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Abstract

This study presents a new topology optimization method for transient coupled fluid–structure interaction (FSI) problems. The
ransient FSI problem is formulated using the monolithic design approach combining the design variables and the governing
quations. This new approach allows for the possibility of considering the effect of transient FSI on topologically optimized
ayouts. Throughout this work, the analysis domain for the fluid and structure is modeled using the unified monolithic approach,
n which the structure equation and the Navier–Stokes equation are coupled. With a fixed mesh and design variables assigned
o each finite element, the governing equations as well as the involved material properties are interpolated. This modeling
nd analysis approach provides accurate solutions to the strongly coupled FSI system. An adjoint approach for calculating the
ransient sensitivity information and a gradient-based optimizer are used. Several numerical examples are solved to reveal the
mportance of considering the transient FSI. In addition, these examples demonstrate that the present approach can control
ransient FSI phenomena.

2022 Elsevier B.V. All rights reserved.
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1. Introduction

A new topology optimization method for the transient coupled fluid–structure interaction (FSI) problem is
eveloped in Fig. 1. Topolgoy optimization for transient FSI is a sophisticated and challenging subject as the
nterpolations of the governing equations and the material properties should be formulated with the spatially
arying density variables. In the present study, transient FSI system is formulated and solved by the monolithic
esign approach combining the design variables and the governing equations with the deformation tensor. The
overning equations and the material properties can be interpolated with a fixed mesh and the design variables
ssigned to each finite element. This modeling and analysis approach provides accurate solutions to the strongly
oupled governing equations without an explicit boundary definition. A transient adjoint approach for evaluating the
ensitivity information and a gradient-based optimizer are employed. Several optimization problems are considered
o reveal the importance of considering the transient FSI.

Since the innovative development of the structural topology optimization scheme mainly minimizing structural
ompliance subject to a mass constraint, various optimization methods and schemes have been presented and applied
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to challenging engineering applications (see [1–4] and references therein). In addition to structural optimization
problems or related problems, several studies have been carried out for fluid-related problems. A comprehensive
review of the topology optimization of fluid can be found [5–7]. In [8], the innovative topology optimization of
unsteady incompressible Navier–Stokes flows was developed. The transient sensitivity of the fluid was rigorously
presented and the calculus of variation is applied for the rigorous sensitivity analysis which is employed in the
present study. In [9], a variational level-set method for steady-state Navier–Stokes flow was proposed. With an
explicit expression of boundary, it is possible to carry out fluid optimization. For the sensitivity analysis, a variational
form was formulated with Lagrangian multiplier technique. In [10], the lattice Boltzmann method in which a fluid
density on a lattice is simulated was applied to the topology optimization for multicomponent flow. Compared
with classical finite volume or finite element methods, the lattice Boltzmann method solves the fluid problem by
calculating the distribution function. In [6], a density based topology optimization was developed using a open
source code (OpenFOAM software). With this developed, a fluid topology optimization with a large scale domain
can be solved efficiently. In [11,12], innovative fluid optimization frameworks with OpenFOAM and FENICS were
presented. In [7], the TOBS (Topology optimization of binary structure) is presented for the optimization of high
Reynolds fluid flow analysis. Through this research, the optimization problem with the discrete design variables
is solved. It is expected that this approach can resolve the intermediate design variable issue in complex fluid
topology optimization problem. In [13], the discrete adjoint approach was developed in combination with a finite
differences scheme for the sensitivity analysis. It is expected that this research can disseminate the fluid optimization
for various engineering fields. In [14], the topology optimization with two fluid heat exchange is carried out. In [15],
topology optimization for the fluid domain using kinetic theory was investigated. In connection with the researches
of laminar flow, turbulent flow has become an emerging topic too. The sensitivity of turbulent flow was investigated
in [16]. In [17], topology optimization for a 3D rotor flow path design was developed. In [18,19], turbulent flow
was considered in topology optimization using the RANS models. They revealed that the turbulent viscosity is
modeled and added in the simulation and topology optimization. One of the difficulties is that the sensitivity analysis
becomes complex. In addition, the conjugate heat transfer problem is also one of the important subjects related to
the topology optimization for fluids. In [20–28], the topology optimization for conjugate heat transfer problem
was considered. In [29], three-dimensional fluid topology optimization for heat transfer system was developed.
Optimization scheme for electromechanical systems was presented in [30]. In [31], a level-set approach for the
heat conduction problem was also developed. In [32], natural convection was considered in topology optimization.
In [33], a graded porous structure was used as the heat-dissipation structure. Recently, optimization research on the
motion of particles suspended in a fluid has gained importance. In [34], the trajectory of a particle suspended in a
fluid was optimized using topology optimization. In [35], a framework for the topology optimization of a particle
manipulator was presented. These researches can be extended to consider the particle motions in fluid and show
the prominent results for the development of micro fluid devices.

Access to the well-developed finite element theory and optimized theory for multiphysics problems becomes
mportant. Based on the developments in topology optimization for fluid, there are numerous works that discuss
nhancements of FSI systems. The application of fluid–structure interaction can be found in many engineering
pplications such as aircraft, spacecraft, bioengineering and automobile. For examples, while designing aircraft
ings or turbine blades, the failure due to FSI oscillation should be considered. For the container design, the fluid–

tructure interaction needs to be considered to prevent excessive liquid oscillation too. The lubrication between
earings and gears is also one of FSI examples. In bioengineering, the FSI is needed to model blood flow. In the
ramework of the density based topology optimization for FSI, the most difficult aspect is that the spatially varying
esign variables should interpolate the two governing equations in addition to the material properties. To cope
ith this difficulty, the monolithic design formulation was proposed for topology optimization for a steady-state

nd stationary FSI structure in [36]. In the approach, the continuity in force is imposed by applying the divergence
heory. In other words, the surface force is transferred to the volume force in the monolithic design approach. While
eveloping the theory, it is important to ensure the accuracy of the developing theory by comparing the solutions
displacement, stress, fluid velocity, and pressure). By considering the fluid work to structure, some modifications
re made in the monolithic design formulation. Then, stress-based topology optimization for the FSI structure was
eveloped in the framework of the monolithic design approach in [37]. With the existing procedures, the optimization
or FSI is also possible. In [38], the fluid–thermal–structural interaction was researched. In [39,40], the levelset based

opology optimization scheme with body-fitted mesh was developed. In [41], a level-set-based topology optimization
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Fig. 1. Topology optimization of transient fluid–structure interaction.

scheme for stationary FSI problems was developed. The topology optimization of coupled multiphysics problems
was presented in [42,43]. In [44,45], topology optimization with binary design variables was proposed for design-
dependent FSI structures. In [46], a topology optimization scheme for a thermal FSI system was developed using
a body-fitted mesh and parallel computing. In short, structural optimization of FSIs is a challenging and important
subject in engineering. To our best knowledge, the monolithic design approach is extended for the transient FSI
structure for the first time in the present study.

This study adopts and expands the monolithic design approach [36]. The monolithic design approach modifies
the fluid and structural equations to allow topological alteration. In the linear elasticity equation, a weak Young’s
modulus is assigned to simulate fluid domain. In the Navier–Stokes equation, a large Darcy force is assigned to
structural domain. With this assignment, the fluid velocities of the structural domain become very small and can
be negligible from an engineering perspective. In this approach, the continuity conditions in traction and velocity
are naturally imposed along the interface boundary between solid and fluid. Although it is difficult to interpret the
physical states with the design variables, it is possible to represent the physical phenomena of FSI with converged
design variables, that is, ones or zeros. To consider the transient effect, this study formulates transient monolithic
equations by adding the inertia terms to the governing equations. The design variables are defined at each finite
element, and the variational principle is used for the sensitivity analysis of the integration of the transient compliance
considering the FSI. A gradient-based optimizer is used for the optimization. Several examples are considered to
verify the developed approaches. To maximize the effect of the transient FSI phenomenon on optimized layout,
time-varying fluid inputs are considered.

The remainder of this paper is organized as follows. Section 2 provides the mathematical formula pertaining to
the coupled analysis of the transient structure and transient fluid motions and the development of the sensitivity
analysis of the integration of the transient compliance. Section 3 describes several topology optimization examples
that test the effect of a transient fluid and demonstrate its importance. Section 4 presents the conclusions of the
study and provides suggestions for future research.

2. Transient fluid–structure interaction with the monolithic design approach

In this section, the development of the transient topology optimization scheme and the multiphysics and
monolithic analysis coupling between the transient Navier–Stokes equation and the transient elastodynamics are
presented. For the optimization formulation, the dynamic compliance was set as the objective, and the volume was
constrained. Transient sensitivity analysis based on the calculus of variation was employed (see Fig. 2).

The FSI system is interesting and challenging from a mathematical perspective. Although advanced computa-
tional optimization approaches may achieve better performance than human performance for the optimization of
multiphysics systems, several high-performing finite element analysis theories are difficult to apply in topology
optimization. Depending on the coupling approach, monolithic and staggered analysis procedures have been
proposed. In the framework of density-based topology optimization, the existing analysis procedures, either
monolithic or staggered, are difficult to apply. To cope with this difficulty for the topology optimization, one
approach may be the application of a topology optimization scheme with an explicit boundary [41–43]. In this
study, the topology optimization method with spatially varying design variables was applied in cooperation with

the monolithic analysis procedure.
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Fig. 2. Material interpolation scheme in the monolithic design approach.

The monolithic design procedure for FSI was proposed in [36] to consider the spatially varying or interpolated
governing equations with respect to the change in the design variables as shown in Fig. 2. In other words, by
changing the design variables, not only the material properties involving the governing equations but also the
governing equations should be interpolated. Appropriate boundary conditions (continuity conditions of traction
and displacement) should be applied along the coupling boundary of the fluid-interaction system. Because this
procedure is intricate for the conventional analysis procedure, the monolithic design approach incorporating the
design variables with the governing equations to interpolate the governing equations, that is, solid and fluid, was
proposed using the deformation tensor and divergence theory [36]. The undeformed state, 0Ω , and deformed state,
tΩ , are recognized by the deformation tensor, F.

F =
∂x
∂X

(1)

where the positions of the undeformed and the deformed domains are denoted as X and x, respectively. Using the
eformation tensor, the differential and integral operators can be transferred as follows:

∇X = FT
∇x, ∇x = F−T

∇X (2)

he governing equation of linear dynamic structure is defined as follows:

∇x · Ts + F = ρs ü in tΩ (3)

here the structural tensor and structural displacements are denoted as Ts and u, respectively. The force and inertial
orces are denoted by F and ρs ü, respectively. The structural density is denoted by ρs .

One of the main differences in the monolithic design approach for FSI lies in the fact that the fluid equation and
tructural equation exist for an entire analysis domain (0Ω or tΩ ). The classical monolithic and staggered analysis
rocedures distinguish the fluid and structural domains. Considering the virtual work principle, the weak form of
he structural equation can be expressed as follows:

−

∫
0Ω

ρsδuTü −

∫
0Ω

δST
· TsdΩ+

∫
0Ω

Ψ · F−TδS(u, δu)T
· p ∥F∥ dΩ +

∫
0Ω

Ψ · F−Tδu · ∇X p ∥F∥ dΩ = 0

(4)

δS =
1

(∇Xδu + ∇XδuT), S̃(u, δu) =
1

(∇xδu + ∇xδuT) (5)

2 2
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The virtual displacements are denoted by δu, and the virtual and auxiliary virtual strains are denoted by S̃ and
S̃(u, δu), respectively. The mutual coupling condition from the point of view of the linear elastodynamic equation
is imposed by divergence theory. The Young’s modulus and density of the structure are interpolated with respect
to the design variables γe as follows:

C(γe) = CSγ
n
e + C f (1 − γ n

e )
ρ(γe) = ρSγ

ns
e + ρvoid (1 − γ ns

e ), ρvoid ≪ ρS
(6)

here the Young’s moduli of the structure and fluid are denoted as CS and C f , respectively. The density values of
the structure and void are denoted as ρs and ρvoid , respectively. Penalization factors are denoted by n and ns . To
emove local oscillations, the value of ns is set to be higher than that of n. Depending on the penalization factor,
arious local optima can be obtained. The window function Ψ is defined to convert the boundary integration (fluid
orce exerted on the structure) to domain integration.

Ψ = γ
n f ilter
e (7)

he penalization factor for the window is n f ilter . For the monolithic equation, the pseudo-rigid domain is commonly
efined using the Darcy force. To simulate the transient motions of the fluid, the following transient incompressible
uid equations defined in the deformed domain, tΩ , are formulated:

ρ f
∂v
∂t

+ ρ f (v · ∇x)v = ∇x ·
[
−pI + µ(∇xv + ∇xvT)

]
− αv on tΩ (8)

∇x · (ρ f v) = 0 (9)

he analysis domain is denoted as Ωt , which simultaneously contains the fluid equations and the elastodynamic
quation. The fluid inertia term is added at the beginning of the governing equation, and at the end of the transient
avier–Stokes equation (8), the Darcy force formulated with the design variables of the topology optimization

s included. For finite element analysis, it is necessary to derive the weak forms of the governing equations in
he undeformed domain using structural displacements u. To numerically simulate the pseudo-rigid domain (the
on-permissible domain) with respect to the spatially varying design variables, the Darcy force simulated with the
IMP method is formulated [8,34,35].

α(γe) = αmaxγe
n per (10)

he maximum value of permeability is αmax, and the penalization factor is n per . Another interpolation can be
mployed for the interpolation of the Darcy force with respect to the design variables. In the present study, the
IMP interpolation function is employed without the loss of generality. In the Navier–Stokes equation, the necessity
f the interpolation of the fluid density should be mentioned. In fluid simulation, with the sufficient large Darcy’s
orce, the interpolation of the fluid density is not definitely necessary. However, the interpolation of the fluid density
oes improve the convergence of the simulation as the fluid inertia force becomes small in solid domain. Although
ot presented, the interpolation of fluid density was tested and we could get similar results. In connection to this,
t is also interesting to consider the necessity of the interpolation of the fluid viscosity which corresponds to the
oung’s modulus in the elasticity equation. Using the above function, the weak forms of the transient fluid equation
an be expressed as follows:∫

0Ω
δvTρ f

∂v
∂t

dΩ +

∫
0Ω

δvT {
ρ(v · F−T

∇Xv)
}
∥F∥ dΩ =

−

∫
0Ω

F−T
∇XδvTT f ∥F∥ dΩ −

∫
0Ω

αδvTv ∥F∥ dΩ +

∫
0Γp∗

δvT pp∗ndΓ
(11)

−

∫
0Ω

δ pT
{∇x · v} ∥F∥ dΩ = 0 (12)

The virtual velocities and pressure are denoted as δv and δp, respectively. The pressure input condition, p = p∗,
is defined at 0Γp∗ . The above equations are solved using the second-order element for u and v and the first-order
element for p.
5
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For the gradient-based optimizer, it is necessary to derive a sensitivity analysis. The adjoint sensitivity analysis
rocedure is then derived.

L(u, v, p, γ ) = J (u, ∇u; γ )

+

∫ t f

0

∫
0Ω

(
ua, va, pa)FS(u, ∇u, v, ∇v, p, ∇ p, γ )dΩdt

(13)

where the column set of monolithic equations for the fluid and solid is denoted by FS. The objective function is
denoted as J (u, ∇u; γ ). For example, the domain integration of the time-varying compliance can be defined as
follows:

J (u, ∇u; γ ) =

∫ t f

0

∫
0Ω

ST
· TsdΩdt (14)

The adjoint structural displacements and adjoint fluid velocities and pressures are denoted as ua , va , and pa ,
respectively. The adjoint sensitivity analysis is performed using the calculus of variation.

δL = 0 (15)

δL =
∂L
∂u

· δu +
∂L
∂∇u

: ∇δu +
∂L
∂v

· δv +
∂L
∂∇v

: ∇δv

+
∂L
∂p

· δp +
∂L

∂∇ p
: ∇δp +

∂L
∂γ

· δγ = 0
(16)

The adjoint equations can be derived by setting the terms associated with the primal variables to zeros and with
roper boundary conditions (see [8] and references therein) as follows:

∂L
∂u

· δu +
∂L
∂∇u

: ∇δu = 0 (17)

∂L
∂v

· δv +
∂L
∂∇v

: ∇δv = 0 (18)

∂L
∂p

· δp +
∂L

∂∇ p
: ∇δp = 0 (19)

Note that the objective function is dependent only on the structural displacements, structural strains, and design
ariables, explicitly and implicitly. See [8] and references therein for the variational approach for sensitivity analysis
f transient fluid problems. Indeed, the following sensitivity can be obtained by solving the above equations for the
djoint variables:

d J
dγ

=
∂ J
∂γ

+

∫ t f

0

∫
0Ω

(
ua, va, pa)∂FS

∂γ
dΩdt (20)

o demonstrate the accuracy of the sensitivity analysis, the example in Fig. 3 shows a comparison of the sensitivity
nalysis values with the finite difference values for the ten points. The objective function is the integration of the
ime-varying compliance due to the time-varying fluid input on the left side. Owing to the fluid inlet, the internal
olid structure deflects transiently. As illustrated, an accurate sensitivity analysis was obtained.

. Optimization examples

To demonstrate the validity and importance of the present topology optimization considering transient FSI,
his section presents several examples solved using the above monolithic approach. A sensitivity filter is applied

o remove the checkerboard pattern. The method of moving asymptotes (MMA) algorithm is employed as an

6
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Fig. 3. Sensitivity analysis example (ρs = 7800 kg/m3, Young’s modulus: 200×109 Pa, ρ f = 1000 kg/m3, µ = 1 Pa s, αmax = 109 Pa s
m2 ,

60 by 60 mesh in the design domain, simulation time [0:0.0004:0.1] s, H = 1 cm, initial density distribution = 1, perturbation for finite
difference method = 0.001).

optimization algorithm [47]. The optimization algorithm terminates when the convergence of the objective function
falls below a specified threshold within one or two hundred iterations.

3.1. Example 1: Narrow channel problem

For the first example, the analysis and design domain shown in Fig. 3 is considered. Note that this problem was
already considered in the previous work [36] and this research reconsiders this to verify the effect of the transient
FSI structure. The inlet fluid flows from the left side toward the right side, and the magnitude of the parabolic fluid
velocity along the input boundary condition is varied with respect to time. The optimization problem for FSI is
7
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n
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Fig. 4. Optimization result for 1 s (ρs = 7800 kg/m3, Young’s modulus: 200 × 109 Pa, ρ f = 1000 kg/m3, µ = 1 Pa s, αmax = 109 Pa s
m2 ,

60 by 60 mesh in the design domain, uinput = u0 × t × y × (H − y)/(H/2)2, u0 = 0.1 m/s, simulation time [0:0.1:1] s, n = 3, ns = 8,
f ilter = 8, n per = 8). (a) Optimized layout with 10 percent mass usage with 0.01 for the initial value, (b) fluid velocity at 1 s, (c)

tructural deformation and (d) the scaled structural deformation only for structure (threshold value : 0.5).

ormulated as follows:

Min
γ

J =
∫ t f

0

∫
0Ω ST

· TsdΩdt

Subject to
Ne∑

e=1

γeve ≤ mass0 (21)
γ = [γ1, γ2, . . . , γNe ], γmin ⩽ γ ⩽ 1, γmin = 0.001
8
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Fig. 5. Optimization result for 1 s with uinput = u0 × t × y × (H − y)/(H/2)2, u0 = 1 m/s. (a) Optimized layout with 10 percent mass
usage, (b) fluid velocity at 1 s, (c) structural deformation and (d) the scaled structural deformation only for structure (threshold value : 0.5).

where Ne design variables are denoted by γ . The dependencies of the structural displacements, fluid velocities, and
pressure in the objective function are considered explicitly and implicitly. A mass constraint is imposed with mass0)
for the upper bound of the structural mass. The volume of the eth element is ve. The design variables are varied
from the lower bound γmin to the upper bound 1. As mentioned, the parabolic fluid input defined along the left side
is assumed to have maximum velocity u0. The effect of the maximum velocity of the fluid inlet on the optimal
design is investigated. First, by setting 0.1 m/s (relatively slower flow) for u0, it is assumed that the magnitude
of the fluid inlet increases linearly with respect to time. With the present optimization framework and boundary
conditions, the layout in Fig. 4(a) supporting the center structure can be obtained. An almost symmetrical design
is obtained. The geometric properties of the optimized design are affected by many aspects. The envelop of the
design is almost symmetric but the internal structure is unsymmetric. The fluid velocity and structural displacement
are plotted in Fig. 4(b) and (c), respectively. To investigate the effect of the magnitude of the fluid velocity, it is
increased to 1 m/s, as shown in Fig. 5. As the magnitude of the fluid velocity is increased by a factor of 10, the
optimized layout in Fig. 5(a) supporting the front of the vertical solid bar is obtained. This optimized structure allows
9
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Fig. 6. Velocity comparison of the designs in Figs. 4 and 5.

smooth fluid flow over the vertical bar to minimize time-varying compliance. Note that with different penalization

factors and boundary conditions, several different layouts can exist. Fig. 7 shows the convergence histories of the

two designs. Fig. 6 compares the time-varying fluid velocities of the optimized layouts and Fig. 8 compares the

compliance values of the two designs under each boundary condition. As illustrated, each design is optimized for

each boundary condition.
10
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Fig. 7. Optimization histories.

3.2. Example 2: Optimization with two input inlets

For the second example, a rectangular design domain with a rectangular solid box at the center with time-varying
fluid inputs along the left side is considered, as shown in Fig. 9. To further investigate the effect of the time-varying
boundary condition on topology optimization, we consider two different fluid input conditions, that is, u1

in and u2
in , at

the upper and lower inlets along the left side. It is observed that the transient FSI effect may be magnified by different
time-varying fluid inputs. The two fluid inputs are set as time-varying conditions in turn. For the first boundary

1 2
condition, the fluid inputs (uin and uin) increase linearly, whereas for the second optimization condition, one of

11
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Fig. 8. Comparison of the responses of the two designs in Figs. 4 and 5. (a) Reanalysis of the two designs for the slower fluid inlet
boundary condition and (b) reanalysis for the higher fluid inlet boundary condition.

the fluid inputs decreases linearly. The objective function is set to the integration of the time-varying compliance,
as in (21), and a 10 percent mass constraint is considered. With the first linearly increasing fluid input over the
time domain ([0:0.1:1] s), the straight design with the supporting structure in Fig. 10(a) can be obtained. As the
time-varying fluid inputs simultaneously drag the center solid box toward the right side, as shown in Fig. 10(b) and
(c), any object underneath or over the solid box increases the drag force, increasing the time-varying compliance.
The channel design allowing the fluid input flow toward the right output boundaries is obtained; see the nozzle
shape design in front of the rectangular box. To minimize the time-varying compliance without any disturbance of
the fluid inputs, a supporting structure connecting the fixed boundary condition and solid box is obtained. Partially
owing to the filtering scheme, some gray elements are observed. The fluid velocities and structural deformations are
shown in Fig. 10(b) and (c), respectively. In contrast, a different boundary condition, that is, the linearly decreasing

velocity input at the upper fluid input boundary, is imposed as shown in Fig. 11(a) and compared with the first fluid

12
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k

Fig. 9. Example 2: Problem definition with the two time-varying fluid inputs with a rectangular solid box (104 by 50 discretization, ρs = 7800

g/m3, Young’s modulus: 200 × 109 Pa, ρ f = 1000 kg/m3, µ = 1 Pa s, αmax = 109 Pa s
m2 , mass ratio: 10%, n = 5, ns = 5, n f ilter = 8,

n per = 8, Initial value = 0.2, 10% mass constraint).

boundary condition. The compliance values are monotonically increased due to the fluid velocities of the two inlets
and their associated fluid forces are also increased in Fig. 11(a). On the other hand, the compliance curves become
complex in Fig. 11(b) due to the decrease of the fluid velocity of the upper inlet. Compared with the fluid behavior
and structural deformation in the first example, complex fluid motions in front of the solid box are observed, which
cause bending deformation of the center solid structure. As the fluid inputs can now be mixed in front of the solid
box, and the fluid input of one of the fluid input boundary conditions can flow to both fluid output conditions,
the supporting structure appears at the rear of the solid box to prevent bending deformation. In addition, auxiliary
ball-shaped structures are obtained at the left corners of the solid box.

Fig. 12 compares the time-varying compliance values of the two designs. In the optimization, the simulation
time is set to 0–1 s with 0.1 s time interval, and the responses calculated with 0.01 s time interval are plotted in
the figure. The compliance values of the two designs are monotonically increased in Fig. 12(a) for the boundary
condition in Fig. 10. It is worth noting that the compliance response of the design in Fig. 12(b) is decreased until
0.5 s and then increased. The compliance is increased due to the fluid velocities of the two inlets and its associated
fluid force are also increased in Fig. 12(a). On the other hand, the compliance curves become complex in Fig. 12(b)
due to the decrease of the fluid velocity of the upper inlet.

This example shows that it is necessary to investigate the effect of the time-varying boundary condition and the
local optima issue of the transient FSI system. The sharp decrease in Fig. 12(b) at the beginning of the simulation
time is due to the pressure propagation speed. In Fig. 13, a refined mesh is adopted for the same problem. In case of
the uniformly increased fluid inlets, the symmetric design in Fig. 13(a) is obtained. Owing to the mesh refinement,
the symmetric supporting structures appear in front and at the rear of the rectangular solid box. For the asymmetrical
fluid inlet condition, a similar structure is obtained and a dimple-shaped structure between the fluid inlets
appears.

3.3. Example 3: Bend structure with two fluid inlets

For the next example of topology optimization for transient FSI, the design definition in Fig. 14 is considered.
The optimization formulation minimizes the integration of the transient compliance subject to the mass constraint.
Similar to the boundary conditions of the previous example, two fluid inlets are set and varied with respect to time.
The fluids increase together smoothly, and the supporting structure appears in front of the internal solid box, as
shown in Fig. 15. For the second boundary condition, the magnitude of the lower fluid inlet is decreased linearly,
whereas that of the upper fluid inlet is increased linearly with respect to time. The supporting structure appears
at the rear of the internal solid box, as shown in Fig. 16, unlike the first boundary condition. Fig. 17 shows the

responses of the two designs for each boundary condition. As illustrated, each design is optimized for the given
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Fig. 10. Optimized layout with the boundary condition. (a) The optimized layout (u1
in = u0 × t ×

(
3×10−3

−y
)(

y−10−3
)

(2×10−3)
2
/4

m/s, u2
in =

u0 × t ×

(
9×10−3

−y
)(

y−7×10−3
)

(2×10−3)
2
/4

m/s, u0 = 2 × 10−3 m/s, n = 5, ns = 8, n f ilter = 5, n per = 7), (b) the fluid velocity and (c) the

structural displacements.
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Fig. 11. Optimized layout with the boundary condition. (a) The optimized layout (u1
in = u0 × t ×

(
3×10−3

−y
)(

y−10−3
)

(2×10−3)
2
/4

m/s, u2
in =

u0 × (1 − t) ×

(
9×10−3

−y
)(

y−7×10−3
)

(2×10−3)
2
/4

m/s, u0 = 2 × 10−3 m/s), (b) the fluid velocity and (c) the structural displacements.
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Fig. 12. Compliance comparison for each boundary condition. (a) Compliance values of the two designs with the boundary conditions shown
in Fig. 10, and (b) compliance values of the two designs with the boundary conditions shown in Fig. 11.

boundary condition. In the designs, the gray elements are observed. It can be regarded as the side effect of the
local optima in topology optimization. By investigating the distributions of the design variables and the material
properties, it turns out that the intermediate design variables occur due to the differences in the interpretation of the
Young’s modulus and the Darcy’s force. As a penalization factor of the Darcy’s force (3 for the SIMP) is higher
than the penalization factor of the Young’s modulus (5 for the SIMP), the intermediate design variables become
effective; in the present example, 8 for the mass penalization is employed to remove the large deformation due to
the inertia force. To overcome this, it is possible to have a lower penalization factor for the Darcy’s force but it

causes another non-convergence.
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Fig. 13. Optimized layouts with a refined mesh (424 by 210 discretization).

Fig. 14. Example 3: Problem definition (110 by 60 discretization, ρs = 7800 kg/m3, Young’s modulus: 200 × 109 Pa, ρ f = 1000 kg/m3,
µ = 1 Pa s, αmax = 109 Pa s

m2 , mass: 5%, n = 3, ns = 8, n f ilter = 7, n per = 7, Initial value = 0.2, 10% mass constraint).

4. Conclusions

This study focused on the development and exploitation of a topology optimization scheme for a transient
FSI system using a monolithic design approach. With conventional analysis procedures for the FSI system, the
optimization procedure becomes complex because the governing equations should be interpolated with respect to
the design variables. Regarding the importance of optimizing a complex multiphysics system, the monolithic design
17
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Fig. 15. Optimized layout with the boundary condition. (a) The optimized layout (u1
in = t×s1 m/s, u2

in = t×s2 m/s, u0 = 2×10−3 m/s, s1 =

u0 ×

(
3×10−3

−y
)(

y−10−3
)

(2×10−3)
2
/4

, s2 = u0 ×

(
9×10−3

−y
)(

y−7×10−3
)

(2×10−3)
2
/4

m/s), (b) the fluid velocity and (c) the structural displacements. (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)

approach models the pseudo-void structural domain for the fluid domain in the linear elasticity equation and the
pseudo-solid minimizing the penetration of fluid for the solid domain in the Navier–Stokes equation. The mutual
coupling boundary conditions were transferred and modeled using the divergence theory and deformation tensor in
the monolithic design approach with time-varying terms. The variational form was used for the adjoint sensitivity

analysis. Several examples were solved to demonstrate the validity of the proposed formation. On logical grounds,
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Fig. 16. Optimized layout with the boundary condition. (a) The optimized layout, (u1
in = (1 − t) × s1 m/s, u2

in = t × s2 m/s, u0 =

2×10−3 m/s, s1 = u0 ×

(
3×10−3

−y
)(

y−10−3
)

(2×10−3)
2
/4

, s2 = u0 ×

(
9×10−3

−y
)(

y−7×10−3
)

(2×10−3)
2
/4

m/s), (b) the fluid velocity and (c) the structural displacements.

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

there is no compelling reason to argue that the effects of the time-varying boundary conditions on topologically
optimized layouts can be observed. By varying the magnitude and direction of the input fluid velocity, an optimized
layout can be obtained, and the integration value of the time-varying compliance can be improved. The findings of
relevant studies on transient fluids support this claim. In future research, developments should be made to consider
19
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Fig. 17. Recomputed compliance comparison for each boundary condition. (a) Reanalysis of the optimized layouts with the boundary
condition in Fig. 15 (red line: the response in Fig. 15 and 1.0945 ×10−14 J, blue dotted line: the response in Fig. 16 and 1.2206 ×10−14

J), and (b) reanalysis of the optimized layouts with the boundary condition in Fig. 16 (red line: the response in Fig. 16 and 5.4894 ×10−14

J s, blue dotted line: the response in Fig. 15 and 5.4975 ×10−14 J s). (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

the interaction between the structure and turbulent flow. As the turbulent flow oscillates with respect to time, time-
varying fluctuations of the structure must be considered. In short, this study considered a transient FSI system for
topology optimization.
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