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Multi-material phononic crystals hold promise for manipulating elastic wave propagation, enhancing the rigidity 
of the host structure, and realizing multifunctionality, including electric conduction, sound insulation, and 
heat diffusion. This paper presents a multi-material topology optimization pipeline for phononic crystal design, 
incorporating both isotropic and anisotropic materials. First, the dispersion theory for elastic wave propagation 
in periodic structures is presented. Then a novel interpolation function is proposed for multi-material topology 
optimization by using a variant of the projection operator. Finally, both isotropic and anisotropic materials are 
utilized to demonstrate the effectiveness of the proposed method for multi-material phononic crystal design when 
compared with SIMP-based structures. The numerical analysis indicates that the proposed method performs well 
in optimizing the phononic structure with metal composite materials.
1. Introduction

Continuum structures including beams and plates are widely used 
in the field of civil engineering, mechanical products, and aerospace 
equipment. Elastic wave manipulation is one of the significant and chal-

lenging tasks to ensure the safety and functionality of the engineering 
structures. Phononic crystals, periodically arranged artificial materi-

als/structures, show extraordinary performance on forbidding elastic 
wave propagation in band gaps which offers the possibility of wave 
manipulation in practical engineering applications [1–4]. The multi-

material phononic structure offers advantages such as high strength, 
lightweight construction, and cost-effectiveness, while satisfying the re-

quirements of elastic wave manipulation. [5–7]. To further contribute 
to this topic, multiple materials-based topology optimization method for 
phononic band gap design with both isotropic and anisotropic materials 
is studied in this paper.

Topology optimization technologies including solid isotropic mate-

rial with penalization (SIMP) [8,9], Level-Set method (LSM) [10,11], 
bidirectional evolutionary structural optimization (BESO) [12,13], and 
moving morphable component (MMC) [14,15], offer an effective and ef-

ficient way for structure design. In recent years, topology optimization 
for phononic crystal design has drawn tremendous attention. Relevant 
literature regarding phononic crystal design can be categorized into non-
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gradient and gradient-based methods. Non-gradient-based phononic 
structure optimization mainly relies on random processes such as ge-

netic algorithms, which do not need any gradient information for struc-

ture design [16–18]. Dong et al. [19] utilized a genetic algorithm 
with the adaptive fuzzy fitness granulation for maximizing the relative 
bandgap width of the asymmetrical phononic structure, which improved 
the computation efficiency for the optimization procedure. With the 
help of a genetic algorithm and plane wave expansion method, Han et 
al. optimized the band gap of the phononic crystal with three phases 
in both the out- and in-plane wave modes, the results indicate the vol-

ume fraction and symmetry are significant for optimal design in [20]. 
Combining adaptive genetic algorithm, Xie proposed an improved fast 
plane wave expansion method for 2d phononic crystal with a symmet-

ric square lattice microstructure, in which the computational efficiency 
has been significantly improved in [21]. The non-gradient methods pro-

vide an easy but effective way for the structure design. However, the 
computation efficiency highly depends on optimization objectives and 
variables, and the computational time is not acceptable to some degree 
when the number of design variables is large.

The gradient-based method as an efficient technology for solving op-

timization problems with few numbers of evaluation functions has been 
widely applied in structural compliance, acoustic metamaterials, and 
photonic/phononic crystals design [22–25]. Sigmund et al. [26] pro-
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posed a solid isotropic material with penalization pipeline for band gap 
maximization, structure response minimization, and waveguiding. Sim-

ilarly, Wang et al. [27] utilized a bidirectional evolutionary structural 
optimization algorithm for phononic crystals design with an ultrawide 
band gap. Liu et al. [28] presented a multi-functional topology opti-

mization framework for phononic crystal design, which realized elas-

tic wave manipulation in a one-dimensional structure. In [29], a level 
set-based topology optimization procedure with an interface-enriched 
generalized finite element method is presented for designing the band 
structure, which improves the boundary of the phononic crystals com-

pared with the density-based approaches. To design phononic crystals 
with prescribed band gaps, Wu et al. [30] introduced a novel topology 
optimization method with ipsilateral frequency constraint based on a 
modified Heaviside function and robust formulation, which is flexible 
in practical engineering applications.

Using multiple materials for topology optimization offers more free-

dom in structural design, which can further improve the stability, weight 
and other physical performance [31–35]. With the advancements in 
multi-material processing and manufacturing technologies, the explo-

ration of multi-material topology optimization has emerged as a focal 
point in academic discourse. In [36], Bendsoe et al. first extended the 
SIMP interpolation function model for multi-material topology opti-

mization. Discrete material optimization, a simple but effective interpo-

lation function was proposed for multi-material topology optimization 
in [37]. Bing et al. presented a unified material interpolation function 
for multi-material topology optimization using the p-norm penalization 
function [31]. Based on the multi-material topology optimization frame-

work, a few researchers attempted to design phononic crystals with 
multiple materials for manipulating elastic wave propagation. Combin-

ing compactly supported radial basis functions and Heaviside functions, 
Chen et al. proposed a single variable-based multi-material topology 
optimization method for designing the band gap of phononic structure 
in [5]. Xu et al. systematically investigated a two-stage multi-objective 
topology optimization pipeline for phononic crystal design with multi-

ple phases of microstructure. In [38], Zhang et al. presented a systematic 
topology optimization method of multi-material metamaterial with an 
interpolation scheme of discrete material optimization, which realized 
Bragg scattering and local resonance mechanism-based metamaterial 
design with ultra-wide low-frequency band gaps. In literature [39], Yi 
et al. comprehensively reviews the progress on topology optimization of 
phononic crystal, the basic theory and method of phononic crystal de-

sign and optimization are detailed, also the functionality of the phononic 
crystals is introduced. However, to the best of our knowledge, multi-

material topology optimization for phononic crystals is still challenging 
and immature, especially the interpolation model for multiple-material 
mapping.

Furthermore, the layout of the topology optimization-based phononic 
crystal design is fairly complicated to manufacture by conventional 
technology, thanks to the advancement of additive manufacturing, the 
fabrication of the optimized phononic crystal becomes possible. How-

ever, layer-by-layer processing leads to different material properties 
along the fabrication directions. In addition, internal structure of poly-

crystalline materials such as composite metals and random imperfection 
of materials impact the structural property as well [40–42]. Therefore, 
to further contribute to this topic, a novel exponential interpolation 
function for multi-material topology optimization-based band gap opti-

mization is presented to design phononic crystals, and both the isotropic 
and anisotropic materials are introduced to evaluate the wave disper-

sion phenomenon. The main contributions of this paper are summarized 
as follows:

1. A new exponential interpolation function is presented for multi-

material topology optimization, which can effectively realize the 
structural design of phononic crystals.

2. Both isotropic and anisotropic materials are being investigated to 
2

maximize the bandgap of the phononic structure for manipulating 
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Fig. 1. Irreducible Brillouin zone.

elastic wave propagation, and to explore the effects of anisotropic 
factors on the bandgap.

3. Compared with the SIMP-based optimization method for phononic 
crystal design, the proposed method has a wider band gap to sup-

press the elastic wave in the phononic crystal structure.

The remainder of this paper is organized as follows: In Section 2, 
the dispersion theory for wave propagation in periodic structure is de-

scribed. Section 3 detailed the multi-materials topology optimization 
for the phononic structure. Numerical examples including isotropic and 
anisotropic materials are utilized to demonstrate the performance of the 
proposed method in Section 4. Finally, the conclusion and future work 
are presented in Section 5.

2. Dispersion theory for periodic structures

Before using the topology optimization method to design the 
phononic crystal for elastic wave manipulation, the dispersive rela-

tionship should be derived to analyze the band gap of the phononic 
structure. The governing equation for wave propagation in the periodic 
structure can be formulated as:

𝜌
𝜕2𝐮
𝜕𝑡2

= (𝜆+ 2𝜇)∇∇ ⋅ 𝐮− 𝜇∇×∇× 𝐮 (1)

where u and 𝜌 are the displacement vector and material density, re-

spectively, parameters 𝜆 and 𝜇 are Lame coefficients related to material 
property. Based on the periodicity and symmetry of the phononic struc-

ture, the wave propagation in the periodic structure can be analyzed in a 
periodic unit cell. According to Floquet-Bloch theory, the displacement 
vector can be described as follows:

𝐮(𝐫,𝐤) = 𝐮𝐤 (𝐫) 𝑒𝑖𝐤⋅𝐫 (2)

where r and k denote the position and wave vector, respectively. An 
eigenvalue problem can be formulated in Eq. (3) by combining Eqs. (1), 
(2):

𝐊𝐮 = 𝜔2𝐌𝐮 (3)

where 𝜔2 is the eigenvalue of the system, and K and M denote global 
stiffness and mass matrices, respectively. Based on the above analysis, 
the dispersive curve of the elastic wave propagating within the phononic 
crystal can be depicted by sweeping the wave vector along the edge of 
the irreducible Brillouin zone shown in Fig. 1.

In this paper, we take a one-dimensional phononic structure as an ex-

ample for manipulating elastic waves. A combination of 𝑘𝑥=[-𝜋, 𝜋] and 
𝑘𝑦=0 is utilized to analyze the elastic wave propagation in Γ𝑋 direc-

tion, and the finite element method is used to solve the eigenfrequency 
problem shown in Eq. (3).

3. Multi-material topology optimization for phononic crystal 
design

In this section, an exponential density interpolation function is pre-

sented for multi-material, and filtering and projection operators are 

utilized to deal with checkboard and gray elements problems, then the 



L. Liu, J.W. Kim, R. Zheng et al.

Fig. 2. Interpolation function for multiple materials.

Fig. 3. Interpolated Young’s modulus with proposed method.

objective function is formulated for phononic crystal design based on 
multi-material topology optimization.

3.1. Interpolation function

For multi-material topology optimization-based phononic structure 
design, how to construct the mapping relationship between the design 
variable and material distribution is significant in the optimization pro-

cess. A new interpolation function for multi-material topology optimiza-

tion is constructed as Eq. (4):

𝜙𝑒
𝑖
=
(
1 − 𝑒

−𝛼𝑥𝑒1
)(

𝑒
−𝛼𝑥𝑒

𝑖+1≠𝑁𝑀+1
)[ 𝑖∏

𝑗=2

(
1 − 𝑒

−𝛼𝑥𝑒
𝑗

)]
(4)

where x and 𝜙 indicate design variable and the interpolated one, respec-

tively, and subscript i and superscript e are the index of materials and 
elements, respective, and NM indicates the total number of materials. 
To better understand the interpolation function, an example with three 
materials is presented in Eq. (5) and illustrated in Fig. 2, in which 𝑥1, 𝑥2, 
and 𝑥3 denote design variables for materials 1, 2, and 3, respectively. 
Parameter 𝛼 controls the sharpness of the mapping function which plays 
a similar role with the projection function.

𝜙𝑒
1 = (1 − 𝑒

−𝛼𝑥𝑒1 )𝑒−𝛼𝑥
𝑒
2

𝜙𝑒
2 = (1 − 𝑒

−𝛼𝑥𝑒1 )(1 − 𝑒
−𝛼𝑥𝑒2 )𝑒−𝛼𝑥

𝑒
3

𝜙𝑒
3 = (1 − 𝑒

−𝛼𝑥𝑒1 )(1 − 𝑒
−𝛼𝑥𝑒2 )(1 − 𝑒

−𝛼𝑥𝑒3 )

(5)

Fig. 3 shows an interpolated Young’s modulus with the proposed map-

ping function, where the Young’s modulus for three materials are 1, 2, 
and 3, respectively. It is observed that the design variables can be effec-

tively mapped into multiple material physical fields.

3.2. Optimization

In this paper, we focus on multi-material topology optimization-
3

based phononic structure design. The aim is to maximize the width of the 
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Fig. 4. Design domain for phononic crystal design.

Fig. 5. Iteration history of the phononic crystal.

band gap by iterative optimization. Based on the aforementioned ma-

terial interpolation model, the mathematical formulation for phononic 
structure design can be constructed as follows:

maximize
𝐱

∶𝜔𝑗+1(𝐤) −𝜔𝑗 (𝐤)

subject to ∶ ⎧⎪⎨⎪⎩
𝑉 (𝐱)∕𝑉0 ≤ 𝑓0
𝐊𝐮 = 𝜔𝟐𝐌𝐮
0 ≤ 𝑥𝑒

𝑖
≤ 1

(6)

where 𝜔𝑗 and 𝜔𝑗+1 are the 𝑗𝑡ℎ and 𝑗 + 1𝑡ℎ eigen frequencies, x is the 
design variable which has the following form shown in Eq. (7), NE indi-

cates the number of the elements. 𝑉 (𝑥), 𝑉0 and 𝑓0 indicate the volume 
of the optimized structure, design domain, and the prescribed volume 
fraction, respectively.

𝐱 =

⎡⎢⎢⎢⎢⎣
𝑥11 𝑥12 ⋯ 𝑥1

𝑁𝑀

𝑥21 𝑥22 ⋯ 𝑥2
𝑁𝑀

⋮ ⋮ ⋱ ⋮

𝑥𝑁𝐸
1 𝑥𝑁𝐸

2 ⋯ 𝑥𝑁𝐸
𝑁𝑀

⎤⎥⎥⎥⎥⎦
(7)

In this paper, we consider both the isotropic and anisotropic mate-

rials for phononic crystal design. A uniform form of the elastic matrix 
for both homogenization and non-homogenization material is shown in 
Eq. (8), where 𝐸𝑥 = 𝛾1𝐸, 𝐸𝑦 = 𝛾2𝐸 are Young’s modulus along x and y 
directions, G and 𝜈 are shear modulus and Poisson’s ratio, respectively, 
and 𝛾1 and 𝛾2 are related material properties.

𝐷𝑖 =

⎡⎢⎢⎢⎢⎣
𝐸𝑖
𝑥∗𝐸

𝑖
𝑥

𝐸𝑖
𝑥−𝐸𝑖

𝑦∗𝜈2
𝐸𝑖
𝑥∗𝐸

𝑖
𝑦∗𝑣

𝑖
12

𝐸𝑖
𝑥−𝐸𝑖

𝑦∗𝜈2
0

𝐸𝑖
𝑥∗𝐸

𝑖
𝑦∗𝑣12

𝐸𝑖
𝑥−𝐸𝑖

𝑦∗𝜈2
𝐸𝑖
𝑥∗𝐸

𝑖
𝑦

𝐸𝑖
𝑥−𝐸𝑖

𝑦∗𝜈2
0

0 0 𝐺

⎤⎥⎥⎥⎥⎦
(8)

3.3. Sensitivity analysis

Based on the stated mathematical formulation, we briefly introduce 

the sensitivity analysis which is used to update the design variables. 
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Fig. 6. Materials distribution for phononic structure.

Fig. 7. Dispersion curves of the phononic structures.
4

Fig. 8. Materials distribution for phononic structures.
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Fig. 9. Dispersion curves of the phononic structures.
The sensitivity of the eigenfrequencies concerning material densities is 
derived in Eq. (9):

𝜕𝜔(𝐤)
𝜕𝜙𝑒

𝑖

= 1
2𝜔

𝐮𝐓
(
𝜕𝐊
𝜕𝜙𝑒

𝑖

−𝜔2 𝜕𝐌
𝜕𝜙𝑒

𝑖

)
𝐮 (9)

where 𝜙𝑖 is the i-th interpolated material density, and K and M are global 
stiffness and mass matrices, respectively. The pq penalty strategy is uti-

lized for eigenvalue problem analysis in this paper, thus, K and M have 
the following form shown in Eq. (10), which are assembled from the 
element stiffness matrices 𝐊𝐞 and mass matrices 𝐌𝐞, respectively.

𝐊 = A𝑁𝐸
𝑒=1

∑𝑁𝑀

𝑖=1 𝐊𝐞 ⋅
(
𝜙𝑒
𝑖

)𝑝
𝐌 = A𝑁𝐸

𝑒=1
∑𝑁𝑀

𝑖=1 𝐌𝐞 ⋅
(
𝜙𝑒
𝑖

)𝑞 (10)

The sensitivity of the stiffness and mass matrices with respect to in-

terpolated density can be constructed as:

𝜕𝐊
𝜕𝜙𝑒

𝑖

= 𝑝A𝑁𝐸
𝑒=1

∑𝑁𝑀

𝑖=1 𝐊𝐞 ⋅
(
𝜙𝑒
𝑖

)𝑝−1
𝜕𝐌
𝜕𝜙𝑒

𝑖

= 𝑞A𝑁𝐸
𝑒=1

∑𝑁𝑀

𝑖=1 𝐌𝐞 ⋅
(
𝜙𝑒
𝑖

)𝑞−1 (11)

The sensitivity of the interpolated density with respect to design vari-

ables is formulated as follows:

𝜕𝜙𝑒1
𝜕𝑥𝑒1

= 𝛼𝑒
−𝛼𝑥𝑒1𝑒−𝛼𝑥

𝑒
2

𝜕𝜙𝑒1
𝜕𝑥𝑒2

= −𝛼
(
1 − 𝑒

−𝛼𝑥𝑒1
)
𝑒
−𝛼𝑥𝑒2

𝜕𝜙𝑒1
𝜕𝑥𝑒3

= 0

(12)

𝜕𝜙𝑒2
𝜕𝑥𝑒1

= 𝛼𝑒
−𝛼𝑥𝑒1

(
1 − 𝑒

−𝛼𝑥𝑒2
)
𝑒
−𝛼𝑥𝑒3

𝜕𝜙𝑒2
𝜕𝑥𝑒2

= −𝛼
(
1 − 𝑒

−𝛼𝑥𝑒1
)
𝑒
−𝛼𝑥𝑒2𝑒−𝛼𝑥

𝑒
3

𝜕𝜙2
𝜕𝑥3

= −𝛼
(
1 − 𝑒

−𝛼𝑥𝑒1
)(

1 − 𝑒
−𝛼𝑥𝑒2

)
𝑒
−𝛼𝑥𝑒2

(13)

𝜕𝜙𝑒3
𝜕𝑥𝑒1

= 𝛼𝑒
−𝛼𝑥𝑒1 (1 − 𝑒−𝛼𝑥2 )

(
1 − 𝑒

−𝛼𝑥𝑒3
)

𝜕𝜙𝑒3
𝜕𝑥𝑒2

= 𝛼𝑒
−𝛼𝑥𝑒2 (1 − 𝑒−𝛼𝑥1 )

(
1 − 𝑒

−𝛼𝑥𝑒3
)

𝜕𝜙𝑒 −𝛼𝑥𝑒
(

−𝛼𝑥𝑒
) (14)
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3
𝜕𝑥𝑒3

= 𝛼𝑒 3 (1 − 𝑒−𝛼𝑥1 ) 1 − 𝑒 2
4. Numerical analysis and discussion

In this section, numerical analysis is conducted to verify the effec-

tiveness of the proposed method for phononic crystals. All the examples 
are implemented in MATLAB 2022 and the Method of Moving Asymp-

totes (MMA) is utilized as a solver for topology optimization [43].

The overall domain for phononic crystal is given in Fig. 4, where 
domain 2 is a non-design domain that is initially applied with 2𝑛𝑑 ma-

terial, and domains 1 and 3 are the designed areas that are applied with 
1𝑠𝑡 and 3𝑟𝑑 materials, of which the initialized densities of three mate-

rials are 0.5, 1, and 0.5, respectively. The width and height of the unit 
cell are 0.03 m and 0.15 m, respectively. The unit cell is discretized into 
240 ×48 mesh grids, and the volume constraint of each material is 7/24. 
The filtering radius is the double mesh size, and the total iteration num-

ber is 60. The penalty factor of interpolation function for SIMP method 
is set to 3, and 𝛼 for the proposed interpolation model is set to 3 as well, 
and p and q for eigenfrequency problem are set to 3 and 4, respectively.

Fig. 5 shows an example of the iteration history of the phononic 
crystal optimization, the material properties follow the example of Sec-

tion 4.3. It can be found that the initialized design domain is applied 
with uniform density, and the overall structure of the phononic crystal 
gradually approaches a clear pattern after a couple of iteration steps, 
where the red color is material 1, yellow one indicates materials 2, and 
the sky blue one is the material 3. It is clear that the proposed method 
is effective on phononic crystal design from the iteration history shown 
in Fig. 5.

4.1. Evaluation on isotropic materials

This case study is to evaluate the proposed method for phononic 
crystal optimization with isotropic materials. The imaginary material 
properties for phononic structure design are as follows: 𝐸1=0.5e7, 
𝐸2=1e7,𝐸3=0.8e7, the density 𝜌 and Poisson’s ratio 𝜈 for three ma-

terials are set to 1, and 0.3, respectively.

To demonstrate the effectiveness and the advancement of the pro-

posed method, SIMP-based multi-material interpolation model is intro-

duced for comparison. Fig. 6 shows the isotropic material distribution of 
the phononic structures via SIMP and the proposed method, and Fig. 7

presents the dispersion relations of the optimized phononic crystals, 
which shows that both the SIMP and proposed method can enlarge the 
bandgap of the phononic structures, specifically, the proposed method is 
of better performance on widening bandgap when compared with SIMP 

method, and the boundary of each component is more clearly as well.
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Fig. 10. Material distribution of various anisotropic phononic structures, in which 𝛾 is 1.
4.2. Evaluation on anisotropic materials

The second example is conducted to verify the proposed method in 
phononic structure design with anisotropic materials for materials 1 and 
3. The material properties for phononic structure design are as follows: 
𝐸1=5e7, 𝐸2=1e7,𝐸3=10e7, 𝛾1=0.8, 𝛾2=1, the density 𝜌 and Pois-

son’s ratio 𝜈 for three materials are set to 1, and 0.3, respectively.

Fig. 8 gives the materials layout of the optimized phononic struc-
6

tures with anisotropic materials. It can be found that both the SIMP 
1

and the proposed method can effectively optimize the structures. Fig. 9

shows the dispersion curves of the optimized phononic crystals, which 
indicates that both the SIMP and the proposed method can effectively 
enlarge the bandgap of the phononic structures. Moreover, the bandgap 
of the optimized structures via the proposed method is larger than the 
SIMP one.

Overall, both the numerical optimizations on isotropic and an-

isotropic materials demonstrate the effectiveness of the proposed 

method in widening the bandgap of the phononic structures. Addition-
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Fig. 11. Band gap of the phononic crystals with anisotropic materials.

Fig. 12. Phononic crystals with anisotropic materials.
ally, the proposed method is of better performance on phononic crystal 
design from the point of enlarging the bandgap.

4.3. Practicability on metal composite

In this subsection, the real materials including aluminum, steel, and 
copper are introduced to demonstrate the performance of the proposed 
method on phononic crystals optimization, of which the Young’s mod-

ulus of three materials are 70GPa, 200GPa, 120GPa, respectively, and 
7

the corresponding densities are 2700𝑘𝑔∕𝑚3, 7850𝑘𝑔∕𝑚3, 8900𝑘𝑔∕𝑚3, re-
spectively. Different anisotropic factors are utilized to analyze the 
bandgap of the optimized phononic structures.

The first case sets 𝛾1 to 1, and the anisotropic factors 𝛾2 for opti-

mization are 1, 0.8, 0.6, 0.4, and 0.2, respectively. Fig. 10 shows the 
optimized phononic structures. We can find that the proposed method 
is of good performance on composite metals-based phononic design, 
and the optimized structures have clear boundaries. The overall pat-

terns of the optimized phononic crystal are similar, and the details of 
the phononic structure are different in some parts. Fig. 11 gives the dis-
persion relationship of the optimized structures, it can be found that the 
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Fig. 13. Band gap of phononic crystals with anisotropic materials.

, 
widths of the band gap are almost same. Thus, we can conclude that the 
anisotropic factor in the Y direction does not have significant effects on 
the elastic wave propagation along the X direction.

The second case aims to investigate the effect of the different 
anisotropic factors in the X axis on elastic wave propagation in the X 
direction. We set 𝛾2 to 1, and anisotropic factors 𝛾1 are 0.8, and 0.6, 
respectively. Compared with the phononic structure using isotropic ma-

terials shown in Fig. 10(a) and Fig. 11(a), the band gap distribution is 
different from the first case. It is observed that the width of the band 
gap turns narrow as the anisotropic factors decrease. Overall, it can be 
concluded that the proposed method performs well on phononic crystal 
design with multiple materials in both isotropic and anisotropic materi-

als. (See Figs. 12 and 13.)

5. Conclusion and future work

This paper presents a topology optimization framework for phononic 
crystal design with multiple materials. By using a variant of the projec-

tion operator, a novel interpolation function is presented for describ-

ing the multi-material fields. Numerical examples are implemented to 
demonstrate the effectiveness of the proposed pipeline for phononic 
structure design with multiple materials. The numerical analysis, includ-

ing both isotropic and anisotropic materials, indicates that the proposed 
method performs well on phononic crystal design when compared with 
conventional SIMP-based multi-material frameworks. The metal com-

posite, aluminum-steel-copper, is utilized to verify the effectiveness of 
the proposed method in practical applications.

The proposed phononic structure optimization pipeline, using multi-

ple isotropic/anisotropic materials, can be applied to mechanical prod-

uct design and railway infrastructure construction. To exploit the wave 
dispersion phenomenon in microstructure, multi-scale phononic struc-

ture design with multi-materials can be further studied in future work. 
Additionally, a multi-material-based topology optimization method to 
design metastructure for wave focusing and tapping can be further stud-

ied in the future.
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