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This article develops a new optimization scheme for geometrically nonlinear dynamic topology

optimization considering multiple materials and material-dependent boundary conditions. In the

framework of convectional topology optimization procedures, some major issues must be addressed

regarding complicated analysis and optimization formulations for these difficult conditions, as well as

the unstable elements. To rigorously resolve these issues, this article develops a new patch stacking

method based on our previous contribution (the element connectivity parameterization method (ECP)

and the element stacking method). Compared with existing multi-material topology optimization

schemes, the two differences in the present scheme are the stacking of multiple patches of the ECP

method on the same discretization pixel, and the selection of one patch or no patch among them. To

show the potential usage and limitations of the developed optimization method, several topology

optimization examples with the above conditions are solved.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

This paper develops a new optimization procedure based on a
new numerical analysis scheme for a nonlinear dynamic problem
involving multiple materials and the associated material-depen-
dent boundary conditions. To systematically improve the vibra-
tion or noise characteristics of an engineered structure, size,
shape, and topology optimization methods based on the finite
element (FE) procedure have been developed and applied [1–11].
Because topological evolutions (creating, reshaping, and removing
holes within design domains) become possible, it is generally
accepted that topology optimization can provide better initial
layout designs than the other two design methods. One key
concept in topology optimization is that by applying mathema-
tical optimization algorithms, the material properties of each
element, such as Young’s modulus and the density in a structural
dynamic problem, are interpolated from those in the nonstruc-
tural domain (so-called ’’void’’) to those in the structural domain
(so-called ’’solid’’) with respect to the design variables defined for
each element. Depending on how the material properties are
modeled with respect to the design variables, the solid isotropic
material with penalization (SIMP) approach (sometimes called
the density-based method) or the homogenization-based
approach can be employed [2–4,10,11].
All rights reserved.
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This investigation addresses the following difficult conditions
for which the conventional topology optimization formulation or
modeling techniques are hard to be applied.
1.
 Geometrically nonlinear dynamic structure with multiple
materials
2.
 Material-dependent boundary conditions in a dynamic
structure

To rigorously approach topology optimization considering the
challenging conditions above, we expand the concept of the
element connectivity parameterization (ECP) method combined
with the element stacking method [9,12,13]. The advantage of the
ECP method lies in the fact that its treatment of the unstable
elements (flipped elements) is very straightforward. The unstable
elements, whose areas are flipped, cause non-convergence or
erratic convergence in the Newton–Raphson iteration method.
Hence, it is known that special numerical treatments are required
to stabilize the topology optimization process for a geometrically
nonlinear structure (see Ref. [12] and references therein). Resol-
ving this issue was the aim of our previous contribution, called
the element connectivity parameterization (ECP) method [12].
Unlike the standard density topology optimization method for
finding optimal material distribution, this method defines and
optimizes the connectivities among solid elements. Because it
does not change the material properties of solid elements, it
effectively resolves the issue of unstable elements. A drawback,
however, is that the ECP method uses more degrees of freedom
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than conventional FE-based optimization methods. Recently, this
ECP method was applied to the nonlinear dynamic problem by
developing a patch mass method that defines mass matrix
interpolation for the ECP method [13]. However, it is still
challenging and imprecise to apply the ECP method to systems
with multiple materials that have different material properties, in
spite of some research into the application of existing density-
based topology optimization methods to systems with multiple
materials. Therefore, in this paper, we study how the ECP method
can be applied to multiple materials.

In addition, we present an innovative modeling technique to
implement the material-dependent boundary conditions for a
dynamic problem. Such material-dependent boundary conditions
may arise when only a particular material among a group of given
materials is allowed along some specific boundaries (displace-
ment or force boundary) because of assembly or mechanical/
thermal impedance-matching requirements. To effectively cope
with multiple materials and material-dependent boundary con-
ditions in a dynamic problem, the element stacking method,
which was researched in Ref. [13] in the framework of the
standard element density method, is expanded to the present
patch stacking method in the framework of the ECP method.

To illustrate the present patch stacking method, let us compare
the different interpolation schemes for multiple materials in
Fig. 1. Here the three different schemes, namely the interpolations
of standard density [1], the element stacking [13], and the present
patch stacking method, are used to choose one material (or layer)
between the first and second material (or layer) or no material
(Void). In the standard element density method, the material
properties of one element, i.e., Young’s moduli E1 and E2 and
densities r1 and r2, here, are interpolated with respect to the
design variables (g1 and g2). In the framework of the element
stacking method, two physical solid state elements, i.e., the first
element having E1 and r1 and the second element having E2 and
r2, are juxtaposed as shown in Fig. 1(b), and an optimization
algorithm can choose one of them to simulate the structural
domain and neither of them to simulate a void domain. Similarly,
E1

l2 (γ1, γ2)
(Zero length)

l1 (γ1, γ2)
(Zero length)

E2

One element
 E (γ1,γ2;E1,E2)

Fig. 1. Comparisons of the concepts with two materials for (a) existing multi-materia

method (patch: the basic discretizing unit in the ECP method).
in the framework of the present patch stacking method, the ECP
patches, which consist of a solid element and zero-length links,
are juxtaposed as shown in Fig. 1(c). (For a detailed description
and an implementation of the ECP patch, see Ref. [17].) To
determine optimal layouts, an optimization algorithm can choose
one of the patches, as in the element stacking method. The
advantage of this present patch stacking method lies in the fact
that the material-dependent boundary condition can be assigned
to the separate nodes of patches, considering the geometrical
nonlinearity, which will be explained later in detail. By develop-
ing and combining the abovementioned methods, it is possible to
perform topology optimization of a nonlinear dynamic system
with multiple materials and material-dependent boundary con-
ditions. To obtain a converged layout for either solids or void, a
new interpolation function of the mass matrices for the ECP
method is also proposed.

The layout of this paper is as follows. After describing the
equations for a nonlinear dynamic system, we introduce and
implement it in the framework of the ECP approach. By extending
the idea of the element stacking method to the patch stacking
method, it becomes possible to solve the multi-material dynamic
problem. In Section 4, the topology optimization problem is
formulated and the new interpolation functions for stiffness and
mass matrices suitable to the developed patch stacking method
are introduced. To show the potential of the proposed method,
several numerical examples are considered. Finally, our findings
and some topics for future research are summarized and dis-
cussed in the conclusion.
2. Nonlinear dynamic analysis using patch stacking method

2.1. Nonlinear dynamic analysis

To calculate the eigenfrequencies and the associated eigen-
modes of a geometrically nonlinear structure, the modal analysis
depicted in Fig. 2 should be conducted with the tangent stiffness
Outer nodes

Two patches

Inner nodes

Two
elements

E2 (γ1, γ2)

E1 (γ1,γ2)

lþ designs, (b) the element stacking method, and (c) the present patch stacking
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matrix computed at the deformed domain for a given static load
and with the displacement-independent mass matrix [14,15].
Accordingly, the eigenfrequencies of a geometrically nonlinear
structure are dependent on the current static displacements, even
for a structure made of a linear elastic material.

To obtain the tangent stiffness matrix, the following basic
nonlinear equation is solved first:

tþDtR�tþDtF ¼ 0 ð1Þ

where the vectors tþDtR and tþDtF store the externally applied
loads and the vector of the nodal point forces, respectively. Since
the force vector tþDtF depends on the displacements nonlinearly,
we should employ an iteration procedure for the solution of (1).
Here, the Newton–Raphson iteration is employed for equa-
tions [14,15]

tþDtU
ðkÞ
¼

tþDtU
ðk�1Þ
þDUðkÞ, tþDtU

ð0Þ
¼

tU ð2Þ

tKðk�1Þ
T DUðkÞ ¼RðtþDtU

ðk�1Þ
Þ ð3Þ
1. Static analysis using the
Newton-Raphson iteration

2. Modal analysis
using the tangent matrix

and the mass matrix

Deformed shape

Undeformed shape

Deformed shape

Mode shape

1st mode

2nd mode 3rd mode

Fig. 2. Two steps of nonlinear eigenfrequency analysis.

Material 1

Material 2

Clamp boundary condition
for both materials

Nodes defined on the same location
having independent degrees of freedom

A: Boundary condition
only for material 1

Fig. 3. (a) Patch stacking method for two materials and (b) the prescription of material-

are separated).
where the superscript (k) denotes the kth iteration step in the
Newton–Raphson method. The incremental residual and tangent
stiffness matrix are denoted by RðtþDtUðk�1Þ

Þ and tKðk�1Þ
T ,

respectively. The updated displacements and displacements at
time tþDt of a generic point of a body are denoted by DU and
tþDtU, respectively. In each iteration at Eq. (2), we calculate in an
out-of-balance load that yields an increment displacement until
the incremental displacement is sufficiently small. After solving
the nonlinear static Eq. (1), the eigenfrequencies are obtained
through the following modal analysis. Note that the displace-
ment-dependent tangent stiffness matrix, tþDtKT, and the dis-
placement-independent mass matrices, M, are used

ð
tþDtKT�o

2MÞU¼ 0, UTMU¼ I ð4Þ

where o and U are the angular velocity and the associated
eigenmode, respectively. The identity matrix I is of the same size
as the mass or stiffness matrix. For more details, see Refs. [14,15]
and the references therein.

2.2. The patch stacking method of the ECP method for multiple

materials and material-dependent boundary condition

2.2.1. Concept of the present patch stacking method

To consider multiple materials and the material-dependent
boundary condition in a geometrically nonlinear structure, we
expand the concept of the element stacking method [13] to the
patch stacking method, as shown in Fig. 3. As explained in the
preceding section, the element stacking method was introduced
to consider the material-dependent boundary condition as well as
multiple materials in the framework of the element density-based
method. Like the element stacking method, the patch stacking
method presented in this article juxtaposes several ECP patches
and selects only one patch among them, or no patch for a void, by
changing the stiffness values of the zero-length links. As an
example, let us assume that we want to somehow design an
optimal structure using two materials for the left clamped
boundary condition for material 1 and the force is only applied
to material 2, as shown in Fig. 3. To our knowledge, it is difficult to
Zero-length links

Force condition
for both materials

Clamp boundary condition 
for both materials

Force condition
for both materials

Zero-length links

B: Force condition
Only for material 2

Clamp boundary condition
only for Material 1

Force condition
Only for material 2

dependent boundary/loading conditions (for purpose of illustration, the two layers
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find a solution to this boundary condition and it is almost
impossible for nonlinear structures. We therefore devised the
patch stacking method, which juxtaposes several patches and
uses interpolation functions in order to select one patch or no
patches. To consider the clamped boundary condition only for
material 1, the method introduces new nodes at the boundary
condition marked by A in Fig. 3(b) and the boundary conditions
are imposed at the node consisting of the ECP patches for material
1. Similarly, only the node for material 2, denoted as B in Fig. 3(b),
receives the force. In these ways, the material-dependent bound-
ary conditions (force and displacement) that are difficult to
implement in the standard FE procedure can be considered.
2.2.2. Static nonlinear analysis

To derive discretized FE equations for a nonlinear dynamic
structure, the eth patch shown in Figs. 4 and 5 is first considered,
along with the assumption of geometrical nonlinearity. As our
notation conventions for the ECP patch, the nodes connecting
plane elements, which do not interpolate their material proper-
ties during an optimization process, are called the outer nodes, and
the nodes defining the plane elements are called the inner nodes.
The displacement vectors of the outer nodes and the inner nodes
of the ith patch are denoted by tþDtuðkÞe,out and tþDtuðkÞe,i,in in the kth
Newton–Raphson iteration, respectively. Therefore, the displace-
ment update in the standard Newton–Raphson iteration is as
follows:

tþDtuðkÞe,out

tþDtuðkÞe,1,in

^
tþDtuðkÞe,nl,in

2
666664

3
777775¼

tþDtuðk�1Þ
e,out

tþDtuðk�1Þ
e,1,in

^
tþDtuðk�1Þ

e,nl,in

2
666664

3
777775þ

DuðkÞe,out

DuðkÞe,1,in

^

DuðkÞe,nl,in

2
666664

3
777775 ð5Þ
E1

E2

Enl−1

Enl

Ei Ei

t+Δtue,out

γe,nl = 0

γe,nl-1 = 0

γe, i = 1

γe, 2 = 0

γe, 1 = 0
(k)

t+Δ tue,i,in
(k-1)

Fig. 4. Selecting the ith element at the eth patch using the design variables.

ϕ

ϕ

ϕ

ϕ

ϕ

Fig. 5. (a) Patches in the patch stacking method
where DuðkÞe,out and DuðkÞe,i,in denote the updated displacements for
the outer nodes and the inner nodes of the ith solid element at the
eth patch, respectively, and are calculated by the following non-
linear static equation:

kI,i,e ¼ le,iðge,1,ge,2,:::,ge,nl�1,ge,nlÞI8�8 ðwhere I8�8 is a 8

�8 identity matrixÞ ð6Þ

Xnl

j ¼ 1

kI,j,e �kI,1,e � � � �kI,nl,e

�kI,1,e kI,1,e � � � ^

^ ^ & 0

�kI,nl,e � � � 0 kI,nl,e

2
66666664

3
77777775
þ

0 0 0 0

0 tkstructure,ðk�1Þ
T,1,e 0 0

0 0 & 0

0 0 0 tkstructure,ðk�1Þ
T,nl,e

2
66664

3
77775

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

DuðkÞe,out

DuðkÞe,1,in

^

DuðkÞe,nl,in

2
666664

3
777775¼

R
ðk�1Þ
e,out

R
ðk�1Þ
e,1,in

^

R
ðk�1Þ
e,nl,in

2
666664

3
777775

ð7Þ

The first and second stiffness matrix terms of Eq. (7) are driven
for the zero-length links and the plane elements of the eth patch,
respectively. The stiffness value for the links of the ith solid
element of the eth patch, le,i, is a function of the design variables
(c). As a notation convention, the design variable for the ith solid
element of the eth patch is denoted by ge,i. The stiffness matrix
and the residual force terms of the outer and the inner nodes for
the ith solid element of the eth patch are denoted by
tkstructure,ðk�1Þ

T ,e , R
ðk�1Þ
e,out , and R

ðk�1Þ
e,i,in , respectively. For a special case,

the above equation can be summarized as follows for the case of
two layers:

kI,1,eþkI,2,e �kI,1,e �kI,2,e

�kI,1,e kI,1,e 0

�kI,2,e 0 kI,2,e

2
64

3
75

þ

0 0 0

0 tkstructure,ðk�1Þ
T ,1,e 0

0 0 tkstructure,ðk�1Þ
T,2,e

2
664

3
775

8>>>>>>>>>><
>>>>>>>>>>:

9>>>>>>>>>>=
>>>>>>>>>>;

DuðkÞe,out

DuðkÞe,1,in

DuðkÞe,2,in

2
6664

3
7775¼

R
ðk�1Þ
e,out

R
ðk�1Þ
e,1,in

R
ðk�1Þ
e,2,in

2
6664

3
7775ðnl¼ 2Þ

ð8Þ

To select no patch or one patch among several presented
patches, it is important to derive appropriate interpolation func-
tions of the employed zero-length links. In other words, it
becomes essential to devise proper interpolation functions for
selecting the ith element at the eth patch for which ge,i ¼ 1 (and
zeros for all others), as shown in Fig. 4. This issue will be dealt
with in Section 3.
and (b) concept of the patch mass model.
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The residual forces R
ðk�1Þ
e,out and R

ðk�1Þ
e,i,in can be formulated as

R
ðk�1Þ
e,out

R
ðk�1Þ
e,1,in

^

R
ðk�1Þ
e,nl,in

2
666664

3
777775¼

tþDtRe

0

0

0

2
66664

3
77775�

0

0
tþDtfstructure,ðk�1Þ

1,e

^

0
tþDtfstructure,ðk�1Þ

nl,e

2
66664

3
77775�

Xnl

j ¼ 1
0

tþDtf link,ðk�1Þ
e,j,out

0
tþDtf link,ðk�1Þ

e,1,in

^

0
tþDtf link,ðk�1Þ

e,nl,in

2
666666664

3
777777775

ð9Þ

where

0
tþDtf link,ðk�1Þ

e,j,out

0
tþDtf link,ðk�1Þ

e,j,in

2
4

3
5¼ kI,j,e �kI,j,e

�kI,j,e kI,j,e

" # tþDtuðk�1Þ
e,j,out

tþDtuðk�1Þ
e,j,in

2
4

3
5 ðj¼ 1, � � � ,nlÞ ð10Þ

In Eq. (9), the externally applied force on the outer nodes and
the internal force of the ith plane element acting on the inner
nodes are denoted by tþDtR and t

0þDtfstructure,ðk�1Þ
i,e , respectively.

Compared with the number of nodes in the standard density-
based topology optimization scheme, the number of nodes used in
the ECP method is quite a bit larger than the number of nodes used
in the element density-based method. When we consider the
example in Fig. 1, the number of nodes of the ECP patch is
nl� 4þ4, whereas the number of nodes in the density method is
4. Thus, the static condensation scheme was proposed in Ref. [16] in
order to reduce the size of the global stiffness matrix and the
associated computational times. In other words, because the degrees
of freedom of the inner nodes of one patch are independent of those
of the inner nodes of other neighboring patches, they can be
Xnl

j ¼ 1

kI,j,e �kI,1,e � � � �kI,nl,e

�kI,1,e kI,1,eþ
tkstructure,ðk�1Þ

T,1,e � � � ^

^ ^ & 0

�kI,nl,e � � � 0 kI,nl,eþ
tkstructure,ðk�1Þ

T,nl,e

2
666666664

3
777777775

�o2

Xnl

j ¼ 1

mj,e � � � 0

^ & ^

0 � � � 0

2
66664

3
77775

8>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>;

DuðkÞe,out

DuðkÞe,1,in

^

DuðkÞe,nl,in

2
666664

3
777775¼

R
ðk�1Þ
e,out

R
ðk�1Þ
e,1,in

^

R
ðk�1Þ
e,nl,in

2
666664

3
777775 ð16Þ
statically condensed out from the global stiffness matrix as follows:

tkðk�1Þ
Con,e ¼

Xnl

j ¼ 1

kI,j,e�
Xnl

j ¼ 1

½kI,j,eðkI,j,eþ
tþDtkstructure,ðk�1Þ

T ,j,e Þ
�1kI,j,e�

0
@

1
A

¼
Xnl

j ¼ 1

½kI,j,e�kI,j,eðkI,j,eþ
tþDtkstructure,ðk�1Þ

T ,j,e Þ
�1kI,j,e�

ðfrom equation ð7ÞÞ ð11Þ

tkðk�1Þ
Con,e DuðkÞe,out ¼R

ðk�1Þ
e,out þ

Xnl

j ¼ 1

ðkI,j,eðkI,j,eþ
tkstructure,ðk�1Þ

T ,j,e Þ
�1R

ðk�1Þ
e,j,in Þ

ð12Þ

where the condensed stiffness matrix of the eth patch is denoted by
tkðk�1Þ

Con,e . Then, the global tangent stiffness matrix is assembled as

tKðk�1Þ
Con ¼ A

Np

e ¼ 1

tkðk�1Þ
Con,e ð13Þ

where Np is the total number of patches. With the help of the above
static condensation scheme, the number of degrees of freedom of the
condensed stiffness matrix tKðk�1Þ

Con becomes the same as that of the
stiffness matrix of the standard element density method. Finally, the
following system of equations is solved iteratively for DUðkÞout, which
is the global updated displacement vector for the outer nodes:

tKðk�1Þ
Con DUðkÞout ¼R

ðk�1Þ
Con ð14Þ

where

R
ðk�1Þ
Con ¼R

ðk�1Þ
e,out þ

Xnl

j ¼ 1

ðkI,j,eðkI,j,eþ
tkstructure,ðk�1Þ

T ,j,e Þ
�1R

ðk�1Þ
e,j,in Þ ð15Þ

The displacements of the inner nodes can be calculated from
Eq. (7).

2.2.3. Nonlinear dynamic equation

As observed in the eigenfrequency optimization problem in the
density-based optimization procedure, localized vibrating modes are
observed in the ECP method. Furthermore, the localized vibrating
modes between the outer nodes and the inner nodes are addition-
ally observed in the ECP method. To resolve the localized modes
within patches (see Ref. [9] for more details), this paper utilizes the
patch mass matrix presented in Ref. [9], which is a new concept that
assembles the mass matrices of the solid elements in patches into
the degrees of freedom of the outer nodes, as shown in Fig. 5(b).
Unlike the straightforward method of assigning the mass stiffness
matrices to the degrees of freedom of the inner nodes, the solid
elements of the patch are modeled as massless, which makes the
eigenfrequencies between the inner and the outer nodes numeri-
cally infinite. After employing this patch mass matrix approach, the
eigenvalue problem is formulated as follows:
As we did for the stiffness matrix, the following condensation
scheme is applied for the global mass matrix

MCon ¼ A
Np

e ¼ 1

Xnl

j ¼ 1

mj,e ð17Þ

Finally, the following modal equation is solved in order to
obtain the eigenmodes of the outer nodes, Uout .

½
tKCon�o

2MCon�Uout ¼ 0 ð18Þ

where tKCon is the converged tangent stiffness matrix after
several iterations in Eq. (14).
3. Topology optimization formulation

3.1. Material interpolation: stiffness matrix and mass matrix

As stated, in the present patch stacking method, it is a vital to
devise proper interpolation functions for a mass matrix as well as
stiffness values of the links in order to make the design variables
converge to zero or one. Element selection formulations proposed
by other researchers can be used for the stiffness values [1], and it
is found here that careful consideration is required in devising the



Table 2
First mass model for two layers.

ge,1 ge,2 First layer Second layer

1 1 Non-structure Non-structure

1 0 Structure Non-structure

0 1 Non-structure Structure

0 0 Non-structure Non-structure

Table 3
Second mass model for two layers.

ge,1 ge,2 First layer Second layer

1 1 Structure Structure

1 0 Structure Non-structure

0 1 Non-structure Structure

0 0 Non-structure Non-structure
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interpolation functions for a mass matrix with respect to the
design variable.

3.1.1. Interpolation function for link stiffness

In the ECP-based approach, it was known that special inter-
polation functions are required (see Refs. [9,17] for details).
Therefore, it becomes an issue to make interpolation functions
for multiple materials as well. Therefore, the following interpola-
tion functions were newly devised:

le,i ¼ a
xe,i

1þð1�xe,iÞt
þb t¼ a� s

kstructure
diagonal,small � k

 !
ð19Þ

xe,i ¼ ð1�ge,1Þ
n
� � � ð1�ge,i�1Þ

n
ðge,iÞ

n
ð1�ge,iþ1Þ

n
� � � ð1�ge,nlÞ

n
ð20Þ

a¼ lmax�lmin,b¼ lmin ð21Þ

gminrger1, gmin ¼ 0:001 ð22Þ

where the link stiffness for the ith layer of the eth patch is le,i and

the associated auxiliary variable is xe,i, which is the interpolation

function of the SIMP method for multiple materials. To determine

lmax and lmin consistently, the minimum diagonal stiffness value
among those of the stiffness matrices for multiple materials is

chosen for kstructure
diagonal,small: Testing other diagonal values produces

similar layouts. The number of degrees of freedom per node is k.

Here, lmax and lmin are set to 106
� kstructure

diagonal and 10�6
� kstructure

diagonal ,

respectively. We set n¼3, k¼2, and s¼10 because optimal
layouts similar to those obtained in the solid isotropic material
with penalization (SIMP) method could be obtained. For two
layers, the above interpolation is summarized as follows.

For 2 layers:

le,1 ¼ a
xe,1

1þð1�xe,1Þt
þb, le,2 ¼ a

xe,2

1þð1�xe,2Þt
þb

xe,1 ¼ ðge,1Þ
n
ð1�ge,2Þ

n, xe,2 ¼ ð1�ge,1Þ
n
ðge,2Þ

n
ð23Þ

To understand the above interpolation functions for two
layers, Table 1 summarizes the physical meanings for each case.

One interesting observation in Table 1 is that the first and
second patches become voids with 1 for ge,1 and ge,2.

3.1.2. Interpolation function 1 for mass matrix

Like the stiffness interpolation function, the mass interpolation
function for the present patch stacking method can be con-
structed as follows; in fact, they are constructed from Eq. (23)
without the penalty n

mi,e ¼mi,orginfð1�ge,1Þ � � � ð1�ge,i�1Þge,i�1ð1�ge,iþ1Þ � � � ð1�ge,nlÞg

ð24Þ

where the mi,orgin is the mass matrix of the ith solid element. For
the case of two layers, the above equation can be summarized as

me,1 ¼m1,orginge,1 � ð1�ge,2Þ ð25Þ

me,2 ¼m2,orginð1�ge,1Þ � ge,2 ð26Þ
Table 1
Physical meanings of the interpolation functions of Eq. (23).

ge,1 ge,2 Physical meaning of

the first layer/le,1

Physical meaning of

the second layer/le,2

1 1 Non-structure/b Non-structure/b
1 0 Structure/a Non-structure/b
0 1 Non-structure/b Structure/a
0 0 Non-structure/b Non-structure/b
To make it clear, Table 2 summarizes the physical status of the
above mass model. From here, it is understood that because we
employed the concept of the interpolation function of the stiff-
ness matrix, the physical status are same as those of the stiffness
interpolation functions.

Although the interpolation functions of Eqs. (25) and (26) are
easy and straightforward to understand, it is empirically found
that the mass interpolations create highly localized modes and
numerical difficulties in optimization with a larger move limit.
For example, consider some patches that have ones for all
associated design variables. Because these patches have void
properties for stiffness and mass, they cannot be distinguished
from other patches with zeros for all associated design variables.
For these reasons, an optimization algorithm can take advantage
of this side effect in finding optimal layouts. This feature will be
illustrated in the numerical example section.

3.1.3. Interpolation function 2 for mass matrix: separable mass

matrix

To resolve the numerical side effect of the first mass inter-
polation function, we modify the mass matrix interpolation
functions by adding an extra term, as follows:

mi,e ¼mi,orginfð1�ge,1Þ � � � ð1�ge,i�1Þge,i�1ð1�ge,iþ1Þ � � � ð1�ge,nlÞ

þgn
e,1g

n
e,2 � � � g

n
e,nl�1g

n
e,nlg ð27Þ

For two layers:

me,1 ¼m1,orginðge,1 � ð1�ge,2Þþgn
e,1g

n
e,2Þ ð28Þ

me,2 ¼m2,orginðð1�ge,1Þ � ge,2þgn
e,1g

n
e,2Þ ð29Þ

Table 3 summarizes the physical status of the above inter-
polation function in order to compare the first interpolation
functions for the case of two layers. As shown, because me,1

and me,2 have m1,orgin and m2,orgin for ones for ge,1 and ge,2, the
corresponding areas will have lower eigenfrequencies, which is
uneconomical. Therefore, an optimization algorithm will not
make ones for the two design variables.

3.1.4. An elementary example

To verify the proposed material interpolation functions, we
consider a simpler example in Fig. 6. Young’s modulus of the first
layer is twice as large as that of the second layer, while the mass
density of the first layer is half that of the second layer. To
understand the effect of the interpolation functions of Eqs. (24)
and (27), the first eigenfrequency of the system is plotted with the
two interpolation functions. As shown, the interpolation func-
tion (27) shows more convex functional space. Furthermore, it



Fig. 6. An elementary example of the interpolation function. (a) Definition of problem definition, (b) frequency curve with the first interpolation function, and (c)

frequency curve with the second interpolation function.
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Fig. 7. Definition of the problem of a rectangular box with two materials. (a) The

geometry and the boundary condition and (b) optimized layouts using either

material 1 or material 2 using only linear strain analysis.
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shows that within the functional space there are more than three
local optima. Thus, it cannot be guaranteed that the proposed
layouts will be far from the global optima.
3.2. Topology optimization formulation

For the sake of simplicity, we consider topology optimization
to maximize only the fundamental eigenfrequency of a
geometrically nonlinear structure, which is defined as

Max
c

Min
j ¼ 1,:::,J

fojg

� �

s:t:
XNp

e ¼ 1

reðge,iÞve,irV�i ði¼ 1, � � � ,nlÞ

RðtþDtUÞ ¼ 0

ð
tþDtKðtþDtUÞ�o2MÞU¼ 0 ð30Þ

where re, ve,i, and V�i are the element density, element volume,
and prescribed volume limit for the ith material, respectively. The
converged displacements obtained by solving the nonlinear static
equation are denoted by tþDtU

�
, and the number of candidate

eigenfrequencies is denoted by J. To determine optimal topologies
using a gradient-based optimizer, the sensitivity analysis of the
jth eigenfrequency, oj, should be performed with respect to the
design variable. By differentiating the equation of modal analysis
equation, the following sensitivity equation can be derived for the
patch mass method (see Ref. [9]):

doj

dge,i

¼
Xnl

k ¼ 1

1

2oj
� ðue,out�ue,k,inÞ

T dle,k

dge,i

ðue,out�ue,k,inÞ�o
2
j u

T
e,out

dme,k

dge,i

ue,out

 !

ð31Þ
For two layers:

doj

dge,i

¼
1

2oj
�

ðue,out�ue,1,inÞ
T dle,1

dge,i
ðue,out�ue,1,inÞ�o2

j u
T
e,out

dme,1

dge,i
ue,out

þðue,out�ue,2,inÞ
T dle,2

dge,i
ðue,out�ue,2,inÞ�o2

j u
T
e,out

dme,2

dge,i
ue,out

0
B@

1
CA
4. Topology optimization examples

To show the potential use of the present optimization for-
mulation, this section provides several numerical examples that
are difficult to solve in the framework of the standard
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optimization formulation. The key to topology optimization is the
use of a proper optimization algorithm. In this research, we
employ the method of moving asymptotes for a topology optimi-
zation algorithm written in the framework of MATLAB [18]. The
analysis code is also implemented in the framework of MATLAB.
For the present numerical examples, the design domains and
material properties are arbitrarily chosen in order to show the
potential of the present patch stacking schemes in topology
optimization.

4.1. Example 1: rectangular box with two materials

First, we consider the topology optimization problem in Fig. 7
with F¼0 N, which does not cause nonlinear strain with two
materials. Young’s modulus and the density with the first mate-
rial are two-and-a-half times and half of those of the second
material, respectively, as described in Fig. 7(a). By controlling the
mass limits in Eq. (30), i.e., 50% for the first material and 0% for
the second material in Fig. 7(b), and vice versa, optimized layouts
are obtained that are similar to linear optimization layouts for
either material 1 or material 2 in Fig. 7. By setting the design
variables of either the first or the second layers to zero, the
interpolation functions in (24) and (27) become the same inter-
polation function for the topology optimization for one material.
For the sake of illustration, the first material is rendered as black
while the second material is rendered as gray.

To test the effects of the material interpolation function for a
mass matrix, the previous optimization problem is resolved using
the two interpolation functions in Eqs. (24) and (27). Because of
Fig. 8. Optimized layouts with (a) the material interpolation of Eq. (24) and

(b) the material interpolation of Eq. (27).

Fig. 9. Optimization results with a homogeneous boundary condition (clamp

conditions for both materials). (a) The obtained result with F¼2.5 N, (b) with

F¼5 N, and (c) with F¼10 N.
the abovementioned side effect of Eq. (24) in Table 1, there are
some areas, marked by circles in Fig. 8(a), with two materials. This
side effect also results in wobbly optimization iterations, but by
employing the interpolation function in Eq. (27), a result whose
outline is similar to the results in Fig. 7(b) is obtained. Therefore,
unless stated otherwise, the second interpolation function will be
used for the rest of our examples.

Next, we solve the topology optimization problem considering
the geometrical nonlinearity in Fig. 9 with different magnitudes of
the force F. It can be understood at a glance that the obtained
designs in Fig. 9 are very similar to the designs with a single
material [9]. From these results, it seems that the statement that a
similar result of a compliance minimization problem can be
obtained by maximizing the first eigenfrequency is also applicable
in case of topology optimization with multiple materials.
Fig. 12(a) shows the frequency curves of each design with various
magnitudes of the force F. A comparison of the frequencies in each
design indicates that the designs that consider geometrical non-
linearity have larger first eigenfrequencies. Furthermore, as one of
the limitations, unfortunately we also can recognize that the
designs in Fig. 11 are not optimized for the given loads; the design
with 5 N is superior even for other magnitudes of load, in terms of
the eigenfrequency of interest. From these observations, it is
understood that the obtained and presented designs are local
optima. From a physical point of view, we understand that the
20 m
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20 m

F

Material 2:E =1.0×104 N/m2, ν=0.3, ρ=0.1 kg/m3
Material 1:E =2.0×104 N/m2, ν=0.3, ρ=0.05 kg/m3

Fig. 10. Definition of the problem of a rectangular box using two materials with

the prescribed material-dependent boundary condition. (a) The geometry and the

boundary condition and (b) the result obtained by linear analysis.

Fig. 11. Nonlinear optimization results with the material-dependent boundary

condition for the problem in Fig. 10. (a) The optimized result with F¼2.5 N,

(b) with F¼5 N, and (c) with F¼10 N.
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Fig. 12. Load and frequency curves. (For purpose of illustration, the deformations of structures are scaled by a factor 10). (a) Curves for the designs of Figs. 8 and 10 and

(b) curves for the designs of Figs. 10 and 11.
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condition and (b) the results obtained by linear analysis.
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issue of local optima becomes serious in the considered problems
due to the bifurcation of intermediate designs and the heuristic
interpolation schemes. In order to resolve this local optima issue,
we may either start with different initial solutions or adopt a global
optimizer such as a genetic algorithm.

In Fig. 10, the material-dependent boundary condition is
tested with no zero forces causing the geometrical nonlinearity.
The left and the right boundaries of the design domain are
clamped only for the second material and the first material,
respectively. To implement the material-dependent boundary
condition, the new nodes are inserted at these sides and the
connectivity information of the elements located at these sides is
modified, as shown in Fig. 10(a). Fig. 10 shows the optimized
results with two materials. Due to the material-dependent
boundary condition, vertically asymmetric designs are obtained.
The geometric nonlinearity is considered in Fig. 11 and the
asymmetric designs are obtained. Fig. 12 shows the load and
the frequency curves of these designs. As in the previous exam-
ples, the obtained designs are local optima.
4.2. Example 2: beam structure with a point load

For the second optimization example, the beam structure with a
point mass is considered in Fig. 13. Note that as this example with the
point mass has been widely used to validate new schemes in
topology optimization for dynamic problem, a thorough study of this
structure with the present method can show some potential and
limitations of the present method. The material properties of the
problem are set the same as those in the first example. The domain is
discretized by 200 by 25 patches and the point mass is attached at
the end of the beam to avoid a trivial void structure. The linear design
is shown in Fig. 13(b). Also, optimized layouts in this example are
rendered in black for the first material and gray for the second
material.



Fig. 15. Optimization results using both material 1 and material 2. (a) Obtained result with the clamped boundary condition for two materials and (b) obtained result with

the clamp boundary condition only for the second material.
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Fig. 16. Load and frequency curves. (a) Material-independent boundary condition and (b) material-dependent boundary condition.
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Next, using linear analysis, the material-dependent boundary
condition in Fig. 14 is considered. Unlike in the previous example,
the clamp boundary condition on the left side is only applied to
material 2. The optimized layout is presented in Fig. 14(b). As can
be seen, the second material appears on the left side and the other
parts of the layout are similar to those in the results in Fig. 13(b).

Fig. 15 shows the optimized results with the clamped bound-
ary condition for two materials and the clamped boundary
condition only for the second material for different point loads.
As shown in Fig. 15(a), except for the fact that two materials are
used, the optimized layouts are made similar to the layouts by
minimizing the compliance considering the geometrical nonli-
nearity and by maximizing the first eigenfrequency with one
material. Fig. 16 compares the eigenfrequencies of the obtained
designs with respect to the applied loads. As illustrated in Fig. 16,
in this particular example, the optimizer does not have any
difficulty in obtaining the designs optimized for the given loads
because the first eigenmode is the bending mode.
5. Conclusions

This paper develops a new scheme to solve the nonlinear
eigenvalue problem considering multiple materials and the
material-dependent boundary condition. When these problems
are solved using the existing standard approaches to topology
optimization, complicated issues may arise, such as unstable
elements and the complicated reformulation of the optimization
for the material-dependent boundary condition. In response to
this, this paper presents a new patch stacking method based on
the element connectivity parameterization (ECP) method, which
is effective for the unstable elements. Unlike existing multi-
material topology optimization schemes, the important differ-
ences in the proposed method are the stacking of multiple
patches of the ECP method on the same discretization pixel and
the selection of one patch or no patch. From the numerical
examples, we find that the considered optimization problem
suffers from the local optima. Therefore, the presented results
are not the global optima. Also, it is observed that the layouts
optimized for the first eigenvalue are similar to those that
minimize the static compliance, even with multiple materials
and material-dependent boundary conditions.
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