of Ritz vectors.

Number of Ritz vector 1 2 3 4 5 10
Error indicator 3:9033 5:6963� 10�2 2:5231� 10�8 6:7343� 10�11 5:8035� 10�11 6:3232� 10�11
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After all the above procedures, the DOFs of each subcomponent
can be reduced, and efficient FE simulations are achievable. The
next section provides several numerical examples to show the ver-
satility and effectiveness of our MMQSRV approach.

It is crucial to have accurate finite element solutions to be incor-
porated with TO with the model order reduction. This research has
concerned about not only the accuracy of the response of the finite
element simulation but also the similarity of the optimal layouts
with and without the model order reduction approach. To improve
the accuracy of the solution, a proper model order reduction
should be employed and the number of the bases of the model
order reduction should be increased appropriately. In our numeri-
cal tests, we set, increase or decreases the number of the bases of
the MMQSRV method to have the same optimization results as
well as to get a higher speedup. For an example, it is possible to
adopt the following norm-based error indicator to evaluate the
accuracy of the finite element method with the MMQSRV method.

Error indicator ¼
Rxe

xs
X� XAj jdxRxe

xs
Xj jdx ð62Þ
Fig. 7. Overview of topology optimization proces
3.1.4. Comparison of model reduction methods
In this example, the two-dimensional beam structure in Fig. 5

(a) with two components is considered. The analysis domain with
the two subcomponents is discretized into linear Q4 FE with 968
DOFs. The first and second subcomponents are connected through
an interface line 0.1 m in height (marked by the dotted lines in
Fig. 5(a)). The external point load is applied at the top-middle of
the first component; the following results and conclusions from
the MMQSRV method are unrelated to the loading conditions.
Fig. 5(b) shows the overall MMQSRV procedure focusing on the
stiffness matrices. The MMQSRV method excludes the stiffness
sub-matrix for each component and preserves the interface infor-
mation of the two components. After that, we compare the fre-
quency response curves of the full FE model and the reduced
s without (left) and with (right) MR scheme.
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model comparing the efficiency of the MMQSRV method with that
of the original FE procedure.

To illustrate the effectiveness and properties of the MMQSRV
method compared with those of the MS, RV, QSRV, and MQSRV
methods, we consider the FE model shown in Fig. 5(a). The Young’s
modulus, density, and Poisson’s ratio are set to 1 Pa, 1 kg=m3, and
0.3, respectively. The analysis domain is discretized into 360 Q4
elements, and the number of DOFs is 968. The reduction bases from
the MS, RV, and QSRV methods are employed in order to compare
the efficiencies of these approaches to our present method. We
then set the total number bases to be the same for a fair compar-
ison at 117 bases (60 bases for the 1st component and 57 bases
for the 2nd component). For the MS method, we use the eigen-
modes of each component. For the RV, QSRV, and MMQSRV meth-
ods, the pseudo-forces to the adjacent nodes with either 0 rad/s
(RV) or 10 rad/s (QSRV and MMQSRV) as the center frequency
are added. To distinguish the previous MOR methods, we simply
name them Multi-MS, Multi-RV, Multi-QSRV, and Multi-MQSRV
(MMQSRV) methods. The analysis results are shown in Fig. 6. This
example shows that the responses from the Multi-MS method are
not accurate. Because of the adjacent interface and external com-
ponents, it is difficult to construct the bases with the eigenvectors
of one component. By contrast, the responses from the Multi-RV
method are more accurate than those from the Multi-MS method
near 0 rad/s. In the Multi-RV method, 9 bases are computed for
the external load, and an additional 9 bases are computed for the
pseudo-forces at the adjacent nodes. Among the tested methods,
the Multi-MQSRV method shows the best accuracy. Because both
Fig. 9. Dynamic compliance minimization for the low-frequency domain with s
Dx ¼ 10�5 rad=s), (a) the optimal layout with the MOR scheme, U = 1:0015� 105 ðm
without the MOR, U = 1:0000� 105 ðm � rad=sÞ, computing time = 1:1231� 104 s (100 it
MOR method uses the same number of bases, the total computa-
tion time is quite similar. The detailed analysis results are illus-
trated in Fig. 6 and Table 1. The error of MMQSRV method can be
simply reduced by calculating Ritz vector using Krylov subspaces.
Relation between the error and the number of Ritz vector is
denoted in Table 2. In our numerical tests, errors less than 5 per-
cent with more than 3 Ritz vectors can be achievable and the opti-
mal layouts become similar to the solution without the model
order reduction. The error may be increased with the existences
of resonances; this feature will be detailly discussed in the numer-
ical section.

4. Topology optimization examples

To show and compare the effectiveness of the MR schemes,
several numerical examples are considered in this section. For
the material interpolation, several approaches have been devel-
oped. Several interpolation approaches are available (See [5,6]
for the level approach and references therein). In the present
study, the SIMP (Solid Isotropic Material with Penalization) is
employed. The finite element and the optimization procedures
are implemented in the MATLAB framework. The design domains
and material properties are arbitrarily chosen to show the poten-
tial of the MR schemes in topology optimization. For the conver-
gence criteria of the optimization process, the following absolute
change of objective values of two sequential optimization itera-
tions are considered and the maximum optimization iteration is
set to 100.
ame Young’s moduli (E1 ¼ 10 Pa; E2 ¼ 10 Pa; xs ¼ 0 rad=s; xe ¼ 0:01 rad=s;
� rad=sÞ, computing time = 2:6634� 103 s (100 iterations), (b) the optimal layout
erations), and (c) the objective history and the frequency response analysis.



Fig. 10. Dynamic compliance minimization for the low-frequency domain with different Young’s moduli (E1 ¼ 1000 Pa; E2 ¼ 10 Pa; xs ¼ 0 rad=s; xe ¼ 0:01 rad=s;
Dx ¼ 10�5 rad=s), (a) the optimal layout with the MOR scheme, U = 8:8973� 103ðm � rad=sÞ, computing time = 2:6417� 103 s (100 iterations), (b) the optimal layout
without the MOR scheme, U = 8:9890� 103ðm � rad=sÞ, computing time = 1:1330� 104 s (100 iterations), and (c) the objective history and frequency response analysis.

Fig. 11. Two-dimensional cantilever beam (120� 20 Q4 elements,
E1 ¼ E2 ¼ E310 Pa;m ¼ 0:3; q ¼ 1 kg=m3, basic thickness = 1, reinforcement thick-
ness = 1) with three subcomponents.
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maxð Uiter �Uiter - 1j jÞ < 10�4; Maximum iteration ¼ 100; ð63Þ
where the iteration number is denoted by iter. In order to compare
the computation time, the total optimization time with the finite
element procedure is measure for 100 optimization iterations.

4.1. Example 1: cantilever beam with two domains

For the first example, the topology optimization of minimizing
the dynamic compliance of a simple cantilever beam with 1 thick-
ness is considered in Fig. 8(a). The design domain is discretized into
120 � 20 Q4 elements. The left side is clamped and a point load
(F = 1 N) is applied to the bottom-right corner. Note that the con-
ventional topology optimization designs the total domain whereas
this study topologically designs only the left side of the analysis
domain. This example considers two kinds of cases. For the first
case, the Young’s moduli of the domains are set to c while the first
component has a 100 times higher Young’s modulus than that of
the second component (E1 ¼ 10 Pa; E2 ¼ 10 Pa) for the second
case. The Poisson’s ratio and density of the solid are set to 0.3
and 1 Kg/m3, respectively. To save on computation time, the
MOR approach for multiple components with the quasi-static Ritz
vector approach at multiple frequencies (MMQSRV method) is
applied. The topology optimization process using the MOR method
is shown in Fig. 7 [29]. The 2562 degrees of freedom of the left side
is reduced to 126 and the 42 degrees of freedom of the interface
line is preserved. The optimization formula is then defined as
follows.

Min
c

U ¼ Rxe

xs
FTX
��� ���dx;

S:t:
PNE
i¼1

civ i 6 V� ¼ 0:3V0

; ð64Þ

where the design variable and volume of the i-th element are ci and
v i, respectively. The total number of elements is NE = 2400
(120� 20). The volume limit V� is constrained to be less than 30%
of the initial design domain volume. The dynamic compliance for
the low frequency range [0, 0.01] (rad/s) (located at the left side
of the first resonance frequency of the initial design with ci = 1) is
minimized with and without the MMQSRV method for case 1
(E1 ¼ 10 Pa; E2 ¼ 10 Pa) and case 2 (E1 ¼ 1000 Pa; E2 ¼ 10 Pa)
in Fig. 9 and Fig. 10, respectively. Because the frequency domain
is set to [0, 0.01] (rad/s), the center frequencies are equally set to
[0 0.005 0.01] (rad/s) for the MMQSRV method.

Fig. 9(a) and Fig. 10(a) show the layout of the topology opti-
mization and the value of objective function at each iteration.
Comparing the results, it is verified that the topology optimization



Fig. 12. Dynamic compliance minimization for the first frequency domain, (xs ¼ 0 rad=s; xe ¼ 0:2 rad=s; Dx ¼ 10�5 rad=s), (a) the optimal layout with the MOR approach,
U ¼ 9:0142� 103ðm � rad=sÞ, computing time = 1:1318� 104 s (100 iterations), (b) the optimal layout without the MOR approach, U ¼ 9:0070� 103 ðm � rad=sÞ, computing
time =4:4543� 104 s (100 iterations), and (c) the objective history and frequency response analysis.

Fig. 13. Dynamic compliance minimization for the second frequency domain, (xs ¼ 0:4 rad=s; xe ¼ 0:6 rad=s; Dx ¼ 10�5 rad=s) (a) the optimal layout with the MOR
approach, U ¼ 1:6346� 103ðm � rad=sÞ, computing time = 1:1080� 104 s (100 iterations), (b) the optimal layout without the MOR approach, U ¼ 1:5592� 103ðm � rad=sÞ,
computing time =4:5756� 104 s (100 iterations), and (c) the objective history and frequency response analysis.
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Fig. 14. Dynamic compliance minimization for the higher frequency domain, (xs ¼ 1:1 rad=s; xe ¼ 1:3 rad=s; Dx ¼ 10�5 rad=s) (a) the optimal layout with the MOR
approach, U = 1:0402� 103ðm rad=sÞ, computing time = 1:1083� 104 s, (b) the optimal layout without the MOR approach, U = 1:0972� 103ðm rad=sÞ, computing
time = 4:5889� 104 s (100 iterations), and (c) the objective history and frequency response analysis.

Fig. 15. Two-dimensional MBB beam (120� 20 Q4 elements,
m ¼ 0:3; q ¼ 1 kg=m3) with two subcomponents.
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layout and the objective value using the MMQSRV method are
almost similar to those of the TO without the MOR approach. The
error indicator in equation (62) of the first optimization example
are 5:2427� 10�2 in Fig. 9 and 5:9938� 10�4 in Fig. 10, respec-
tively. Within these errors, the similar designs with and without
the present MOR approach can be obtained. The optimal structures
are similar to the designs minimizing the static compliance
because minimizing the dynamic response of the considered quite
low-frequency domain stiffens structure. To minimize the objec-
tive function value, the curve of the FRF shifts to the left side in
Fig. 9(b). Because the stiffness of the structure is increased, the
material part of the optimization layout becomes thinner which
reduces material amount and reveals a new reinforcement struc-
ture in Fig. 10(a).

The total computation time for the optimization procedure with
the MMQSRV method is reduced to just over one-fourth that of the
computation time without the MOR for both case 1 and case 2 in
Fig. 9(c) and Fig. 10(c). Examining the computation time in detail,
it is found that the calculation time for FE analysis, e.g., obtaining
mass, stiffness, displacement matrix, and so on, is reduced almost
ten times. However, the calculation time for optimization, e.g., the
objective value, the sensitivity, the optimization process, and so on,
is not reduced. Therefore, the effect of model reduction scheme for
time reduction in the total optimization process is weaker com-
pared to that in the FE analysis.
4.2. Example 2: reinforcement problem

For the second optimization example, a reinforcement problem
with 3 sub-structures in Fig. 11 is considered. In this example, we
consider the dynamic compliance not only in the low-frequency
domain but also in the high-frequency domain. To maintain the
geometrical similarity with the previous examples, the design
domain is discretized into 120 � 20 Q4 elements. However, the
design variables are set to the reinforcement to minimize the
dynamic compliance of the design. In other words, the basic struc-
ture with 1 thickness is reinforced by an additional layer, which
has 30% of the initial design volume and a thickness of 0.5. The
optimization formulation is set up as (64) with 0.3 V0 for the vol-
ume constraint.

The first frequency domain is set to [0, 0.2] (rad/s) located at the
left side of the first resonance frequency of the initial design and
the second frequency domain is set to [0.4, 0.6] (rad/s) located
between the first and second resonance frequencies. The third fre-
quency domain is set to [1.1, 1.3] (rad/s) located at the right side of
the second resonance frequency. The optimization problems for
each frequency domain are solved with and without using the
MMQSRV method in Fig. 12, Fig. 13, and Fig. 14. The error indicator
in equation (62) of the second optimization examples are
2.2442 � 10�4 for Fig. 12, 1.5034 � 10�2for Fig. 13, and



Fig. 16. Dynamic compliance minimization for the low-frequency domain, (xs ¼ 0 rad=s; xe ¼ 0:1 rad=s; Dx ¼ 10�5 rad=s) (a) the optimal layout with the MOR approach,
U = 1:8771� 104 ðm rad=sÞ, computing time = 4:8491� 103 s (100 iterations), (b) the optimal layout without the MOR approach, U = 1:8822� 104ðm rad=sÞ, computing
time = 2:2159� 104 s (100 iterations), and (c) the objective history and frequency response analysis.
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3.9537 � 10�2 for Fig. 14, respectively. Owing to the accurate solu-
tions, the designs with the MOR approach are almost identical to
the designs without the MOR approach.

The FRFs of each frequency domain is optimized in order to
minimize the objective value of the target frequency. Stable con-
vergences could be obtained with the MMQSRV method in these
examples. The optimal layouts are almost similar to those without
the MOR approach but almost 4 times faster in Fig. 12(c), Fig. 13(c),
and Fig. 14(c).
4.3. Example 3: MBB beam with two domains

To verify versatility and robustness of MMQSRV method, the
10 � 2 box beam problem with the loading condition in Fig. 15 is
considered for the last example. The design domain is discretized
into 120 � 20 Q4 elements. A point load (F = 1 N) is applied to the
center of the 2nd component which means the external load is out-
side of the design domain. The two kinds of loading conditions are
considered. For the first loading case, the low-frequency domain
(cc) for dynamic compliance is considered and for the second case,
the higher frequency domain (xs ¼ 0:3 rad=s; xe ¼ 0:4 rad=s) is
considered. The objective function and the constraint are formu-
lated in (64). The results with and without the MMQSRV method
are shown in Fig. 16 and Fig. 17, respectively. In Fig. 16(a), it can
be verified that the optimized layout and the objective value at each
iteration are similar to each other. However, for the second fre-
quency domain, i.e., [0.3 0.4] (rad/s), some differences are observed
due to the insufficient accuracy. During an optimization process,
these discrepancies in responses affect the optimization processes
and the different local optimal layouts are obtained. It also shows
that the numerical error of the MOR method causes grey elements
[32,33]. The objective values and the computation times can be
found in Fig. 16 and Fig. 17. The error indicator in (62) of the third
optimization example are 2:3397� 10�2 in Fig. 16, 2:2614� 10�1 in
Fig. 17(a), and 1:4623� 10�1 in Fig. 17 (b), respectively. In this
example, for the higher frequency response, the higher error in
the finite element response causes some discrepancies in optimum
designs. To reduce the errors, it is possible to increase the number of
bases and it is possible to obtain the similar responses and the asso-
ciated similar designs.

5. Conclusion

This paper presents a new model order reduction method and
develops the density-based topology optimization using this
MOR approach. In of the dynamic response of a complex manifold
composed of multi-substructures, the efficient calculation of
dynamic responses is very important. Therefore the model order
reduction scheme has been introduced. This study investigated in
detail the applications of MOR schemes for topology optimization
of multi-component dynamic system and a new MOR approach.
The new MOR method named as the Multi-substructure Multi-
frequency Quasi-Static Ritz Vector (MMQSRV) method scheme
has a distinct and unique way of constructing reduction bases for
approximating the structural response. It calculates its basis func-
tions by considering not only external force, mass, and stiffness
matrices but also pseudo-loads along interface line or surface.
We also validate the accuracy and efficiency of the MMQSRV
method by comparing it with earlier methods such as RV, QSRV,
and MQSRV. Then it is possible to use the MMQSRV method for
the dynamic structural topology optimization problem wherein
the optimization design domain is a subpart of the whole structure.
With several topology optimization examples, it is illustrated that
the computational efficiency can be improved compared to the full



Fig. 17. Dynamic compliance minimization for the higher frequency domain, (xs ¼ 0:3 rad=s; xe ¼ 0:4 rad=s; Dx ¼ 10�5 rad=s) (a) the optimal layout with the MOR
approach (1 Krylov subspace), U = 2:5926� 103ðm rad=sÞ, iteration = 100, computing time = 4:8380� 103 s (100 iterations), (b) the optimal layout with the MOR approach
(2 Krylov subspace), U = 2:6225� 103ðm rad=sÞ, computing time = 7:1858� 103 s (100 iterations), (c) the optimal layout without the MOR approach,
U = 2:2416� 103ðm rad=sÞ, computing time = 2:1671� 104 s (100 iterations), and (d) the objective history and frequency response analysis.
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optimization results. The advantage of the MMQSRV method is
increased with more complex geometry and more degrees of free-
dom. In conclusion, this research presents a new MOR method and
finds that this new MOR method can efficiently achieve topology
optimization for dynamic systems.
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