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Highlights

e A new method for topology optimization of functionally-graded lattice structure.

e The buckling constraint is employed to improve the stability of infill lattice.

e The method achieves high spatial lattice variations with guaranteed smooth connectivity.

e The method generate stift structure comparable to SIMP and with level of structural stability.

Abstract

Lattice structures have been widely studied due to their advantage of low stiffness-to-weight ratio or sometimes auxetic
properties. This paper presents a topology optimization method for structures with functionally-graded infill lattices with
buckling constraints, which minimizes compliance while ensuring a prescribed level of structural stability against buckling
failures. To realize topologically-optimized structures filled with functionally-graded lattices, Helmholtz PDE-filter with a
variable radius is applied on the density field in Solid Isotropic Material with Penalization (SIMP) method. Buckling load
factors based on the linear buckling analysis is employed as buckling constraints. Numerical examples show that proposed
method can generate stiff structures comparable to the ones by the SIMP, with functionally-graded infill lattices that improve
the structural stability by avoiding long, slender features under compression.
© 2019 Elsevier B.V. Allrights reserved.
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1. Introduction

Nature has the ability of creating lattice structures to improve mechanical properties with low density. Common
natural lattice structures are honeycomb (woods and corks), parenchyma in plant (corns), and sponges (spongy
bones and sea sponges) [1], which exhibits superior mechanical properties such as high stiffness-to-weight ratio,
robustness against unknown loads, and auxetic property. Inspired by these lattice structures in nature, many
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Table 1
Summary of previous work.

Length scales for material models

Single-scale Bi-scale

Bendsge & Coelho et al. [23], Chen et al. [24],

Kikuchi [17], Wang et al. [25], Wang et al. [26],
Steps One ste Liu et al. [19], Panesar et al. [27], Radman et al. [28],
required P Wu et al. [20] Daynes et al. [29], Li et al. [30], Deng et al. [31],
to obtain Wu et al. [21], Xu et al. [32], Wang et al. [33], Nishi et al. [34],
output Traff et al. [22] Campagna et al. [35], Du et al. [36]
designs Pantz et al. [37], Panetta et al. [40], Zhu et al. [41],

Two step Groen et al. [38], Takano et al. [42], Liang et al. [43]

Grégoire et al. [39]

engineered lattice structures are widely utilized in structural components with high stiffness—density ratio [2,3],
high energy-absorbing capability [4,5], negative Poison’s ratio [6—8], extreme thermal expansion [9—11], and special
acoustic properties [12—14]. Thanks to the development of additive manufacturing, which fully leverages the
geometric versatility of layer-upon-layer additive processes, the design, fabrication, and validation of engineered
lattice structures have become active research topics [15,16]. Due to its affinity with additive manufacturing, it is
just natural that topology optimization [17,18] has emerged as the foundation for optimally designing engineered
lattice structures.

Existing approaches for designing functionally-graded lattice structures based on topology optimization can be
classified according to two criteria: the number of length scales for material models (single- or bi-scale methods) and
the number of steps required to obtain the output designs (one- and two-step optimization). Table 1 summarizes the
previous works in each category, which are discussed further in Section 2. These approaches have been proposed in
the pursuit of realizing the lattice structures that are functionally highly graded as well as structurally well connected,
which often conflict with each other.

This paper presents a new method for the topology optimization of functionally-graded lattice structures, which
achieves high spatial lattice variations with guaranteed connectivity. It minimizes structural compliance subject to
buckling constraints, which ensure a prescribed level of structural stability against buckling failures. The novelty
of the proposed method is two-fold: it realizes designs with (1) fully-connected, functionally-graded lattices by
the variable-radius Helmholtz PDE-filter applied on the density field in Solid Isotropic Material with Penalization
(SIMP) method, and (2) a prescribed level of buckling safety, by explicitly employing constraints on buckling load
factors based on the linear buckling analysis.

The remainder of this paper is organized as follows. Section 2 discusses the review of related literature. Section 3
describes the definitions of design fields: material density and averaging radius, the optimization model, and the
sensitivities of the objective and constraints with respect to the design fields. The numerical examples for compliance
minimization subject to buckling constraints are given in Section 4. Finally, the conclusion and future work are
presented in Section 5.

2. Literature review

2.1. Single-scale methods

The first-reported work on topology optimization by Bendsge and Kikuchi [17] using the material homogeniza-
tion of parameterized lattice cells can be seen as the origin of the single-scale, one-step methods. However, the
obtained results were never interpreted as lattice structures since there was no manufacturing process back then that
could fabricate them. Liu et al. [19] extended the moving morphable component method to design functionally-
graded lattice structures. Although it can optimize a lattice structure in a single step, it is highly sensitive to the
initialization. Wu et al. [20] proposed a simple but effective method to produce beak-like lattice structures by
adopting a local volume constraint for SIMP. Following this work, Wu et al. [21] proposed the shell-infill composite
topology optimization method. Traff et al. [22] also proposed a single scale microstructure optimization method by



B. Yi, Y. Zhou, G.H. Yoon et al. / Computer Methods in Applied Mechanics and Engineering 354 (2019) 593—619 595

using a mapping approach. While these work demonstrated that the buckling property can be improved in the
resulting designs, it is not explicitly considered during optimization.

A few papers have reported single-scale, two step methods as the post-processing of the results of
homogenization-based topology optimization. Pantz [37] first macroscopically project the microstructure of the
optimal result from homogenization method to a workable shape. Groen [38] and Grégoire [39] proposed a
projection method and a conformal mapping method, respectively, to optimize the orientations of lattice cells
to improve the material connectivity in the design domain and in turn to improve manufacturability with high-
resolution additive manufacturing processes. However, the post-processing applied to stiffness-optimized structures
often causes large reduction of stiffness.

2.2. Bi-scale methods

The bi-scale, one-step methods couple micro/meso (i.e., lattice cell) scale and macro (i.e., structure) scale
optimizations in a nested optimization framework. Coelho et al. [23] combined SIMP and homogenization method
to optimize both the micro/meso scale material properties and macro scale density. Chen et al. [24] introduced the
moving iso-surface threshold formulation for constructing lattice cells with smooth boundaries, and then optimized
a macro-scale structure by homogenization and SIMP. Wang et al. [25] utilized the non-uniform rational B-spline
(NURB) basis functions in the finite element analysis to improve the computational accuracy and efficiency of one-
step, bi-scale lattice optimization. Wang et al. [26] proposed a parameterized lattice cell to obtain the non-uniform
distribution of lattices by iterative calculation with homogenization and SIMP methods. These methods, however,
can realize limited spatial variation in lattice cells, which are likely to be sub-optimum. In fact, Panesar et al. [27]
showed the structures with graded lattice cells have considerably superior stiffness to the ones with the uniform
lattice cells through the experiments with additively-manufactured samples.

To increase the special variation in lattice cells, Radman et al. [28] utilized inverse homogenization for
parametrically optimizing three types of lattice cells into functionally graded lattice structures. Daynes et al. [29]
optimized the size, aspect ratio and orientation of spatially-varying lattice cells within the SIMP optimized structures
based on the isostatic line calculated by the local principal stresses. Li et al. [30] studied the topological design of
functionally graded cellular composites with both stiffness and auxetic behaviors by the level set method. For the
multi-type cell based optimization, Deng et al. [31] integrated the SIMP at the micro scale and Porous Anisotropic
Material with Penalization at the macroscale into a single equation to design bi-scale structures under random
field loading. Xu et al. [32] proposed a criterion for the selection of micro heterogeneous materials based on the
orientation of the principal stresses. While these methods can realize the lattice cells with high spatial variations,
ensuring the connectivity between the optimized lattice cells, especially between the different types, remained as
an issue.

In an attempt to overcome this connectivity problem, Wang et al. [33] proposed level-set based shape interpolation
of neighboring lattice cells. However, the neighboring cells were constraint to be among a small set of family
cells. Nishi et al. [34] proposed bi-scale plate model for topology optimization with multiple types of lattice cells
that are designed to connect each other. Campagna et al. [35] separated the design domain into subdomains with
solid boundary first, and then filled each domain uniformly with different lattice cells. Du et al. [36] proposed the
physics-independent connectivity index between adjacent microstructures and adopted it as a constraint in bi-scale
level set topology optimization of microstructure. While these work aimed to achieve high spatial lattice variations
with strong cell connectivity, they tend to sacrifice one for another.

The bi-scale, two-step methods first generate a library of various pre-analyzed lattice cells tagged by their
homogenized material properties, and then optimizes a structure by “tiling” the lattice cells in the library that
match the desired distribution of material properties obtained by topology optimization. Takano et al. [42]
constructed a micro-macro correlative database for homogenized properties and employed the genetic algorithm
to optimize the graded microstructure. Liang et al. [43] built an approximate constitutive model for local material
microstructure using a database model and is further used for multiscale structural topology optimization to reduce
the computational cost. Panetta et al. [40] adopted the homogenization method to construct a library connection
the microstructure cell with the Poisson’s ratio and Young’s modulus, and the using a optimization formulation to
get the global structure with predefined requirement. Zhu et al. [41] extended the library by level set field method,
and added the density variable into the library. Then, they adopted the topology optimization method with the
offline library to get global structure. Although two-step optimization can explore a larger number of lattice cells
for optimization than one-step optimization, they also suffer from poor connectivity between neighboring cells.
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2.3. Buckling-constrained topology optimization

Stability or guard against buckling failure is an important performance metric of structures. It is especially true
for lattice structures since they often incorporate slender features that are susceptible to buckling. The structural
optimization with buckling constraint was first proposed by Khot et al. [44]. Neves et al. [45] added buckling load
constraint into topology optimization to improve both the stiffness and stability of the structure. Luo et al. [46]
studied the topology optimization of thin-walled structure with buckling load constraint using a moving iso-surface
threshold. Gao et al. [47] studied the SIMP method with buckling constraints for topology optimization. More
recently, a new method based on the eigenvalue shift and pseudo mode identification is proposed to reduce the
effect of pseudo buckling mode. Dunning et al. [48] proposed the block Jacobi conjugate gradient eigenvalue
method to solve the problems of modal shifts for large scale linear buckling analysis, and integrated it into level
set based topology optimization framework. Cheng et al. [49] employed buckling constraints for bi-scale topology
optimization, where the shape sensitivity of buckling constraints were analyzed in both macro and micro scales.
Zhang et al. [50] adopted the moving morphable component (MMC) method to optimize the distribution of stiffening
ribs on a given base plate with buckling constraint. Wu et al. [51] proposed the multi-material topology optimization
considering both the thermo-mechanical effects and buckling. The results show that the buckling constraints has
large influences on the optimized structures. Thomsen et al. [52] employed both the homogenization theory and
Floquet—Bloch theory to improve the buckling load of microstructure. Ferrari et al. [53] discussed trade-off between
stiffness and buckling requirement in topology optimization and gave recommendations for managing the trade-off.

Despite its importance in lattice structures, previous work in lattice based topology optimization is limited to
addressing buckling as post-optimization verification, without explicit incorporation of buckling constraints within
optimization.

3. Method
3.1. Density field

The definition of the density field follows the conventional SIMP formulation with Helmholtz regularization [54].
Given a fixed design domain D, characteristic function X (x) of material domain D, is defined as:

1 ifxeDgp
Xx)=H X = 1
(x) (¢ (x)) 0 ifxeD\Do ey
where x is a point in the design domain D, ¢: D — [—1, 1] is (un-regularized) density function, and H: R — {0, 1}
is the Heaviside function. To achieve mesh-independency and avoid checkerboard patterns in optimization results,
density function ¢ is regularized by the Helmholtz PDE-filter [54,55]:

PV L= @

where r is the filter radius for smoothing, and ¢ is the smoothed density function. Regularized density field
p: D — {0, 1} is then defined as:

p=H(p) 3)
3.2. Averaging radius field

Functionally-graded lattice infill is realized by a continuously variable field of lattice patterns, generated based on
the infill optimization method proposed by Wu et al. [20]. In their work, fully-connected lattice patterns are achieved
by introducing local volume constraints, which effectively act as setting up many “mini topology optimization”
problems within the neighborhood of each design point. In Wu et al. [20], however, local volume is computed as
the material density integrated over a circular (or spherical in 3D) domain centered at each design point, with a
prescribed constant radius. The proposed method, on the other hand, treats this radius as an additional design field,
in order to realize spatially-variable field of lattice patterns. Since the numerical integration of local density as
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formulated in Wu et al. [20] can be mesh dependent, the proposed method again adopts the Helmholtz PDE-filter
to compute locally smoothed, “average” material density field p;:

292

—R*VPp+p=p “4)

where R is the filter radius for averaging density around a design point. Together with ¢ in Eq. (2), averaging radius
field R is optimized, subject to a constraint on locally averaged density p;:

o< P &)

where P; is the prescribed maximum local density. Since the local density constraint in Eq. (5) needs to be defined
for every design point, the numerical optimization on the discretized design domain would face difficulty due to a
large number of constraints. Alternatively, the constraint can be rewritten as:

max (o) < P, (6)

Since the max operator in Eq. (6) is not differentiable and 0 < p; < 1, it is approximated as p-norm function:

1
(/dﬂﬁlsa @)
D

As p goes to infinity, Eq. (7) becomes equivalent to Eq. (6), but it will increase the numerical instability of the
optimization. In this paper, p = 10 is used.

3.3. Buckling constraints
According to the linear bucking theory for a plane continuum structure [56], the linear buckling load factors can
be calculated by the following equation:
(K+AjK;)v; =0 (8

where K and K, are the global stiffness and geometric matrices, respectively, and A; and v; are the jth buckling
load factor and the corresponding buckling mode vector respectively.
The global stiffness matrix K is assembled from element stiffness matrices k, as:

K = Zke 9)

ke = E ko (10)
ko :/BTB (11)

where Y is the standard finite element assembly operator, E, is the Young’s modulus for each element given by
the SIMP power law:
E, = Epip + ,Om(EO - Emin) (12)

and B is the displacement differentiation matrix.
Similarly, the global geometric matrix K, is assembled from element geometric matrices kg, as [56]:

Ko=) ke (13)
kge =/GTSG (14)
where matrices G and S are defined in 2D as:

G=[M M, Ms; My (15)
dON; N, r
% v 0 0

C— X y -
M, = . . ON, 9N fori =1,2,3,4 (16)

Bx 9y
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where N; (x, y) is element shape functions. To overcome the problem of local modes in void area for linear buckling
analysis, stresses in matrix S in Eq. (15) is calculated by the Young’s modulus E, in Eq. (11) multiplied by the nth
power of element density p:

0 = Eg.Bu (18)
Ege = ane (19)

where u is the displacement vector. If m and n are set as the same value, they will cause instability during
optimization. Hence, in this paper, m = 3 and n = 5 are used.

While the buckling load factors computed by Eq. (8) may have both positive and negative values, their magnitude
represents the level of safety margins against buckling failures. Therefore only A; > 0 is considered for identifying
the most critical bucking mode with the minimum load factor. Hence the bucking constraint is written as:

min A; > A* (20)
jeilri>0
— on
Y

where A* is a prescribed minimum safety margin and ). is the minimum positive buckling load factor of the
equivalent structure obtained by the SIMP method.

3.4. Optimization model

Based on the definitions of design fields and constraints, an optimization model for functionally graded lattice
structure is formulated as follows:

minimize F (u) (22)
(@.R)
subject to: Ku = f
-’V +¢=¢
—R*V’p+p=p
/ podD <V
D

1
P
() <
D

min A; > A*
j€ilki>0
—1<¢<1
Rmin =< R = Rmax
where F (1) is the objective function, f is external force, V is the prescribed maximum total volume, R,,;, and
R4y are the lower and upper bounds for R, respectively. Naturally, R,,;, should be set larger than r. In case of the
minimization of the structure compliance, the object function can be written as:

1
F) = fTu= EuTKu (23)
3.5. Sensitivities
3.5.1. Sensitivities of the Helmholtz PDE-filter

For Egs. (2) and (4), we follow the same sensitivities derivation method of Lazarov and Sigmund [54]. For
example, the finite element discretization of the Helmholtz PDE-filter function in Eq. (2) yields a linear equation
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for unknown values of the filtered field:

Kip =P (24)
K;= Z kye (25)
Py =" Py (26)

where ) is the standard finite element assembly operator and
kfe = f (~VNTr*VN + N'N)dQ, 27
Py = / Ned 2, (28)

The finite element discretization of Eq. (4) is derived in a similar manner. Then, the sensitivities of filtered density
¢ with respect to design variables ¢ and R are given respectively as:

g - {Z/(—VNTr2VN+NTN)dQe}I : {Z/Ndﬁe} 29

05
o (30)

Using the chain rule, the sensitivity of locally-averaged density p; with respect to ¢ can be obtained as:

3 _ dp dp 09

=——=_" €19}
dp  9p 3¢ I

-1
2—’;’ = {Z/ (—VNTRZVN—i—NTN)dQe} -{Z/Ndﬂe} (32)
dp _IH@)
6 0p =8(¢) (33)

Substituting Egs. (31), (32), and (28) into Eq. (30) yields:
o
% {Z/ (~VNTR?VN + NTN) dQ} {Z/Ndﬁ}
{Z/ (~VNTr’VYN + NTN dQ} {Z/Nd()} (34)

Finally, the sensitivity of p; with respect to R is glven as:
I T p2 TN T
3R {Z/ —VN'R*VN+ N'N d() Z 2RVN'VNd(2, (35)

3.5.2. Sensitivities of the objective function and the constraints
In this paper, the compliance of the structure is used as the objective function, for which the sensitivities with
respect to design variables ¢ and R can be calculated using the adjoint method:

OF (u) _ OF ) 9p 9§
o0 op 00

-1

= —m T p" w5 (P) - {Z/(—VNTrZVN+NTN)dQe} -{Z/Ndﬂe} (36)
dF(u) _ 9F(u) op 3¢
9R ~ 3p 9pOR

(37
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The sensitivities of the constraints on the total material volume in Eq. (21) with respect to design variables ¢
and R are given respectively as:

v_avonis_, _UNTRYN £ NTA)aR)
9% = 9 535 3(9) - {Z/(VNrVN+NN)dQe} {Zde(ze} (38)

AV AV ap 9p
D S i A (39)
dR ~ 0p 3¢ IR

The sensitivities of the constraints on the local density in Eq. (21) with respect to design variables ¢ and R are
given respectively as:

OP, 9P dp dp 0¢

—_— = (40)
R0} 0p; 9p 3¢ 0
3P[ 8P1 8,0] (41)
IR 8,01 aR

where
8P, e A=
o = 1 (Zp ) (42)

Substituting Egs. (41), (31), (32), and (28) into Eq. (39) gives:
P =
a_¢l = pr! (Z plm) r. {Z/ (~VNTR*VN + NTN)dQ,
—1
: {Zf(—VNTrZVN—i—NTN)dQe} -{Z/Ndrze (43)

Substituting Egs. (34) and (41) into Eq. (40) gives:
Vi m—1 m T T p2 T
== (Zp, ) -{Z/(—VN RVN + N"N)d£,
. {Z / zszvTvvamg} o (44)

3.5.3. Sensitivities of buckling load factors

The sensitivity of the buckling load is not straightforward to compute. While most papers used the partial
derivative of the geometric matrix with respect to the density field as part of the sensitivities [47,53], it is still
quite complicated to compute the sensitivity of the stress vector with respect to the density field. We therefore
followed the derivation in [57], where adjoint variables are added to constraint equations:

v (K + 1Ko+’ (0 — p"E.Bu) + 0" (B"E,Bu— f)=0 (45)
where p and w are the adjoint variables. Differentiating Eq. (43) with respect to the density field yields:
av; oA 0K, do
2( =) (K +1K, — LKy + A —2 ;s
(3,0)( + )v’+v( +a AR Ryl
a dE,, 8 0E, ]
(22 - gy B BT ) + 0" (BT S Bu+ BTEB—) =0 (46)
ap ap ap ap ap

and rearranging:

0K, ] oK o 0E ]
<)\. T 22 v]+MT>_G+vT—vj+v JKU ]_MT <ﬁBM+EgeB£>

7 Yo ap 7 dp I 9p
7, 7 0E. T ou
+ o' (B"—Bu+B"E,B—)=0 “47)
ap ap
. P . . 30- . .
By choosing adjoint variable p so that the coefficient of 35 1 equal to zero, we get:
oK.
T _ Il %,
W= =i ==, (48)
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w |

Design Domain h

f

Fig. 1. Design domain and boundary condition for the cantilever beam example.

Substituting Eq. (47) to Eq. (46) and similarly choosing adjoint variable @ so that the coefficient of g—z is equal
to zero, we get:

o' =(u"E,BYBTE,B)! (49)

The sensitivity for buckling load factor A; with respect to the density field is then obtained by Egs. (45), (47)

and (48):
T 9K T 9Ege T pT JE,
%__ngvj—u 3—§Bu+a)B WBM 50
ap vaKavj

Finally, combining Egs. (29), (30), (33), and (49), the sensitivity for buckling with respect to design variables ¢
and R can be obtained as:

ar;  9h; dp g B va%vj —MT%Bd+wTBT%Bd
a¢

-1
. _ T2 T
9 9596 TKou 8 (o) [} /( VN'r*VN + N N)d(?g]

. [Zf Nd©, (51)

dr;  0A; dp O
0rj _ 9% 9p 09 _ (52)

oR ap 9¢ OR
In case there are multiple minimum eigenvalues occurred during optimization, the strategies proposed by
Gravesen et al. [58] is adopted. If the computation resource is sufficient, buckling constraints based on the

aggregation functions by Ferrari et al. [53] can also be used.

4. Examples

This section presents numerical examples for demonstrating the proposed method. Section 4.1 discusses examples
on a cantilever beam and a MBB beam, for examining the effect of variable radius R for local density averaging
without buckling constraints on the optimized structures. Section 4.2 discusses examples on the same cantilever and
a column-like structure under distributed loads, for examining the effect of buckling constraints on the optimized
structures. In all examples, MATLAB and COMSOL Multiphysics are used to model the problem, and the MMA
optimization solver [59] is adopted to solve the optimization problem.

4.1. Functionally-graded lattice structures without buckling constraints

The first example is a cantilever beam. The design domain in Fig. | is defined as a rectangle area of unit thickness
with width w = 2 and height 7 = 1 fixed at the left side. A concentrated load f = 1 is applied at the lower right
vertex of the rectangle. The design domain is discretized into 200 x 100 equally-sized square four-node element
with Young’s modulus £ = 1 and Poisson’s ratio v = 0.3. The filter radius r is set as the element size, and V = 0.5
and P, = 0.6 are used.

Fig. 2 shows the snapshots for the convergence history of functionally-graded lattice patterns at different iterations
during optimization. The density field is initialized uniformly with 0.5 over the entire design domain. The bounds
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@ (b)

(© (d)

(e) (H

Fig. 2. Iteration details for r < R < 20r without buckling constraints. (a) initialization, (b) iteration 10, (c) iteration 20, (d) iteration 40,
(e) iteration 80, and (f) iteration 150.

for averaging radius R are set as R,,;, = r and R,,, = 20r. The result at iteration 200 is shown in Fig. 3(b), and
the result for SIMP with the same initialization, at the same number of iterations, maximum total volume, and filter
radius are shown in Fig. 3(a). Local density p; and averaging radius R after optimization are shown in Figs. 3(c)
and 3(d), respectively. It can be seen in Fig. 3(c) that most of the local density is smaller than P; = 0.6. Compared
to the SIMP result, the proposed method can produce solid near the periphery of the structure where stiffness is
needed, and functionally-graded lattice in the middle of the structure where stability against buckling is desired
(although buckling constraints are not included in this example). The compliance of the result in Fig. 3(b) is 0.1858
(it is a normalized compliance, which is the compliance of current iterations divided by that of the first iteration),
only slightly worse than 0.1847 for the SIMP result in Fig. 3(a).

The convergence history of the optimization process is plotted in Fig. 4. The normalized compliance (red line)
starts at 1.0, decreases rapidly to approximately 0.2 within 40 iterations. It converges approximately at 80 iterations
and remains stable afterwards. The total volume (green line) starts at 0.5 as initialized and stays there after a few
iterations of oscillation. The local density (black line) starts at 0.5 and converge rapidly to 0.6 within 20 iterations.

To examine the benefit of functionally-graded lattice over the constant lattice, the optimization results with
variable and constant averaging radius are compared. Table 2 shows the normalized compliance values of the tested
results with various values (for constant lattice) and ranges (for functionally-graded lattice) of averaging radius R,
and Fig. 5 shows the corresponding optimal structures for each case in Table 2. The normalized compliance values of
the functionally-graded lattice structures are better than the constant lattice for each comparison case. It is expected
since the optimization problem with variable R (functionally-graded lattice) is a relaxation of the optimization
problem with constant R (constant lattice). It is also observed that the normalized compliance values improve as
the value (for constant lattice) and range (for functionally-graded lattice) of R becomes larger. In particular, the
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©

Fig. 3. Comparison of SIMP and the proposed method with r < R < 20r without buckling constraints after 200 iterations; (a) SIMP,
(b) functionally-graded lattice, (c) local density p;, and (d) averaging radius R.
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Fig. 4. Convergence history for » < R < 20r, without buckling constraints . (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

normalized compliance values for the case with r < R < 60r is almost the same as the one for SIMP (0.1847),
although the resulting structures look quite different.

The second example is the MBB beam. The design domain in Fig. 6 is defined as a rectangle area of unit thickness
with width w = 3 and height 4 = 1, simply-supported at the bottom corners. A concentrated load f = 1 is applied
at the middle of the upper side of the rectangle. The design domain is discretized into 300 x 100 equally-sized
square four-node element with Young’s modulus £ = 1 and Poisson’s ratio v = 0.3. The filter radius r is set as
the element size, and V = 0.5 and P, = 0.6 are used.
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Fig. 5. Comparisons of constant lattice and functionally-graded lattice cantilever beams without buckling constraints; (a) R = 5r, (b)
r<R<5r,(c) R=10r,(d) r <R=<10r, () R=20r, (f) r <R <20r, (g) R=30r, (h) r < R <30r, (i) R=40r, j) r < R < 40r,
(k) R =060r, and (I) r < R < 60r.
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Table 2
Comparisons of constant lattice and functionally-graded lattice cantilever beams
without buckling constraints.

Constant lattice Compliance Functionally-graded lattice Compliance
R =5r 0.2299 r <R <5r 0.2097
R = 10r 0.2167 r <R < 10r 0.2045
R = 20r 0.2015 r <R <20r 0.1858
R = 30r 0.1902 r <R < 30r 0.1857
R = 40r 0.1901 r < R < 40r 0.1856
R = 60r 0.1895 r <R < 60r 0.1853

| f

Design
h domain

\\4

Fig. 6. Design domain and boundary condition for MBB problem.

Fig. 7 shows the optimized structures with various values (for constant lattice) and ranges (for functionally-graded
lattice) of averaging radius R. The normalized compliance values of the functionally-graded lattice structures are
again better than the constant lattice structures, with more significant improvement than the cantilever example.
Similarly, it is also observed that the normalized compliance values improve as the value (for constant lattice) and
range (for functionally-graded lattice) of R becomes larger. It should be noted that in this particular example, all
functionally-graded lattice structures in Fig. 7, except for the one with » < R < 5r, achieved smaller normalized
compliance values than the one for SIMP. While mathematically it should not be the case (since the SIMP is
a relaxation of the optimization problem with variable R), an additional constraint on the average local density
could have helped rearranging the material appropriately during optimization to improve the compliance at the
convergence.

4.2. Functionally-graded lattice structures with buckling constraints

Firstly, the cantilever beam example in Section 4.1. is further examined in terms of the stability against buckling.
Fig. 8 shows the buckling modes (scaling factor = 0.005) and the minimum (normalized) buckling load factor A
defined in Eq. (2) for each of the structures in Fig. 5 (except for R = 60r, which is practically identical to SIMP)
and SIMP in Fig. 3. As a baseline for comparison, Fig. 8(k) shows the buckling mode for SIMP, which has the
minimum (normalized) buckling load factor equals to 1. The local buckling is observed at the long thin bar at the
bottom right which is under compression. It can be seen that, for both constant lattices and functionally-graded
lattices, averaging radius R larger than 107 shows almost no influence on the structural stability. In particular, the
structural stability of functionally-graded lattices is consistently lower than that of constant lattices and SIMP. This
suggests the functionally-graded lattices require the explicit inclusion of the buckling constraints in order to take
full advantage of the relaxed design space, which is attempted below.

Secondly, the cantilever example with » < R < 30r is solved with the buckling constraints with 1* = 2.60, in
order to examine the improvement of the structural stability over the cases without them. The adaptive threshold
for Heaviside function are used and set as 0.75, 0.6, 0.45, and 0.3 for iterations of 1-50, 50-150, 150-300, and
300-600 iterations, respectively. Fig. 9 shows the snapshots of the evolution of the structure during optimization.
Compared to the snapshots of optimization in Fig. 2 for the same example without the buckling constraints, this
case required far more iterations for convergence. It can also be seen that the structure evolves first by solidifying
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Fig. 7. Comparisons of constant lattice and functionally-graded lattice MBB beams without buckling constraints; (a) R = 5r (c = 0.2254),
(b) r < R < 5r(c = 02054), (¢c) R = 10r(c = 0.2115), d r < R < 10r(c = 0.1903), (e) R 20r (c 0.1961),
) r < R < 20r(c = 0.1812), (g9 R = 30r(c = 0.1922), (h) r < R < 30r(c = 0.1798), (i) R 40r (c 0.1908),
() r <R <40r (¢ =0.1797), (k) SIMP (c = 0.1913), and (1) r < R < 60r (c = 0.1791).

its periphery while leaving grays inside, and then by turning the grays to a functionally-graded lattice pattern. The
optimized result at the convergence exhibits long thick members transversely supported by short thin members along
their length, which would contribute to higher structural stability without sacrificing stiffness.

The convergence history of the optimization process is plotted in Fig. 10. The normalized compliance (red line)
decreases rapidly within 100 iterations while the solid material is being formed at the periphery. Then, it keeps
decreasing slowly until approximately 500 iterations. The normalized compliance of the optimized structure is
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Fig. 8. Comparison of buckling mode of some structures in Fig. 5 and SIMP; (a) R = 5r, A = 0.3902, b)) r <R <5r, 2 = 0.1336,
() R=10r, » =1.1432, (d) r < R < 10r, 1 = 0.8299, (e) R = 20r, A = 1.1080, (f) r < R < 20r, » = 0.8097, (g) R = 30r, A = 1.0423,
(h) r < R <30r, A =0.7724, (i) R = 40r, A = 1.0174, (j) r < R < 40r, A = 0.8699, (k) SIMP, A =1, and (1) r < R < 60r, A = 0.8195.
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Fig. 9. Iteration details for r < R < 30r with buckling constraints (A\* = 2.60); (a) initialization, (b) iteration 10, (c) iteration 20,
(d) iteration 40, (e) iteration 80, (f) iteration 150, (g) iteration 300, and (h) iteration 600.

0.1872, which is very close to the one without buckling constraint, 0.1857 in Table 2. The slow convergence is
due to the exploration of the lattice patterns that balance stiffness and stability, as observed in the oscillations of
buckling constraint (blue line) which eventually converges to 2.6 at around 500 iterations. The total volume (green
line) starts at 0.5 as initialized and stays there with almost no oscillation. The local density (black line) starts at 0.5
and converge rapidly to 0.6 within 20 iterations.

Figs. 11-14 show the optimized structures with »r < R < 20r and different levels of stability margins,
A" = 1.8,2.6,3.7, 5.0, respectively. In subfigures (b), the scaling factor is set as 0.005. In subfigures (c), tensile
stresses are shown in red and compressive stress are shown in blue, with the scale ratio for the magnitude of the
tension and compression being 0.004. The buckling constraints are satisfied for the cases with A* = 1.8,2.6, 3.7
(Figs. 11-13) and slightly violated (4.57) for the case with A* = 5.0 (Fig. 14).

It can be seen in subfigures (a) that the optimized structures exhibit more lattices as the safety margin A*increases,
while consistently achieving the comparable compliance to the cases without buckling constraints in Fig. 5, and
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Fig. 10. Convergence history for » < R < 30r with buckling constraints (A* = 2.60) . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 11. Functionally-graded lattice cantilever beams with r < R < 20r and A* = 1.8: (a) Optimized structure (compliance = 0.1858),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

very close to SIMP. The principal stresses in subfigures (b) confirm the observation for the result in Fig. 9: the
long thick members under compression (blue) are transversely supported by short thin members along their length,
which are primarily under tension. As the level of stability margin increases, a larger number of short thin members
(i.e., more lattices) are added, in order to further reduce the risk of local buckling. Subfigures (d) indeed indicate
the optimized structures utilize smaller averaging radius that would create more lattices, as the level of stability
margin increases.
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Fig. 12. Functionally-graded lattice cantilever beams with r < R < 20r and A* = 2.6: (a) Optimized structure (compliance = 0.1874),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 13. Functionally-graded lattice cantilever beams with r < R < 20r and A* = 3.7: (a) Optimized structure (compliance = 0.1875),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Figs. 15-18 show the optimized structures with r < R < 30r and different levels of stability margins,
A* = 1.8,2.6,3.7,5.0, respectively. The overall trend is similar to the results with r < R < 20r, except that
thicker members are observed in the optimized structure due to the larger R,,,,. The buckling constraints are again
satisfied for the cases with A* = 1.8, 2.6, 3.7 (Figs. 15-17) and slightly violated (4.61) for the case with A* = 5.0
(Fig. 18). It is observed that there is clear correlation between the distribution of structural members and of R
with large stability margin A* (Fig. 18), whereas no clear correlation exists with smaller A* (Figs. 15-17). This
would be because when the stability margin is large (so it is almost unsatisfiable), the member sizes are primarily
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Fig. 14. Functionally-graded lattice cantilever beams with r < R < 20r and A* = 5.0: (a) Optimized structure (compliance = 0.1928),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 15. Functionally-graded lattice cantilever beams with r < R < 30r and A* = 1.8: (a) Optimized structure (compliance = 0.1857),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.

controlled by R to prevent buckling. It is also observed that the optimized structures exhibit many intersections
of thick members and slender members. Since both R and density field ¢ (followed with filter radius r to control
the minimum length scale) are the design variables, the optimizer could effectively generate such intersections by
varying both the radius R in neighborhood and the feature size.

Another example for the illustration of functionally-graded lattice optimization with buckling constraints is shown
in Fig. 19. It is a classic column structure with fixed constraint at the bottom and under distributed loads on the
top. The design domain is a rectangle area of unit thickness with height w = 1 and A = 2. The distributed load
d = IN/m is applied to the middle of top line with + = 0.96. The design domain is discretized into 100 x 200
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Fig. 16. Functionally-graded lattice cantilever beams with r < R < 30r and A* = 2.6: (a) Optimized structure (compliance = 0.1871),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.

Fig. 17. Functionally-graded lattice cantilever beams with r < R < 30r and A* = 3.7: (a) Optimized structure (compliance = 0.1872),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.

equally-sized square four-node element with Young’s modulus E = 1 and Poisson’s ratio v = 0.3. The filter radius
r is set as the element size, and V = 0.5 and P, = 0.6 are used.

The column structure is first optimized without the buckling constraints. Fig. 20 shows the buckling modes
(scaling factor = 0.005) and the minimum (normalized) buckling load factor A defined in Eq. (20) for the optimized
SIMP (Fig. 20(a)) and functionally-graded lattice structures with r < R < 10r (Fig. 20(b)) and r < R < 30r
(Fig. 20(c)). Similarly to the cantilever example, a larger R,,,, (= 30r) produces a structure very similar to the
one for SIMP with almost the equal compliance. The thin horizontal member that connects the two thick columns
appears to improve the structural stability than SIMP, indicated by A = 1.15. Such co-existence of very thick and
very thin members would be very difficult to achieve with a prescribed constant averaging radius R. On the other
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(d)

Fig. 18. Functionally-graded lattice cantilever beams with r < R < 30r and A* = 5.0: (a) Optimized structure (compliance = 0.1925),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.
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Fig. 19. Design domain and boundary condition for the column structure example.

hand, that the stability of the structure with R,,, = 10r is worse than the one with R,,,, = 30r. Since the members
in this structure is primarily under compression, there is a little advantage of enforcing small lattice patterns by a
smaller R,,,, for stability improvement, without explicit inclusion of the buckling constraints.

Figs. 21-24 show the optimized structures with r < R < 10r and different levels of stability margins,
A" = 1.8,2.6,3.7,5.0, respectively. In subfigures (b), the scaling factor is set as 0.005. In subfigures (c), tensile
stresses are shown in red and compressive stress are shown in blue, with the scale ratio for the magnitude of the
tension and compression being 0.01. The buckling constraints are satisfied for the cases with A* = 1.8,2.6,3.7
(Figs. 21-23) and slightly violated (4.86) for the case with A* = 5.0 (Fig. 24).

It can be seen in subfigures (a) that the optimized structures exhibit more lattices, especially the thick cross
members that connect the vertical columns, as the safety margin A*increases. And they do so with little compromise
in compliance (e.g., approximately 10% of SIMP for A* = 5.0). The principal stress in subfigures (b) confirms
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Fig. 20. Optimize structure for SIMP and Variable infill; (a) SIMP, left: optimize structure ¢ = 0.267, right: buckling mode = 1.0,
(b) variable infill (r < R < 10r), left: optimize structure ¢ = 0.272, right: buckling mode A =0.59, (c) Variable infill (r < R < 30r), left:
optimize structure ¢ = 0.269, right: buckling mode A = 1.15.

the vertical columns are under compression, whose stability against local buckling would improve with the cross
members connecting them along their length. Similar to the cantilever example, subfigures (d) indicates the
optimized structures utilize smaller averaging radius that would create more lattices as the level of stability margin
increases, with a clear correlation between the member sizes and the averaging radius.

Figs. 25-28 show the optimized structures with » < R < 30r and different levels of stability margins,
A*=1.8,2.6,3.7,5.0, respectively. The buckling constraints are again satisfied for the cases with A* = 1.8, 2.6, 3.7
(Figs. 25-27) and slightly violated (4.92) for the case with A* = 5.0 (Fig. 28). The optimized structures are overall
similar to the one by SIMP with thick columns (thanks to the larger R,,,.), except for the ,* = 5.0 case where the
optimizer could not satisfy the buckling constraint even with 10% compromise in compliance.
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Fig. 21. Functionally-graded lattice column structure with r < R < 10r and A* = 1.8: (a) Optimized structure (compliance = 0.271),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 22. Functionally-graded lattice column structure with r < R < 10r and A* = 2.6: (a) Optimized structure (compliance = 0.275),

(b) (©)
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 23. Functionally-graded lattice column structure with r < R < 10r and A* = 3.7: (a) Optimized structure (compliance = 0.286),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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D

Fig. 24. Functionally-graded lattice column structure with » < R < 10r and A* = 5.0: (a) Optimized structure (compliance = 0.298),
(b) buckling mode, (c) principal stress, and (d) averaging radius R . (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

(a) (b)

Fig. 25. Functionally-graded lattice column structure with » < R < 30r and A* = 1.8: (a) Optimized structure (compliance = 0.274),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.
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Fig. 26. Functionally-graded lattice column structure with » < R < 30r and A* = 2.6: (a) Optimized structure (compliance = 0.277),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.
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5. Conclusion

This paper presented a topology optimization method for structures with functionally-graded lattices with
buckling constraints, which minimizes compliance while ensuring a prescribed level of structural stability against
buckling failures. To realize topologically-optimized structures filled with functionally-graded lattices, Helmholtz
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Fig. 27. Functionally-graded lattice column structure with r < R < 30r and A* = 3.7: (a) Optimized structure (compliance = 0.278),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.
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Fig. 28. Functionally-graded lattice column structure with r < R < 30r and A* = 5.0: (a) Optimized structure (compliance = 0.294),
(b) buckling mode, (c) principal stress, and (d) averaging radius R.
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PDE-filter with a variable radius is applied on the density field in Solid Isotropic Material with Penalization
(SIMP) method. Buckling load factors based on the linear buckling analysis is employed as buckling constraints.
Numerical examples show that proposed method can generate stiff structures comparable to the ones by the SIMP,
with smoothly connected, functionally-graded lattices that improve the structural stability by avoiding long, slender
features under compression.

As with most topology optimization schemes, the proposed method is prone to get trapped in local minima as
evidenced by asymmetric designs and apparent drop-outs or misalignments of secondary lattice members. Overall,
however, the reported results appear to suffer from this problem less than many others, as they exhibit compliance
values comparable to equivalent structures obtained by the SIMP method.

The paper presented only 2D examples. While the proposed formulation is not limited to 2D, the large
computational cost of buckling analysis remains as a challenge for 3D extension. Also, the paper considered only
the linear buckling analysis. The incorporation of nonlinear buckling and post-buckling are also left as the future
work.

Acknowledgments

This work has been conducted during the first and third authors’ visit at the University of Michigan for their
sabbatical. The financial supports were provided by National Natural Science Foundation of China under Grant No.
51605495, Natural Science Foundation of Hunan Province, China under Grant No. 2018JJ3663, and International
Postdoctoral Exchange Fellowship, China Program Grant NO. 2017[59] for the first author. These sources of
supports are gratefully acknowledged.



618

B. Yi, Y. Zhou, G.H. Yoon et al. / Computer Methods in Applied Mechanics and Engineering 354 (2019) 593—619

References

[1]
[2]
[3]
(4]
[3]

[6]
(7]

(8]

[9]
[10]
[11]
[12]
[13]
[14]

[15]
[16]

[17]

[18]
[19]

[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]

[32]

X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M. Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev,
N.X. Fang, C.M. Spadaccini, Ltralight, ultrastiff mechanical metamaterials, Science 344 (6190) (2014) 1373-1377.

D. Fujii, B.C. Chen, N. Kikuchi, Composite material design of two-dimensional structures using the homogenization design method,
Internat. J. Numer. Methods Engrg. 50 (9) (2001) 2031-2051.

D. Jang, L.R. Meza, F. Greer, J.R. Greer, Fabrication and deformation of three-dimensional hollow ceramic nanostructures, Nature
Mater. 12 (10) (2013) 893-898.

J.H. Lee, L. Wang, S. Kooi, M.C. Boyce, E.L. Thomas, Enhanced energy dissipation in periodic epoxy nanoframes, Nano Lett. 10
(7) (2010) 2592-2597.

A.G. Evans, M.Y. He, V.S. Deshpande, J.W. Deshpande, A.J. Hutchinson, W.B. Jacobsen, Carter, Concepts for enhanced energy
absorption using hollow micro-lattices, Int. J. Impact Eng. 37 (9) (2010) 947-959.

R. Lakes, Foam structures with a negative Poisson’s ratio, Science 235 (4792) (1987) 1038-1040.

E. Andreassen, B.S. Lazarov, O. Sigmund, Design of manufacturable 3D extremal elastic microstructure, Mech. Mater. 69 (1) (2014)
1-10.

A. Clausen, F. Wang, J.S. Jensen, O. Sigmund, J.A. Lewis, Topology optimized architectures with programmable Poisson’s ratio over
large deformations, Adv. Mater. 27 (37) (2015) 5523-5527.

O. Sardan, D.H. Petersen, K. Mglhave, O. Sigmund, P. Boggild, Topology optimized electrothermal polysilicon microgrippers,
Microelectron. Eng. 85 (5-6) (2008) 1096-1099.

A. Takezawa, M. Kobashi, M. Kitamura, Porous composite with negative thermal expansion obtained by photopolymer additive
manufacturing, APL Mater. 3 (7) (2015) 076103.

Y. Li, Y. Chen, T. Li, S. Cao, L. Wang, Hoberman-sphere-inspired lattice metamaterials with tunable negative thermal expansion,
Compos. Struct. 189 (2018) 586-597.

G.H. Yoon, J.S. Jensen, O. Sigmund, Topology optimization of acoustic—structure interaction problems using a mixed finite element
formulation, Internat. J. Numer. Methods Engrg. 70 (9) (2007) 1049-1075.

F. Chevillotte, C. Perrot, Effect of the three-dimensional microstructure on the sound absorption of foams: A parametric study, J.
Acoust. Soc. Am. 142 (2) (2017) 1130-1140.

Y. Noguchi, T. Yamada, K. Izui, S. Nishiwaki, Topology optimization for hyperbolic acoustic metamaterials using a high-frequency
homogenization method, Comput. Methods Appl. Mech. Eng. 335 (2018) 419-471.

T.A. Schaedler, W.B. Carter, Architected cellular materials, Annu. Rev. Mater. Res. 46 (1) (2016) 187-210.

G. Dong, Y. Tang, Y. Zhao, A survey of modeling of lattice structures fabricated by additive manufacturing, J. Mech. Des. 139 (10)
(2017) 100906-1-13.

M.P. Bendsoe, N. Kikuchi, Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl.
Mech. Eng. 71 (2) (1988) 197-224.

M.P. Bendsoe, O. Sigmund, Material interpolation schemes in topology optimization, Arch. Appl. Mech. 69 (9-10) (1999) 635-654.
C. Liu, Z. Du, W. Zhang, Y. Zhu, X. Guo, Additive manufacturing oriented design of graded lattice structures through explicit topology
optimization, J. Appl. Mech. 84 (8) (2017) 081008-1-12.

J. Wu, N. Aage, R. Westermann, O. Sigmund, Infill optimization for additive manufacturing - approaching bone-like porous structures,
IEEE Trans. Vis. Comput. Graphics 24 (2) (2016) 1127-1140.

J. Wu, A. Clausen, O. Sigmund, Minimum compliance topology optimization of shell-infill composites for additive manufacturing,
Comput. Methods Appl. Mech. Engrg. 326 (2017) 358-375.

E. Triff, O. Sigmund, J. Groen, Simple single-scale microstructures based on optimal rank-3 laminates, 2018, ArXiv preprint, arXiv:
1809.03942.

P.G. Coelho, J.B. Cardoso, PR. Fernandes, H.C. Rodrigues, Parallel computing techniques applied to the simultaneous design of
structure and material, Adv. Eng. Softw. 42 (5) (2011) 219-227.

W. Chen, L. Tong, S. Liu, Concurrent topology design of structure and material using a two-scale topology optimization, Comput.
Struct. 178 (2017) 119-128.

Y. Wang, H. Xu, D. Pasini, Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Engrg.
316 (2017) 568-585.

W. Chuang, Z.J. Hong, Z.W. Hong, S. Ying, K. Jie, Concurrent topology optimization design of structures and non-uniform
parameterized lattice microstructures, Struct. Multidiscip. Optim. 58 (1) (2018) 35-50.

A. Panesar, M. Abdi, D. Hickman, I. Ashcroft, Strategies for functionally graded lattice structures derived using topology optimisation
for additive manufacturing, Additive Manuf. 19 (2018) 81-94.

A. Radman, X. Huang, Y.M. Xie, Topology optimization of functionally graded cellular materials, J. Mater. Sci. 48 (4) (2013)
1503-1510.

S. Daynes, S. Feih, W.F. Lu, J. Wei, Optimisation of functionally graded lattice structures using isostatic lines, Mater. Des. 127 (2017)
215-223.

H. Li, Z. Luo, L. Gao, P. Walker, Topology optimization for functionally graded cellular composites with metamaterials by level sets,
Comput. Methods Appl. Mech. Engrg. 328 (2017) 340-364.

J. Deng, W. Chen, Concurrent topology optimization of multiscale structures with multiple porous materials under random field loading
uncertainty, Struct. Multidiscip. Optim. 56 (1) (2017) 1-19.

L. Xu, G. Cheng, Two-scale concurrent topology optimization with multiple micro materials based on principal stress orientation,
Struct. Multidiscip. Optim. 57 (5) (2018) 2093-2107.


http://refhub.elsevier.com/S0045-7825(19)30337-8/sb1
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb1
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb1
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb2
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb2
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb2
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb3
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb3
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb3
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb4
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb4
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb4
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb5
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb5
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb5
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb6
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb7
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb7
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb7
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb8
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb8
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb8
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb9
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb9
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb9
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb10
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb10
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb10
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb11
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb11
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb11
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb12
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb12
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb12
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb13
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb13
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb13
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb14
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb14
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb14
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb15
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb16
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb16
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb16
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb17
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb17
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb17
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb18
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb19
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb19
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb19
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb20
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb20
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb20
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb21
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb21
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb21
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://arxiv.org/abs/1809.03942
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb23
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb23
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb23
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb24
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb24
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb24
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb25
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb25
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb25
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb26
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb26
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb26
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb27
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb27
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb27
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb28
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb28
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb28
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb29
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb29
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb29
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb30
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb30
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb30
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb31
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb31
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb31
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb32
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb32
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb32

[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]
[43]
[44]
[45]
[46]

[47]
[48]

[49]
[50]
[51]
[52]

[53]
[54]

[55]
[56]
[571

[58]
[59]

B. Yi, Y. Zhou, G.H. Yoon et al. / Computer Methods in Applied Mechanics and Engineering 354 (2019) 593-619 619

Y. Wang, F. Chen, M.Y. Wang, Concurrent design with connectable graded microstructures, Comput. Methods Appl. Mech. Engrg. 317
(2017) 84-101.

S. Nishi, K. Terada, J. Kato, S. Nishiwaki, K. Izui, Two-scale topology optimization for composite plates with in-plane periodicity,
Internat. J. Numer. Methods Engrg. 113 (8) (2017) 1164-1188.

F. Campagna, A.R. Diaz, Optimization of lattice infill distribution in additive manufacturing, Int. Design Eng. Tech. Conf. Comput.
Inform. Eng. Conf. (2A) (2017) VO2AT03A028.

Z. Du, H.A. Kim, Multiscale design considering microstructure connectivity, in: 2018 AIAA/ASCE/AHS/ASC Structures, Structural
Dynamics, and Materials Conference, 2018, pp. 1385.

O. Pantz, K. Trabelsi, A post-treatment of the homogenization method for shape optimization, SIAM J. Control Optim. 47 (3) (2008)
1380-1398.

J.P. Groen, O. Sigmund, Homogenization-based topology optimization for high-resolution manufacturable microstructures, Internat. J.
Numer. Methods Engrg. 113 (8) (2017) 1148-1163.

G. Allaire, P. Geoffroy-Donders, O. Pantz, Topology Optimization of Modulated and Oriented Periodic Microstructures By the
Homogenization Method, 2018,.

J. Panetta, Q. Zhou, L. Malomo, N. Pietroni, P. Cignoni, D. Zorin, Elastic textures for additive fabrication, ACM Trans. Graph. 34
(4) (2015) 135:1-135:12.

B. Zhu, M. Skouras, D. Chen, W. Matusik, Two-scale topology optimization with microstructures, ACM Trans. Graph. 36 (5) (2017)
164.

N. Takano, M. Zako, Integrated design of graded microstructures of heterogeneous materials, Arch. Appl. Mech. 70 (8-9) (2000)
585-596.

L. Xia, P. Breitkopf, Multiscale structural topology optimization with an approximate constitutive model for local material microstructure,
Comput. Methods Appl. Mech. Engrg. 286 (2015) 147-167.

N.S. Khot, V.B. Venkayya, L. Berke, Optimum structural design with stability constraints, Internat. J. Numer. Methods Engrg. 10 (5)
(1976) 1097-1114.

M.M. Neves, H.C. Rodrigues, J.M. Guedes, Generalized topology design of structures with a buckling load criterion, Struct. Optim.
10 (2) (1995) 71-78.

Q. Luo, L. Tong, Structural topology optimization for maximum linear buckling loads by using a moving iso-surface threshold method,
Struct. Multidiscip. Optim. 52 (1) (2015) 71-90.

X. Gao, H. Ma, Topology optimization of continuum structures under buckling constraints, Comput. Struct. 157 (2015) 142-152.
P.D. Dunning, E. Ovtchinnikov, J. Scott, H.A. Kim, Level-set topology optimization with many linear buckling constraints using an
efficient and robust eigensolver, Internat. J. Numer. Methods Engrg. 107 (12) (2016) 1029-1053.

G. Cheng, L. Xu, Two-scale topology design optimization of stiffened or porous plate subject to out-of-plane buckling constraint,
Struct. Multidiscip. Optim. 54 (5) (2016) 1283-1296.

W. Zhang, Y. Liu, Z. Du, Y. Zhu, X. Guo, A moving morphable component (MMC)-based topology optimization approach for
rib-stiffened structures considering buckling constraints, J. Mech. Des. 140 (11) (2018) 111404-111404-12.

C. Wu, J. Fang, Q. Li, Multi-material topology optimization for thermal buckling criteria, Comput. Methods Appl. Mech. Engrg. 346
(2019) 1136-1155.

C.R. Thomsen, F. Wang, O. Sigmund, Buckling strength topology optimization of 2d periodic materials based on linearized bifurcation
analysis, Comput. Methods Appl. Mech. Eng. 339 (2018) 115-136.

F. Ferrari, O. Sigmund, Revisiting topology optimization with buckling constraints, 2018, ArXiv preprint, arXiv:1809.05300.

B.S. Lazarov, O. Sigmund, Filters in topology optimization based on Helmholtz-type differential equations, Internat. J. Numer. Methods
Engrg. 86 (6) (2011) 765-781.

A. Kawamoto, T. Matsumori, S. Yamasaki, T. Nomura, T. Kondoh, S. Nishiwaki, Heaviside projection based topology optimization by
a PDE-filtered scalar function, Struct. Multidiscip. Optim. 44 (1) (2011) 19-24.

R. De Borst, M.A. Crisfield, J.J. Remmers, C.V. Verhoosel, Nonlinear Finite Element Analysis of Solids and Structures, second ed.,
John Wiley & Sons, 2012.

H.C. Rodrigues, J.M. Guedes, M.P. Bendsoe, Necessary conditions for optimal design of structures with a nonsmooth eigenvalue based
criterion, Struct. Optim. 9 (1) (1995) 52-56.

J. Gravesen, A. Evgrafov, D.M. Nguyen, On the sensitivities of multiple eigenvalues, Struct. Multidiscip. Optim. 44 (4) (2011) 583-587.
K. Svanberg, The method of moving asymptotes - A new method for structural optimization, Internat. J. Numer. Methods Engrg. 24
(2) (1987) 359-373.


http://refhub.elsevier.com/S0045-7825(19)30337-8/sb33
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb33
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb33
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb34
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb34
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb34
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb35
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb35
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb35
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb37
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb37
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb37
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb38
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb38
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb38
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb40
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb40
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb40
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb41
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb41
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb41
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb42
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb42
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb42
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb43
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb43
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb43
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb44
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb44
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb44
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb45
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb45
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb45
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb46
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb46
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb46
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb47
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb48
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb48
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb48
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb49
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb49
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb49
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb50
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb50
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb50
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb51
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb51
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb51
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb52
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb52
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb52
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://arxiv.org/abs/1809.05300
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb54
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb54
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb54
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb55
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb55
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb55
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb56
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb56
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb56
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb57
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb57
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb57
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb58
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb59
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb59
http://refhub.elsevier.com/S0045-7825(19)30337-8/sb59

	Topology optimization of functionally-graded lattice structures with buckling constraints
	Introduction
	Literature review
	Single-scale methods
	Bi-scale methods
	Buckling-constrained topology optimization

	Method
	Density field
	Averaging radius field
	Buckling constraints
	Optimization model
	Sensitivities
	Sensitivities of the Helmholtz PDE-filter
	Sensitivities of the objective function and the constraints
	Sensitivities of buckling load factors


	Examples
	Functionally-graded lattice structures without buckling constraints
	Functionally-graded lattice structures with buckling constraints

	Conclusion
	Acknowledgments
	References


