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ABSTRACT

Topology optimization is one of the engineering tools for finding efficient design. For the material inter-
polation scheme, it is usual to employ the SIMP (Solid Isotropic Material with Penalization) or the homog-
enization based interpolation function for the parameterization of the material properties with respect to
the design variables assigned to each finite element. For topology optimization with single material
design, i.e., solid or void, the parameterization with 1 for solid and 0 for void becomes relatively straight
forward using a polynomial function. For the case of multiple materials, some issues of the equality mod-
eling of each material and the clear 0, 1 result of each element for the topology optimization issues
become serious because of the curse of the dimension. To relieve these issues, this research proposes a
new mapping based interpolation function for multi-material topology optimization. Unlike the polyno-
mial based interpolation, this new interpolation is formulated by the ratio of the p-norm of the design
variables to the 1-norm of the design variable multiplied by the design variable for a specific material.
With this alternative mapping based interpolation function, each material are equally modeled and the
clear 0, 1 result of each material for the multi-material topology optimization model can be improved.
This paper solves several topology optimization problems to prove the validity of the present interpola-

tion function.

© 2023 Elsevier Ltd. All rights reserved.

1. Introduction

Often components, modules and systems are usually made with
multiple materials and multiple components. Different compo-
nents manufactured for structures or products are assembled
together rather than one single manufacturing process. Recently
the development of 3D printing or additive manufacturing technol-
ogy even makes it enable to manufacture components with multi-
materials in a single machine without assembling [41,21,3]. As the
performance can be significantly affected by the locations of mul-
tiple materials, it is important to optimize the distributions of
multi-materials and the topology layout of multiple materials.

Topology optimization is one of the standard methods for mul-
tiple materials design and optimization as shown in Fig. 1. There
are vast researches regarding the topology optimization for multi-
ple materials. The purpose of this topology optimization problem is
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to find out the optimal material distributions with multiple mate-
rials (multiple phases) for structural problem and multi-phyiscs
problems. With the help of the development of mathematical opti-
mization theory and advanced computational scheme, the size,
shape and topology optimization schemes have been widely
adopted and developed for scientists and engineers
[4,36,30,1,47,32,53,50,51,49]. Among them, this research focuses
on the topology optimization method providing an optimal layouts
for complex engineering structures without a prior given optimal
topology. The demand towards multiple materials and multiple
components is on the rise. Many introductory materials for struc-
tural optimization problem can be found and it becomes easier
to conduct researches for structure problem. In the framework of
the topology optimization method, the design variables assigned
to each finite element interpolate the material properties of the
physical equations of interest to find out void and material sta-
tuses. By extending the single phase material design problem into
multiple phases, lot of methods were proposed to solve the prob-
lem for topology optimization of multi-materials.
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Fig. 1. An illustration of topology optimization with three materials; various interpolation functions have been proposed.

We summarized the methods for topology optimization of
multi-materials into three groups. One of the widely accepted
methods for topology optimization of multi-materials is the SIMP
or extended SIMP method, which interpolate the involved material
properties with the simple polynomial function. They can be mod-
eled with single variable or multiple variables for multi-materials
interpolation. Multiple variables based modeling method has the
advantage of clearly definition of each component. Bendsoe, et al.
[5,6] first extended the SIMP interpolation for multi-material by
combining exponential function. Tavakoli and Park [40,31] fol-
lowed the work to easily implement it into traditional optimizer
by using alternating active-phase algorithm, which is efficiently
for the employing of an additional outlier optimization iteration.
A simple modification with linear combination of penalty interpo-
lation function for multi-material were used for topology opti-
mization of laminated composite beam cross sections by
Blasques, et al. [10,9]. Cui, et al. [16] modified the density interpo-
lation approach based on the logistic function, which effectively
realizes the polarization of the intermediate-density elements.
Long, et al. [29] introduced the reciprocal variables into the the for-
mulation of topology optimization to overcome these undesirable
local optimum phenomena for multi-material optimization.
Bohrer, et al. [11] extended it for multi-material based micro-
structural topology optimization of the functionally graded materi-
als and used it for multi-material topology optimization consider-
ing both isotropic and anisotropic materials. A similar method,
called RAMP material interpolation schemes is also involved into
the optimization of multi-material [24,17,45]. However, these
methods rely on a large number of sparse linear constraints to
enforce the selection of at most one material in each design subdo-
main. Tavakoli, et al. [39] proposed a new objective function for
multi-material optimization by introducing a Ginzburg-Landau
energy term. It firstly solves the optimization on the L, space by
the projected steepest descent algorithm, and then project the
parameters onto the feasible domain with a practically time-
linear algorithm.

There is a simple interpolation function for multi-material opti-
mization called discrete material optimization was first adopted
for multi-material by Gao, et al. [19], which was proposed by Steg-
mann and Lund [37] for topology optimization of composite struc-
ture. Bruyneel, et al.[12,13] proposed a new interpolation
approach, called shape function parameterization (SFP) for multi-
material optimization to reduce the number of design variables
in DMO. Kennedy, et al. [26] proposed a scalable approach for large
scale topology optimization with the DMO material properties
interpolation function. Sanders, et al. [35,18] proposed a simple
and robust formulation for multi-materials topology optimization

by taking advantage of the separable dual objective in the lin-
earized sub-problems, the ZPR scheme proposed by Zhang, et al.
[54] was used for updating volume/mass constraint independently.
Hence, the formulation is effective for multiple volume/mass con-
straints that can control all or a subset of the candidate materials in
the entire domain or a subset of the domain.

Some researchers also tried to use single variable to model the
topology optimization of multi-materials. Yin, et al. [52] proposed
the peak function based material interpolation model, which uses a
linear combination of a normal distribution functions. It can be
easily incorporated into the topology optimization without
increasing the number of design variables. However, the horizontal
zero slope of interpolation curve is a potential source of difficulty
in the numerical calculations for that it is impossible to cross such
a singular point to make transition from one material phase to
another during the optimization process. Zuo, et al. [57] proposed
the ordered SIMP interpolation function by introducing the power
functions with scaling and translation coefficients for multiple
materials with respect to the normalized density variables. It
indeed reduced the computation cost for optimization, but also
need special interpolation function for Young’s modulus and cost
to get a converge result.

The phase field method and the levelset method have the
advantage of clear definition of material boundary, and have also
been employed for the topology optimization of multi-material.
Zhou, et al. [55,56] introduced a general method to solve multi-
phase structural topology optimization problems based on Cahn-
Hilliard equation. One of the most important benefits of this
method is the intrinsic volume preserving property, which will
be kept strictly feasible with respect to the design domain without
any further effort. However, the slow convergence of the phase
field method remains the main drawback of this approach. Blank,
et al. [7,8] employed the volume constrained Allen-Cahn equation
into the Cahn-Hilliard based topology optimization methods to
overcome the slow convergence. Wang, et al. [42] extended the
single levelset method to multiple levelset, called color level sets,
for structural topology optimization with multiple materials. It
only need log,m levelset for m material design, and then the struc-
ture update by using a set of Hamilton-Jacobi equation. Wang and
Liu [43,28] followed the work by using m level set functions to rep-
resent m materials and one void phase (totally M + 1 phases). They
claimed for the advantage of guaranteeing that each point contains
exactly one phase without overlaps and with an explicit mathe-
matical expression, which greatly facilitates the design sensitivity
analysis. Guo and Chu [22,14] extended multiple levelset modeling
method for the topology optimization of multi-material with stress
constraint. Cui, et al. [15] proposed a level-set based multi-
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material topology optimization method using a reaction diffusion
equation. It modified the multi-material description from Multi-
Material Level Set (MM-LS) proposed by Wang, et al. [43], which
also has the advantage of that each phase is represented by a com-
bined formulation of different level set functions. Liu, et al. [27]
proposed a new multi-material level set topology optimization
method by using each level set function to represent one material
phase and the overlapping areas are filled with an artificial mate-
rial type. It has the advantage of keeping the signed distance infor-
mation with individual material regions, and can successfully
realize the component length scale controlling of multi-material
structures. Wang, et al. [44]| extended it to the multi-material
topology optimization method by involving the material-field
series-expansion model to reduce the number of design variables.
Though all these methods perform well for topology optimization
of multi-materials, the final topology highly depending on the ini-
tial design remains one big issue to be solved especially for multi-
materials.

There are also a few researches are introduced to improve the
efficiency for multi-materials optimization by using the discrete
variable based topology optimization. Raman, et al. [33,34]derived
the pseudo sensitivity for the discrete material variable and con-
structed the heuristic scheme to obtain the solution. Yang, et al.
[48] used the elemental compliance to update the density during
the iteration of optimization procedure, and also a practical regu-
lated iterative numerical approach was involved to find the solu-
tion to the multi-material topology optimization problem by
solving a series of two-material sub-problems. Although, these
methods improved the efficiency for multi-material optimization,
but the pseudo sensitivity decreased accuracy and robustness for
topology optimization problem with a large number of design
variables.

For multiple materials of SIMP based topology optimization,
one of the most important things is the interpolation function for
Young’s modular. The main purpose of the interpolation function
in topology optimization is to relax the discrete optimization prob-
lem with the continuous design variables. In other words, the orig-
inal topology optimization problem is the integer optimization
problem with zeros and ones. To solve the integer hard problem,
it is relaxed with the continuous design variables. Then local
optima with discrete void and solid are pursued after optimization.
In these procedures, it becomes important to employ a proper
relaxation function interpolating material properties with the con-
tinuous design variables to obtain designs with limit values. With
an improper interpolation function, optimal layouts with a lot of
grey design variables are prone to be generated. This issue
becomes serious even with one-material design, i.e., void or solid.
For example, the SIMP method with a smaller penalization leads
many grey elements. This difficulty becomes more serious with
multiple materials. Some relevant researches have proved that
the extension of the SIMP method can be applied for the interpola-
tion function of multiple materials and its extension have been
applied for many layout optimization problems. The extension of
the single material method is obvious and it is also possible to find
the research adopting the combined exponential functions for mul-
tiple materials as shown in Fig. 2.

The revisiting of the interpolation functions for topology opti-
mization with multiple materials in connection to multiple compo-
nents is necessary. It is challenging as through the optimization,
the distinct materials and design variables should be appeared to
satisfy the volume constraints and overcome the non-convex inter-
polation function. Hence, the issue of the interpolation function is
one of the key aspects of topology optimization for multiple mate-
rials. One of the difficulties faced with this is the selecting of the
proper and good initial design variables and not pushing the opti-
mizer to find out a serious local optimum. To relieve this difficulty
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Fig. 2. Conventional interpolation schemes[6,52]. (a) The interpolation function
(SIMP) for one material and (b) the interpolation functions for two materials.

and contribute this research subject, it is necessary to revisit the
subject of the interpolation function for multiple materials as it
directly relates to the clear 0, 1 result of the topology optimization
method.

To our best knowledge, there have been several researches
about the interpolation itself based on polynomial functions. Most
of the researches are based on the polynomial SIMP based interpo-
lation function and it extends the scopes of its application of mul-
tiple phases and multi-layered structures. The present research
aims to contribute this subject too. The present study proposes
to use the mapping based interpolation function for topology opti-
mization for multiple materials. Rather than the polynomial inter-
polation function or the SIMP based interpolation, this mapping
based interpolation function combines the p-norm of the design
variables assigned to each finite element and the 1-norm of the
design variable. Compared with the polynomial based interpola-
tion function, this mapping based interpolation has the advantages
in case of plentiful materials. To prove the concept of the present
mapping based interpolation function, several topology optimiza-
tion examples are solved.

This paper is organized as follows. Section 2 describes the basic
equations for the structural optimization problem and develops a
new mapping based interpolation function for multiple materials
and discusses its characteristics to the existing interpolation func-
tion. Section 3 presents several numerical examples to show the
advantages and disadvantages of the mapping based interpolation
function. Section 4 presents the conclusions and suggests future
research topics.

2. A new unified mapping based interpolation function

Before presenting the new mapping based interpolation func-
tion, this section explains the topology optimization problem and
the SIMP based interpolation functions for multiple materials.

2.1. Linear elasticity equation and topology optimization

To develop a unified mapping based interpolation function, the
topology optimization problem of compliance minimizing subject
to volume constraint is considered here. The governing equation
to solve the equilibrium equation on the domain Qis generally for-
mulated as follows:

V. 6(u)+b=0in Q (1)
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where the Cauchy stress tensor, the displacement vector, and the
body force are denoted by ¢,u, and b, respectively. The Dirichlet
boundary condition along 0Qp and the Neumann boundary condi-
tion along oQy are defined as follows:

u=20on9oQp
o -n=fon oQy

2)

where f and n denote the surface traction and the unit normal vec-
tor. The linear strain & and stress & relationship with the constitu-
tive matrix C is assumed.

o=C¢ (3)

Without the loss of generality, the finite element procedure is
applied to calculate the structural displacements, it can be
expressed as:

KU=F 4)

where the stiffness matrix, the displacement and the force vectors
are denoted by K, U and F, respectively.

With the multiple design variables assigned to each finite ele-
ment, the following topology optimization problem can be
formulated.

Minc = F'U
v
Subject to V(y), < V?,i=1,...,NM
K(y)U=F
1 m1 1 ml
N V2 Vnm-1 Vnm
¥ 3 Vim-1  Vim (5)
y=|: : o :
WET YT N v
neF VNM-1 VN
0<y<1

The volume of the i; material and the allowed maximum vol-
ume are denoted by V; and V?, respectively. The number of the
finite elements and the number of the multiple materials are
denoted by NE and NM, respectively. The design variables are y
with the subscript indicating the material properties and the
superscript indicating the index of the finite element. It is common
to employ the design variables same with the number of materials,
i.e., two design variables for two materials and three design vari-
ables for three materials. Then, the stiffness matrix is assembled
as follows:

NE
KU =FK®y) =) K(¢:().i=1.....NM (6)
e=1

Conventionally the following extended SIMP based material
interpolation functions for these weight factors have been pro-
posed for topology optimization with multiple materials (See
[20,57] and references therein).

NM
kK = "¢i(Ei — Evoia) + Euoia (7)

i=1

¢ =0%)" Lf!(l ~ (o)) (Vf)"] (®)

where the interpolation functions are denoted by ¢; for the factor
multiplied to the iy, Young’s modulus, and n is the penalty parame-
ter, which is used to drive the design variable toward 0 or 1 during
optimization. On the other hand, the following DMO interpolation
functions are also proposed [37].
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With the gradient based optimizer, the sensitivity values of the
objective and the constraint with respect to the y¢ design variable
can be computed as follows:

oc K
av; oy;

(10)

The optimization problem with the above gradient values can
be solved with a finite element strategy using a gradient-based
optimizer. For the topology optimization, it is crucial to interpolate
the material properties with respect to the continuous density
variable in the SIMP method to avoid the discrete 0-1(void or
solid) optimization problem.

2.2. Issues of the interpolated Young’s modulus

To converge the design variables to material phases and void,
any interpolation function should make the stiffness contribution
reduced for intermediate variables or penalized as Eq. (11). In case
of one material, the curve interpolating the envolved Young’s mod-
ulus should be less than the function value of the volume ratio or
less economically. This condition should be satisfied for multiple
materials too; In addition, the convexity of the interpolation func-
tion should be considered.

Case 1 (One material) : NM = 1,
E=Ei¢+Euu. & = ()",

E ~ (e n < e

£~ () <y (11)
Case 2 (multiple materials) : NM > 2

EE,- < the i — th volume interpolation function

The present study puts the conventional interpolation functions
in question as the values and the orders of Young’s moduli are not
considered in the interpolation functions in topology optimization
(The second condition of Eq. (11)).

In order to illustrate this issue, let us consider the three materi-
als with 5 N/m?, 2 N/m? and 1 N/m? for the Young’s moduli. The
interpolated Young’'s modulus may be formulated with the
extended SIMP interpolation function as follows:

¢ =71 x (1-73)

Zzyqlxygx(l_yg) (12)
3 =71 X V5 x5
E=Ei¢1 +Expy +E3¢;

With the DMO (Discrete Material Optimization) approach, the
material property is interpolated as follows:

b1 =71 x (1-75) x
¢2:7’5X(1—7q)x
¢y =75 x (1-71) x
E=Eid +Expy +E5

- 73

(
1 &
b3

The Young’s moduli are denoted by E;,E, and Es, respectively.
Note that the orders of the Young's moduli are not discussed or
neglected in the above interpolation Eq. (14) and we can arbitrary
choose the orders of the Young’s moduli as follows:
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Casel : E=5¢; +2¢, + 1¢3
Case2 : E=5¢; + 1¢, +2¢3
Case3 :E=2¢; +5¢, + 1¢5
Case4 :E=2¢; + 1¢; +5¢3
Case>:E=1¢; +5¢; +2¢5
Case6:E=1¢; +2¢, +5¢5

To converge the design variables into ones or zeros, the convex
curves would perform well with respect to the design variables for
the above interpolation functions with sufficient penalization fac-
tors or the ratio of the interpolated Young’s modulus to the ith
Young’s modulus should be less than each volume interpolation
function. Commonly these conditions are not satisfied and was dis-
cussed in the SIMP approach, and then the ordered multi-material
SIMP interpolation was proposed [57,25]. For example, Fig. 3
shows the distributions of the above interpolated functions (Case
1 and Case 6). The properties of the curves depend on the design
variables and the order of the Young’s moduli. The order of the
material properties affects the characteristics of the surfaces and
in this case, the sufficient penalizations cannot be achievable. For
example, the normalized interpolated Young's modulus should be
less than the volume ratio for the clear result of each element. It
is not clear and often cannot be achievable for multiple materials
(See Eq. (11)).

Due to the above issues of the interpolated Young’s modulus, it
is found that it is difficult to guarantee the clear 0, 1 result for the
design variables for multiple materials with the penalization fac-
tors and the local optima issue becomes a serious problem.

(14)

2.3. A new unified mapping based interpolation function for multiple
materials

Bearing the characteristics of the above interpolation functions
of topology optimization, this subsection proposes a new unified

Young'modulus [5,2,1] 7 =1

Interpolated Young's modulus
-0 =2 N W A~ O

0.4

0 0 0=

Second design variable

(a)

Third design variable

Young'modulus [5,2,1]

Interpolated Young's modulus
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mapping based interpolation function illustrated in Fig. 4 for mul-
tiple materials. The present approach is also started at the finite
element level and the material properties are expressed as a
weighted sum of material properties of interest. Compared with
the existing interpolation functions based on the polynomial series
or the SIMP based interpolation functions, the present interpola-
tion function is formulated based on the ratio of the p-norm of
the design variables to the sum or the 1-norm of the design vari-
ables multiplied by the design variable for the corresponding
material as follows:

NM
E(YS,-- Yim) = Z(ff’i)n(Ei — Evoid) + Evoid
where

_ Al e Al e
¢ = Hyeuliﬂi = Zyeiﬂi

1[I, = ((V‘i)p + (8 (yva)p)%

where the p-norm and 1-norm of the design variables of
755750+ Vim1» Vi are represented by [|y¢[| and [y°],, respec-
tively. A small value ¢ is used to avoid the undefined mathematical

operation zero divided by zero. Usually, it is set as 5 = 107°. In our
formulation, the number of candidate materials is also the number
of the design variables at each finite element. Therefore the total
number of the design variables is the number of finite elements
in the design domain times the number of candidate materials.
For example, the following interpolation functions are set for
one material, two materials and three material cases in Fig. (4).

(15)

One material : E(y5) = ¢1 ()" (E; — Eyoia) + Evoia (16)
NE
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Fig. 3. Interpolated Young’s modulus: (a) the extended SIMP approach (Case 1: n = 3, E; =5 N/m?, E; =2 N/m?, E; =1 N/m?), (b) the extended SIMP approach (Case 6: n = 3, E;
=1 N/m?,E, =2 N/m?, E; =5 N/m?), (c) the DMO approach (Case 6: n = 3, E; =1 N/m?,E, =2 N/m?, E; =5 N/m?) and (d) the DMO approach (Case 1: n = 3, E; =5 N/m?, E, =2 N/

m?,E; =1 N/m?).
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Fig. 4. A new mapping based interpolation function for multiple materials. (a) the formulation for the one material interpolation , (b) the formulation for two materials and

(c) the formulation for three materials.
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Fig. 5. Interpolated Young’s modulus with the p-norm: (a) the present approach (Case 1: n = p=3, E; =5 N/m? E, =2 N/m? E; =1 N/m?), (b) the present approach (Case 6:
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NE . NE ) NE )
Vi=Y 7, Va=) 75, Va=> % (21)
i=1 i=1 i=1

The following features can be observed. First of all, the present
interpolation functions are composed with the symmetric parts
with respect to the design variables multiplied with the design
variable. Unlike the SIMP based interpolation function or the
DMO based interpolation, they are based on the p-norm mapping
between the space of the design variables to the space of the mate-
rial properties. Therefore, regardless of the number of the involved
material properties, the form of the interpolation functions are for-
mulated systematically with respect to the design variables. With a
sufficient large value for p, the range of this interpolation function
is still between 0 and 1 that indicates nonphysical material proper-
ties not allowed, which follows the requirement of the Hashin-
Shtrikman bounds for multiphase composites or multi-material
([23]). With a larger value for p, a higher penalization can be
achievable, and a clearer optimized structure with multiple mate-
rial can be obtained. In practices, we set p = 6 to balance the clear
optimized structure and the robustness of the optimizer.

Secondly, the interpolated Young’s modulus simply becomes
that of the e-th material with zeros for all the design variables
and with one for the e-th design variable. The present interpolation
function in Fig. 5 also relies on the characteristics of an optimizer
to make the design variables converged to the limits, i.e., O or 1.
Similar to the SIMP based interpolation function with an increasing
order of the Young’s modular for each material Fig. 5 any finite ele-

w

Design Domain h

ANANANANANANANAN

f

v

Fig. 6. Design domain and boundary condition for the cantilever beam example.
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ment with intermediate values can be penalized since the constitu-
tive properties with intermediate variables becomes uneconomic.
But for the SIMP based interpolation function with a decreasing

0 20 40 60 80 100 120 140 160 180 200
Number of Iteration

Fig. 8. The converge history of topology optimization of Cantilever with 2
materials.

Fig. 9. Topology optimization of Cantilever with 2 materials, V; =V, = 0.25,
compliance = 0.451 (a) material 1, E = 1 (b) material 2, E = 5 (c) total structure(the
black is the stiff material and the grey is the compliant material).

(d)

(f)

Fig. 7. The iteration details of Cantilever with 2 materials for the mapping based method. (a) 1st iterations, (b) 10th iterations, (c) 20th iterations, (d) 40th iterations, (e) 80th

iterations, (f) 200th iterations.
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order of the Young’s modular for each material Fig. 5 and the DMO
based method with both of these cases Fig. 3(c) and (d), are diffi-
cult to converge to clear result.

Besides, the formulation of the interpolation for the single-
material is the same with the SIMP method as shown in Fig. 4(a),
which is also one of the advantage of the proposed method.

In addition, the setting of the initial values of the design vari-
ables becomes straight forward. For an example, we can easily
set the design variable to 0.5 to control the initial amount of each

S -

Fig. 10. Topology optimization of Cantilever with 3 materials, different colors
represent different materials, Ei=1E=2E=5V,=V,=V3= %

compliance = 0.252.

Fig. 11. Topology optimization of Cantilever with 5 materials, different colors
represent different materials, E; =1,E; =2,E3 =3,E4=4,E5=5V,; =V, =
V3 = V4 = V5 = 0.1, compliance = 0.344.

(a)
. f\
T \e
(c)
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material to be 0.5/3 with controllable and equivalent initialization
for each material according to Eq. (20), but it is difficult to control
with both the SIMP and DMO based interpolation function. Finally,
it is also easy to implement and extend the present mapping based
interpolation for topology optimization of much more materials.

2.4. Filtering and projection

2.4.1. Filtering

In order to avoid the formation of checker-board patter for the
topology optimization problem, two types of filtering methods are
used, naming the simple sensitivity filter and the density filter
based on the Helmholtz type partial differential equation (PDE).

Sensitivity filter: A common approach is the application of a fil-
ter to the sensitivities of each element based on their neighbour-
hood ([2]). Hence, The sensitivities of the objective and the
constraint with respect to the y¢ design variable can be modified
as follows:

ac

— e
ac eeNe '
— & 22
o Y1 (22)
ecNe

where N, is the set of neighbourhood of each element e with a given
influence radius R.

Density filter: The density filter based on the Helmholtz type
partial differential equation (PDE) with homogeneous Neumann
boundary conditions ([2]) is also introduced for each material,
which can be expressed as:

- R V29 + 7, =7

0% _
n = 0 (24)
where 7; is the filtered field of the design variable for each material.
The parameter R,;; plays a similar roles as R for the simple sensitiv-
ity filter based on the average weight of the radius of the neighbour-

hood. An approximate relation between them is Ry, = 2v/3R.

o

(b)

(d)

Fig. 12. Topology optimization of Cantilever with 3 materials with p =3,V; =V, = V3 =%, compliance = 0.229 (a) total structure, different colors represent different

materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E = 5.
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2.4.2. Projection

The filtered field of the design variable for each material J; con-
tains grey elements, the projection method is used to ensure 0-1
solution, which can be written as:

__tanh(§) + tanh((7; — 1))
b 2tanh ()

(25)

The parameter f controls the sharpness of the projection func-
tion. We start with a small value of g and double its value after a
certain number of iterations.

3. Optimization results

To prove the concept of topology optimization for multiple
materials with the mapping based interpolation, this section solves
two dimensional compliance minimization problems. Finite ele-
ment implementation with the mapping based interpolation func-
tion, the sensitivity analysis and the optimization were
implemented in the framework of the Matlab. To solve the opti-
mization problem, the method of moving asymptotes (MMA) algo-
rithm [38] is implemented.

3.1. Example 1: Cantilever beam problem

For the first example, the cantilever beam problem in Fig. 6 is
solved with the present mapping based interpolation function.
The design domain defined as a rectangle area of unit thickness
with width w = 2 and height h = 1, and is fixed at the left side. A
concentrated load f = 0.1 is applied at the lower right vertex of
the rectangle. The design domain is discretized into 200 by 100
equally-sized square four-node element r. = 0.01 with Young's
modulus E = 1 and Poisson’s ratio u = 0.3. The penalty parameter
is n = 3. A simple sensitivity filter based on the average weight of
the radius R = 1.5r, of the neighbourhood ([2]) is used to solve the
check-board problem.

Fig. 7 shows the snapshots for the convergence history of the
mapping based topology optimization of multi-materials at differ-
ent iterations during optimization. The Young’s modulus for the
stiff materials and compliant materials are set to be 5 and 1,
respectively. The density field is initialized equality and uniformly
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with 0.5 for each material over the entire design domain shown in
Fig. 7(a), which is impossible for convectional SIMP and DMO inter-
polation function. The results for 10th, 20th, 40th, 80th and 200th
iterations are shown in Fig. 7(b), (c), (d), (e), (f), respectively. It can
be obviously found that the proposed method almost converged to
the final result only with 40 iterations, as shown in Fig. 7(d). With
the iteration number is increasing, only a few change of the part
that is near the interfaces between materials occur, and the bound-
ary of each material become much more clear without any overlap.
The convergence history of the optimization shown in Fig. 8 also
proves the fast converging point, as is shown in the plot of the
object function with the red solid line. The plot of the volume con-
vergence history of the compliant material and the stiff material
are shown with green dash dot line and blue dot line, respectively.
It can also obviously show that both materials are initialized with
the same value of 0.5. The volume of each material decreases
quickly while the object function increasing at the first few itera-
tions. Then, both the stiff and compliant material would be con-
straint with 0.25 as expected within 20 iterations while the
object function decreasing.

The details of the optimized structures are shown in Fig. 9. The
compliant and stiff materials are shown Fig. 9(a) and (b), respec-
tively. The whole structure is shown in Fig. 9(c), different colors
represent different materials, the black is the stiff material and
the grey is the compliant material. The compliance of the opti-
mized structure is 0.451. One interesting thing can be found that
the boundaries between each material are clear. It is because that
the presented paper can get only 0, 1 result for each component
without any overlap with others. However, most of conventional
methods such the extended SIMP based method will produce
smooth transit between each material and even with overlap near
the boundary, which would decrease the structure stiffness when
put into real manufacturing. This is one of the big advantages of
the proposed method over conventional methods, which will be
discussed in details in the comparison section.

Fig. 10, Fig. 11 also show the optima layouts with three and five
materials with the volume constraint of 0.5/3 and 0.1 for each
material, respectively. It can be obviously found out that the stiff
materials appear at the boundary condition, the outer domain
and the domain at the loading point for each scenery. The Young's

(d)

Fig. 13. Topology optimization of Cantilever with 3 materials with p =6,V, =V, = V3 =%, compliance = 0.228 (a) total structure, different colors represent different

materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E = 5.
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modulus are set to 1, 2, 5 for three materials, and 1, 2, 3, 4, 5 for five
materials, respectively. The material property of the void region is
set to a small number 1e-°. The initial guess is set to 0.5 for each
material. With the presented mapping based interpolation func-
tion, the values of the interpolation functions with the uniform ini-
tial values are able to be set as the same. The compliance for 3 and
5 material is 0.252 and 0.344, respectively. It can be found that the
compliance vary with the number of materials used for optimiza-
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tion even with the same up and low bound of Young’s modulus
for the materials. It is proved that the structure stiffness to weight
ratio can be improved by using multi-materials. According to the
simple formulation of the proposed method, is also easy to achieve
the topology optimization of a large number of materials as the
computation source is enough.

We also implemented the proposed method by using the Helm-
holtz type PDE filter method ([2]) and the approximate differen-

/AN

Fig. 14. Topology optimization of Cantilever with 3 materials with p = 16,V =V, = V3 =%, compliance = 0.234 (a) total structure, different colors represent different

materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E = 5.

lf

Design Domain h

W

Fig. 15. Design domain and boundary condition for the half MBB example.

Fig. 16. Topology optimization of MBB with 2 materials, compliance = 0.507
(different colors represent different materials).

Fig. 17. Topology optimization of MBB with 3 materials, compliance = 0.279
(different colors represent different materials).

Fig. 18. Topology optimization of MBB with 5 materials, compliance = 0.333
(different colors represent different materials).
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tiable projection method ([46]) to explore the influence of the
value of p with the p-norm formulation to the optimized structure.

The parameter Ry, :;—rﬁ is set for the PDE filter method. To

improve the convergence behavior, the common technique which
is known as parameter continuation is used, we start with g =2
and double its value after 50 iterations. The optimized structures
of the proposed method with p=3,p=6,p =16 are shown in
Fig. 12, Fig. 13, Fig. 14, respectively. The proposed method con-
verges to clear 0,1 result without grey element of each material
for all the cases. It also can be found that the optimizer fill strong
material near the periphery of the structure where stiffness is
needed, and obtain a comparable stiff structure. We recommend
to use p = 6 for the proposed method to balance the stiff structure
and the robustness of the optimizer.

-‘ﬂ‘

S\ N2
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3.2. Example 2: MBB problem

The half MBB problem shown in Fig. 15 is considered for the
second problem. The design domain is defined as a rectangle area
of unit thickness with width w =2 and height h =1, and it is
simply-supported at the bottom corners. A concentrated load
f = 1is applied at the left upper side of the rectangle and the sym-
metric constraint is applied at the left side. The design domain is
discretized into 200 by 100 equally-sized square four-node ele-
ment r. = 0.01. The Poisson’s ratio, the volume constraint for each
material, the penalty parameter, and the filtering method are set as
the same with the first example.

The results for MBB with 2, 3, and 5 materials are shown in
Fig. 16, Fig. 17, Fig. 18, respectively. Similarly, It can be found that

!""’J

\
\?Lh‘(d):—_.j

Fig. 19. Topology optimization of MBB with 3 materials with Ry, = zf’
materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E = 5.

Vi =

V, =

Vi3 =

%5 compliance = 0.269 (a) total structure, different colors represent different

Fig. 20. Topology optimization of MBB with 3 materials with Ry
materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E
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the optimizer fills strong material near the periphery of the struc-
ture where stiffness is needed. The compliance for 2, 3 and 5 mate-
rial are 0.507, 0.279 and 0.333, respectively. It also shows that we
need to balance the number of the material to achieve a stiffer
structure with the same total volume constraint. The results also
prove the clear 0, 1 value for each material without overlap or
smooth constraint, which would make the simultaneous physical
performance for the optimization and manufactured structure.
We also explored the performance of the proposed method for
feature size controlling by changing the value of the parameter R,
of the Helmholtz type PDE filter method. The parameter B of the
projection method is set as the same of the above section. The opti-
mized  structures of the proposed method with

_n.e!s"
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Ruin = ZZL\;_,Rmm :%,Rmm = 2\/_ are shown in Fig. 19-21, respec-
tively. It also can be found that the optimizer fill strong material
near the periphery of the structure where stiffness is needed, and
obtain a comparable stiff structure. One interesting thing is found
that the proposed method can converge to clear boundaries for
each material even with a large filter radius Ry = 3%, which is
the same with the simple sensitivity filter based on the average
weight of the radius R = 10r, of the neighbourhood. It is obviously
that the mixing at the interfaces resulting from the filter is avoided
with the proposed method for all the cases, which is an important
contribution of the proposed method. It is easy to manufacture the
optimized structure, and would make the simultaneous physical
performance for the optimization and manufactured structure.

R 2N ad

(c)

Fig. 21. Topology optimization of MBB with 3 materials with Ry, = 27’5,%
materials (b) material 1, E = 1 (c) material 2, E = 2 (d) material 3, E =

V, =

Vs =

(d)

05 compliance = 0.274 (a) total structure, different colors represent different

Fig. 22. Topology optimization result with the extended SIMP interpolation (a) the optimized layouts of three materials with different colors represent different materials(red

is the stiff material E = 5, cyan is the the compliant material E = 2, and yellow it is the the material with E = 1), V4

=V, = V3 =%, compliance = 0.261 (b), (c) and (d) are the

details for each material of the optimized structure(red is material, and blue is the void).
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3.3. Comparison

To illustrate the advantage of the concept of topology optimiza-
tion for multiple materials with the mapping based interpolation
function, we compared the proposed method with both SIMP and
DMO based interpolation function via the topology optimization
of MMB structure. The conditions of the MBB problem are set as
the same of the above section, and the simple sensitivity filter
based on the average weight of the radius R = 1.5r, of the neigh-
bourhood is used. All the results and all the finite element codes
for these examples can be found in the appendix. As discussed in
Fig. 3, the order of the Young’s moduli is important in terms of
the convergence of clear 0, 1 result for each element of each mate-
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rial. The decreasing order of Young's modulus with SIMP based
interpolation function and the DMO based interpolation function
(both the increasing and the decreasing order of Young’s modulus
are the same, the only difference is that the optimized structure of
each material changing with the order of Young’s modulus. Thus,
we only show the result of the DMO based interpolation function
with increasing order of Young’s modulus.) are difficult to converge
to clear 0, 1 result, as shown in Fig. 23a) and and Fig. 25(a), the col-
ors represent the mixing of each material. Fig. 23d) and Fig. 25(a),
(b), (), (d) represent the grey element of each material. Only, the
increasing order of Young’s modulus with SIMP based interpola-
tion function can obtain a clear layout of each material without
few grey elements as shown in Fig. 22(a), different colors represent

Fig. 23. Topology optimization result with the extended SIMP interpolation (a) the optimized layouts of three materials with E; = 5,E, = 2, E3 = 1(the colors represent the
mixing of each material), V; =V, = V3 =%, compliance = 0.268 (b), (c) and (d) are the details for each material of the optimized structure(the colors represent the grey

elements of each material).

(d)

Fig. 24. Topology optimization result with the proposed method (a) the optimized layouts of three materials with different colors represent different materials(red is the stiff
material E = 5, cyan is the the compliant material E = 2, and yellow it is the the material with E = 1), V; = V, = V3 = %2, compliance = 0.279 (b), (c) and (d) are the details for

each material of the optimized structure (red is material, and blue is the void).
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different materials(red is the stiff material E = 5, cyan is the the
compliant material E = 2, and yellow it is the the material with
E = 1). This issue becomes serious when the number of the mate-
rials or the phases is increased. As the non-convexity is not
observed at the present p-norm based interpolation function, the
stable convergences can be obtained as shown in Fig. 24(a), the
label is the same with the SIMP based method with increasing
order of Young’s modulus. The compliance is also comparable with
that of the SIMP based method as shown in Fig. 22. Comparing the
results of Fig. 22 and Fig. 24, it can be found out that the bound-
aries of each material of the optimized structure with the proposed

(c)
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method are much more clearer than the SIMP based method with
increasing order of Young’s modulus, which means that it can be
manufactured easily and with fewer lost of the stiffness after man-
ufacturing. Besides, the proposed method can equally and easily
initialize each material which may get better optimized structure,
and can be easily formulated and implemented when the number
of the materials or the phases is increased.

The 3D cantilever beam with w=0.5,h =1, and [ =2 is also
used to show the performance of the proposed method for topol-
ogy optimization of multiple materials in the 3D design domain.
The force f = 1 is applied to the lower right boundary of the design

Fig. 25. Topology optimization result with the DMO interpolation (a) the optimized layouts of three materials with E; = 1,E, = 2, E; = 5(the colors represent the mixing of
each material),V; = V, = V3 =%, compliance = 0.170 (b), (c) and (d) are the details for each material of the optimized structure (the colors represent the grey elements of

each material).

(f)

Fig. 26. Topology optimization of Cantilever with 2 materials in 3D domain, V; = V, = 0.25, (a), (d) is the results of the proposed method and the SIMP method, (b), (e), and

(c), (f) is vertical and horizontal parallel slices of the optimized structure.
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domain, and the freedom of the left surface is constrained. The
design domain is discretized with equal-sized, cubed, eight-node
elements r, = 0.02, and the filter radius is set as R = .. The Young’s
modulus is set as E = 1 and E = 5 for the two material respectively,
and Poisson’s ratio is u = 0.3. The penalty parameter is setasn = 3.
The optimized structures of the proposed method and the SIMP
based method are shown in Fig. 26. The same with the 2D cases,
the SIMP based method only works with the cases of an increasing
order of Young’s modulus for multiple materials as shown in
Fig. 26(d), and the optimized structure of the proposed method
with the same conditions are shown Fig. 26(a). It also can be found
that the boundary of the optimized structure with different mate-
rials for the proposed method is clearer than those of the SIMP
based method, and the compliance is comparable. It validates that
the proposed method also performs well for the topology opti-
mization of multiple materials in 3D domains.

4. Conclusions

This research presents a new mapping based interpolation func-
tion for topology optimization with multiple materials. It is com-
mon for conventional topology optimization methods of multiple
materials to adopt the polynomial functions or the SIMP based
interpolation functions. They have been successful for various opti-
mization problems and this research presents a new mapping
based interpolation for multiple materials. One of the new features
of the present approach is to use the mathematical mappings of the
spaces of the design variable. In other words, the material interpo-
lation function is determined by the ratio of the p-norm to the 1-
norm multiplied by the corresponding design variable. The number
of the design variables is the same to the number of the materials
of interest. The advantage of the proposed method is that the
design variables assigned to each element can be directly used as
an indicator whether the corresponding material appears or not,
where in the SIMP based interpolation function, the combinations
of the design variables should be considered to identify the mate-
rial used for the volume constraint. Furthermore, the present map-
ping based interpolation function is different to that of the SIMP
based interpolation function. It is tricky to determine which one
is better than another. As the design variables indicate the material
properties directly, to our experiences, it is relatively easy to find
out the initial design variables. It is our opinion that the presented
mapping based interpolation function can be used as one of the
alternatives of the SIMP based interpolation function. Besides, the
proposed method can easily converge to clear 0, 1 result for each
material without grey elements, which make it easy to manufac-
ture the optimized structure for multi-materials. The proposed
method can also be easily extended and implemented for the
topology optimization of plenty materials.
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